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Abstract. Code-based cryptography is an interesting alternative to clas-
sic number-theory PKC since it is conjectured to be secure against quan-
tum computer attacks. Many families of codes have been proposed for
these cryptosystems such as algebraic geometry codes. In a previous
paper [9] we showed that for so called very strong algebraic geome-
try codes C = CL(X ,P, E) where X is an algebraic curve over Fq and
P = (P1, . . . , Pn) is an n-tuple of mutually distinct Fq-rational points of
X and E is a divisor of X with disjoint support from P it was shown
that an equivalent representation C = CL(Y,Q, F ) can be found. The n-
tuple of points are obtained directly from a generator matrix of C, where
the columns are viewed as homogeneous coordinates of these points. The
curve Y is given by I2(Y), the homogeneous elements of degree 2 of the
vanishing ideal I(Y). Furthermore it was shown that I2(Y) can be com-
puted in an efficient as the kernel of certain linear map. What was not
shown was how to get the divisor F and a decoding algorithm in an effi-
cient way. In this talk show some work in progress on the topics needed
to be dealt towards an efficient computational approach to this problem.
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Introduction

In 1978, McEliece [11] introduced the first public key cryptosystem (PKC) based
on the theory of error-correcting codes in particular he proposed to use a classi-
cal binary Goppa code. The security of this scheme is based on the hardness of
the decoding problem for general linear codes and the hardness of distinguishing
a code with the prescribed structure from a random one. Moreover, McEliece
scheme an interesting candidate for post-quantum cryptography. An overview of



2

the state of the art of cryptosystems that are secure against attacks by quan-
tum computers is provided in [3]. Another advantage of this scheme is its fast
encryption and decryption functions.

Many attempts to replace Goppa codes with different families of codes have
been proven to be insecure as for example using GRS codes such as the original
Niederreiter system [12] which was broken by Sidelnikov and Shestakov [13] in
1992.

let X be an algebraic curve of genus g over the finite field Fq, P = (P1, . . . , Pn)
be an n-tuple of mutually distinct Fq-rational points of X and E a divisor of X
with disjoint support from P of degree m. We define the vector space of rational
functions associated to E as the set

L(E) = {f ∈ Fq(X ) | f = 0 or (f) ≥ −E} ,

and the linear series of E as the collection |E| = { F | F ≡ E,F ≥ 0 }. Then
the following evaluation map

evP : L(E) −→ Fn
q

is well defined by evP(f) = (f(P1), . . . , f(Pn)). The algebraic geometry code
CL(X ,P, E) is the image of L(E) under the evaluation map evP , i.e.

CL(X ,P, E) = {(f(P1), . . . , f(Pn) | f ∈ L(E))} ⊆ Fn
q .

As consequence of the Riemann-Roch theorem, if n > m > 2g − 2 then
CL(X ,P, E) has dimension m+ 1− g and minimum distance at least n−m.

Recall that GRS codes can be seen as the special class of algebraic geometry
codes on the projective line, that is the algebraic curve of genus zero. This result
was generalized to curves of genus 1 and 2 by Faure and Minder [5] in 2008.
These attacks can be viewed as retrieving the curve, n points on this curve and
the divisor E.

Since the initial Niederreiter scheme is completely broken, Berger and Loidreau
[2] proposed in 2005 another version which was designed to resist precisely the
Sidelnikov-Shestakov attack. The main idea of this variant is to work with sub-
codes of the original GRS code rather than using the complete GRS code. How-
ever Wieschebrink [14] in 2006 presents the first feasible attack to the Berger-
Loidreau cryptosystem that allows us to recover the secret key if the chosen
subcode is large enough but which was impractical for small subcodes. Further-
more in 2010 Wieschebrink [15] noted that it seems that with high probability
the square code of a subcode of a GRS code of parameters [n, k] is itself a GRS
code of dimension 2k − 1.

Therefore we can apply the Sidelnikov-Shestakov attack and thus reconstruct
the secret key in polynomial time. Continuing this line of work, in [10], we char-
acterized those subcodes which are weak keys for the Berger-Loidreau cryptosys-
tem. That is, firstly those subcodes which are themselves GRS codes, we have
seen that the probability of occurrence of this fact is very small, and secondly
those subcodes whose square code is a GRS code of maximal dimension which
has high probability of occurrence.
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Singleton bound

Gilbert-Varshamov bound

Tsfasman-Vladut-Zink bound
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Fig. 1. Bounds on R as a function of the relative minimum distance δ for q = 49 and
γ = 1
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In 1996 Janwa and Moreno [7] proposed to use the collection of AG codes on
curves for the McEliece cryptosystem. As we have already explained this system
was broken for codes on curves of genus g ≤ 2 by Faure and Minder [5]. But the
security status of this proposal for higher genus was not known.

Definition 1. A code C over Fq is called very strong algebraic-geometric (VSAG)
if C is equal to CL(X ,P, E) where the curve X over Fq has genus g, P consists
of n points and E has degree m such that

2g + 2 ≤ m < 1
2n or 1

2n+ 2g − 2 < m ≤ n− 4.

In [9] we proved the following result

Theorem 1. Let C be a VSAG code then a VSAG representation can be obtained
from its generator matrix. Moreover all VSAG representations of C are strict
isomorphic.

