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Abstract

The security of the most popular number-theory public key crypto (PKC) systems will be
devastatingly affected by the success of a large quantum computer. Code-based cryptography
is one of the promising alternatives that are believed to resist classical and quantum computer
attacks. Many families of codes have been proposed for these cryptosystems, one of the main
requirements is having an efficient t-bounded decoding algorithm.

In [16, 17] it was shown that for the so called very strong algebraic geometry codes C which
is a collection of codes C = CL(X ,P, E), where X is an algebraic curve over Fq, P is an n-tuple
of mutually distinct Fq-rational points of X and E is a divisor of X with disjoint support from
P, an equivalent representation can be found. Moreover in [19] an efficient computational
approach is given to retrieve a triple that is isomorphic with the original representation, and,
from this representation, an efficient decoding algorithm is obtained.

In this talk, we will show how an efficient decoding algorithm can be retrieved from an
algebraic geometry code C by means of error-correcting pairs [20] and arrays directly, that is
without the detour via the representation (X ,P, E) of the code C = CL(X ,P, E).

As a consequence we will have that algebraic geometry codes with certain parameters are
not secure for the code-based McEliece public key cryptosystem.
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1 Introduction

The security of code-based cryptosystems is founded on the (supposedly) hardness of decoding up
to half the minimum distance. The minimum distance decoding problem was shown by Berlekamp-
McEliece-Van Tilborg [1, 3] to be NP-hard. McEliece [21] proposed a PKC system using binary
Goppa codes.

All known minimum distance decoding algorithms for general codes have exponential complex-
ity in the length of the code. The complexity exponent of decoding general binary codes up to
half the minimum distance has been lowered in a series of papers from above 1/3 for brute force
decoding to below 1/20 by [2]. However there are several classes of codes such as the generalized
Reed-Solomon (GRS), BCH, Goppa or algebraic geometry codes which have polynomial decoding
algorithms that correct up to a certain bound which is at most half the minimum distance.

In 1986 [23] Niederreiter presented a dual version of McEliece cryptosystem which is equivalent
in terms of security. This system differs from McEliece’s system since it uses a parity check matrix
instead of a generator matrix of the code. Several classes of codes are proposed for code-base
PKC systems such as subcodes of GRS codes, alternant codes which contains the Goppa codes as
subclass, and algebraic geometry codes [12].

It was shown in [6, 14, 24, 26, 28] that the known efficient bounded distance decoding algorithms
of the before mentioned codes can be described by a basic algorithm using an error-correcting pair.
That means that the proposed McEliece cryptosystem that use these classes of codes can be viewed
as using the error-correcting pair as a secret key. Hence the security of these PKC systems is not
only based on the inherent intractability of bounded distance decoding but also on the assumption
that it is difficult to retrieve an error-correcting pair.



2 Error-correcting pairs and arrays

From now on the dimension of a linear code C will be denoted by k(C) and its minimum distance
by d(C). Given two elements a and b in Fn

q , the star multiplication is defined by coordinatewise
multiplication, that is a ∗ b = (a1b1, . . . , anbn) while the standard inner multiplication is defined
by a · b =

∑n
i=1 aibi. In general, for two subsets A and B of Fn

q the set A ∗ B is given by
{a ∗ b | a ∈ A and b ∈ B}. Furthermore A ⊥ B if and only if a · b = 0 for all a ∈ A and b ∈ B.

Let C be a linear code in Fn
q . The pair (A,B) of linear codes over Fqe of length n is called a

t-error-correcting pair (ECP) for C if the following properties hold:

E.1 (A ∗B) ⊥ C,

E.2 k(A) > t,

E.3 d(B⊥) > t,

E.4 d(A) + d(C) > n.

The notion of an error-correcting pair for a linear code was introduced in 1988 by Pellikaan
[24, 26] and independently by Kötter in [14, 15] in 1992. It is shown that a linear code in Fn

q with
a t-error-correcting pair has a decoding algorithm which corrects up to t errors with complexity
O
(
(en)3

)
.

The existence of ECP’s for GRS and algebraic geometry codes was shown in [24, 26]. For
many cyclic codes Duursma and Kötter in [6, 14, 15] have found ECP’s which correct beyond the
designed BCH capacity.

An error-correcting array is defined in [13, 27] for a sequence of codes. From it follows the
Feng-Rao designed minimum distance of the codes and the majority voting scheme of Feng-Rao
[4, 5, 8] gives a decoding algorithm that decodes these codes up to half the Feng-Rao designed
minimum distance with complexity O(n3). An equivalent formulation is given in terms of (weakly)
well-behaving sequences [9, 10, 11].

3 Algebraic geometry codes

Let X be an algebraic curve defined over Fq with genus g. Let P be an n-tuple of Fq-rational points
on X and let E be a divisor of X with disjoint support from P of degree m. Then the algebraic
geometry code CL(X ,P, E) is the image of the Riemann-Roch space L(E) of rational functions
with prescribed behavior of zeros and poles at E under the evaluation map evP . If m < n, then
the dimension of the code CL(X ,P, E) is at least m + 1− g and its minimum distance is at least
n − m. If m > 2g − 2, then its dimension is m + 1 − g. The dual code CL(X ,P, E)⊥ is again
AG. If m > 2g − 2, then the dimension of the code CL(X ,P, E)⊥ is at least n−m− 1 + g and its
minimum distance is at least d∗ = m− 2g + 2, which is called the designed minimum distance. If
m < n, then its dimension is n−m− 1 + g.

Algebraic geometry codes were proposed by Niederreiter [23] and Janwa-Moreno [12] for code-
based PKC systems. This system was broken for genus zero [29], one and two [7, 22] and for
arbitrary genus for so called VSAP codes [16, 17, 18, 19].

Let r = l(E)− 1 and {f0, . . . , fr} be a basis of L(E). Consider the following map:

ϕE : X −→ Pr(Fq)

defined by ϕE(P ) = (f0(P ) : . . . : fr(P )). If m > 2g, then r = m − g. So ϕE defines an
embedding of the curve X of degree m in Pr. More precisely, let Y = ϕE(X ), Qj = ϕE(Pj)
and Q = (Q1, . . . , Qn). Then Y is a curve in Pm−g of degree m and ϕE is an isomorphism from
X to Y. Now ϕE(E) ≡ Y · H for every hyperplane H of Pm−g(Fq). If moreover E is effective,
then ϕE(E) = Y · H for some hyperplane H of Pm−g(Fq). Let F = ϕE(E), then (Y,Q, F ) is a
representation of C that is strict isomorphic with (X ,P, E).

If m ≥ 2g+ 2, then I(Y) is generated by I2(Y). If moreover n > 2m, then I2(Q) = I2(Y). Now
CL(X ,P, E) is called a very strong algebraic geometry (VSAG) code if

2g + 2 ≤ m <
1

2
n or

1

2
n + 2g − 2 < m ≤ n− 4.

It was shown that the representation by the triple (X ,P, E) of a VSAG code CL(X ,P, E) is unique
up to isomorphisms [16, 17, 18] and that such a triple can be retrieved efficiently [19].



4 Error-correcting pairs and arrays from VSAG codes

Let C = CL(X ,P, E)⊥ be an AG code on a curve of genus g with designed minimum distance d∗

and m = deg(E) > 2g − 2. Let A = CL(X ,P, E − F ), B = CL(X ,P, F ) and C = CL(X ,P, E)⊥.
Then 〈A ∗ B〉 ⊆ C⊥. If moreover t = b(d∗ − 1 − g)/2c and deg(F ) = m − t − g, then (A,B) is a
t-ECP over Fq by [25, Theorem 1] and [26, Theorem 3.3]. So there are abundant ways to construct
error-correcting pairs of an AG code.

This approach needs the efficient computation of the Riemann-Roch spaces L(F ) and L(E−F )
and such algorithms are available. If e is sufficiently large and m > 4g − 3, then there exists a
b(d∗−1)/2c-ECP over Fqe by [28, Proposition 4.2], but no efficient way to obtain the pair is known.

In the following we construct ECP’s directly using subspaces of Fn
q and circumventing the use

of the Riemann–Roch spaces. If we take F = (m−t−g)P1 where P1 is the first rational point of P,
then L(E−F ) is a subspace of L(E), and A = CL(X ,P, E−F ) is a subspace of C⊥ = CL(X ,P, E).

In fact A is the space of those codewords in C⊥ that are zero at the first position of multiplicity
m− t− g and this multiplicity can be controlled, since we have computed I2(Q) efficiently. Define
B0 = 〈A ∗ C〉⊥, then B⊥0 = 〈A ∗ C〉 ⊆ B⊥. So d(B⊥0 ) ≥ d(B⊥) > t. Hence (A,B0) is a t-ECP for
C. There is one technical detail, note that P1 is in the support of E − F and F , but there is a
generalized way to define algebraic geometry codes, using a local parameter as explained in [19],
where it is no longer necessary to assume that P is disjoint from the support of the divisor E in
the definition of the code CL(X ,P, E).

Similarly we can decode up to b(d∗ − 1)/2c errors using arrays or well-behaving sequences and
majority voting [4, 5, 9, 10, 11].
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