Theorem 1 implies, provided we have an efficient procedure for de-
coding the VSAG representation obtained in the theorem, that one
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should not use VSAG codes for the McEliece PKC system in the range

γ ≤ R ≤ 1
2 − γ or 1

2 + γ ≤ R ≤ 1− γ,

for n → ∞, since there is an efficient attack by our result. In the same paper,
by a shortening argument, we proved that also codes in the range

1
2 − γ ≤ R ≤ 1− 3γ or 3γ ≤ R ≤ 1

2 + γ,

for n→∞, should be excluded. The above mentioned intervals [γ, 12 − γ], [12 +
γ, 1−γ], [ 12−γ, 1−3γ] and [3γ, 12 +γ] are nonempty if and only if γ ≤ 1

4 , and the
union of these intervals cover the whole interval [γ, 1− γ] if and only if γ ≤ 1

6 .

Work in progress

As it was mention before, a VSAG representation isomorphic to the original code
can be built from the public key of the PKC (the scrambled generator matrix of
the original code). Indeed, decoding the VSAG representation implies decoding
the original code, i.e. breaking the cryptosystem. The purpose of this research
is twofold

1. Compute efficiently the VSAG representation, i.e. retrieving the triple given
by the curve, a set of points and the divisor defining the functions to be
evaluated.

2. Decode the code given by VSAG representation.

Up to now we have made some advances in direction 1. Indeed, if the VSAG
representation lies in some of the families of AG codes that are provided with
an efficient error correcting procedure this will imply tht the PKC based on the
original code would be broken.

Computing the VSAG representation

Let r = l(E) − 1 and {f0, . . . , fr} be a basis of L(E). Consider the following
map:

ϕE : X −→ Pr(Fq)

defined by ϕE(P ) = (f0(P ), . . . , fr(P )).

Ifm > 2g then r = m−g, so ϕE defines an embedding of the curve X of degree
m in Pr. More precisely, let Y = ϕE(X ), Qj = ϕE(Pj) and Q = (Q1, . . . , Qn).
Then Y is a curve in Pm−g of degree m, ϕE is an isomorphism from X to Y and
ϕE(E) = Y ·H for some hyperplane H of Pm−g that is disjoint from Q. See [6,
Theorems 7.33 and 7.40]. Let F = ϕE(E) = Y ·H. Then C = CL(Y,Q, F ), that
is (Y,Q, F ) is also a representation of the code C which is strict isomorphic with
(X ,P, E).
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Computing Y. Let C be a k dimensional subspace of Fn
q with basis {g1, . . . ,gk}.

We denote by S2(C) the second symmetric power of C. If xi = gi, then S2(C)
has basis {xixj | 1 ≤ i ≤ j ≤ n} and dimension

(
k+1
2

)
. Furthermore we denote

by 〈C ∗ C〉 or C(2) the square of C, that is the linear subspace in Fn
q generated by

{a ∗ b|a,b ∈ C}. See [4, §4 Definition 6] and [10, 15]. Now we consider the linear
map

σ : S2(C) −→ C(2),

where the element xixj is mapped to gi ∗ gj . The kernel of this map will be
denoted by K2(C).

Proposition 1 (Proposition 15 in [9]). Let Q be an n-tuple of points in
Pr(Fq) not in a hyperplane, k = r + 1, GQ be the k × n matrix associated to Q
and C be the subspace of Fn

q generated by the rows of GQ. Then

I2(Q) = {
∑

1≤i≤j≤k aijXiXj |
∑

1≤i≤j≤k aijxixj ∈ K2(C) }.

Let Q be an n-tuple of points in Pr(Fq) not in a hyperplane. Then O(n2
(
r
2

)
) is an

upper bound on the complexity of the computation of I2(Q) and a Gröbner basis
of this ideal can be computed by straight-forward adaptation of the Projective
version of the classical Buchberger-Möller Algorithm presented in [1] for the
special case where we know that the elements of the reduced Gröbner basis have
degree two.

Computing E = Y ·H. Let g1, . . . ,gk be the rows of the chosen generator
matrix G of C. By the star product ∗ he vector space Fn

q is an Fq-algebra.
Consider the map of Fq-algebras

ε : Fq[X1, . . . , Xk] −→ Fn
q

given by Xi 7→ gi for i = 1, . . . , k and extended by the universal property of
Fq[X1, . . . , Xk] as an Fq-algebra.

Let R be the factor ring R = Fq[X1, . . . , Xk]/I(Y). The ideal I(Y) is in the
kernel of ε. Hence ε induces a map

ε : R −→ Fn
q ,

that we also denote by ε. Let Rd be the subspace of R given by cosets of ho-
mogeneous polynomials of degree d. Then ε(R1) = C by construction of ε, and
more generally ε(Rd) = C(d).
Let f(X) be a nonzero linear function in R1. Then ε(f(X)) = g is a nonzero
codeword of C and ε(f(X)R1) = g ∗ C.

Let H be the hyperplane given by the linear equation f(X) = 0. We may
assume without loss of generality after possibly extending the field of constants
that E = Y ·H that there is a nonzero function f ∈ L(E) such that (f)∞ = E,
that means that the divisor of poles of f is equal to E. Let g = evP(f) ∈
CL(X ,P, E) = C. Then g ∗ C is a subspace of C(2) and the coset C(2)/g ∗ C has
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dimension (2m+ 1−g)− (m+ 1−g) = m. Therefore we have an explicitly given
Fq-linear map:

Fq[X1, . . . , Xk] −→ C(2)/g ∗ C
with kernel the ideal I2(Y) + (f), that is the vanishing ideal of Y ∩H with mul-
tiplicities counted. In this situation there is an efficient (polynomial) algorithm
that computes a Gröbner basis of I2(Y) + (f), see [8].
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