
A Polynomial Time Attack against Algebraic
Geometry Code Based Public Key Cryptosystems

Alain Couvreur, Irene Márquez–Corbella
INRIA Saclay & LIX, CNRS UMR 7161

École Polytechnique
91120 Palaiseau Cedex

Email: alain.couvreur@lix.polytechnique.fr,
irene.marquez-corbella@inria.fr

Ruud Pellikaan
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

Email : g.r.pellikaan@tue.nl

Abstract—We give a polynomial time attack on the McEliece
public key cryptosystem based on algebraic geometry codes.
Roughly speaking, this attacks runs in O(n4) operations in Fq ,
where n denotes the code length. Compared to previous attacks,
the present one allows to recover a decoding algorithm for the
public key even for codes from high genus curves.

I. INTRODUCTION

At the end of the seventies, only a couple of years after the
introduction of public key cryptography, McEliece proposed
an encryption scheme [13] whose security reposes on the
difficulty of decoding a random code. Compared to RSA and
discrete logarithm based schemes, McEliece has the advantage
to resist to quantum attacks so far. In addition, its encryption
and decryption are far more efficient. On the other hand,
its major drawback is the huge size of the keys required to
have a good security level. The original algorithm uses binary
Goppa codes. In the sequel, several proposals based on other
families of algebraic codes appeared in the literature. For
instance, Generalized Reed–Solomon codes are proposed in
[17], subcodes of them in [1] and Binary Reed–Muller codes
in [23]. All of these schemes are subject to polynomial or
sub-exponential time attacks [15], [24], [27].

Another attempt, suggested by Janwa and Moreno [8] was
to introduce Algebraic geometry codes. Due to Faure and
Minder, this scheme was broken for codes on curves of genus
g ≤ 2, [6], [14]. However, this attack has several drawbacks
which makes it impossible to extend to higher genera. Indeed,
their attack requires the curve to be hyperelliptic, which is
non generic for genus higher than 2. Moreover, even for
hyperelliptic curves, the first step of their attack consists of
the computation of minimum weight codewords and such
a computation is exponential in the curve’s genus. Another
attempt of breaking this scheme for arbitrary genus appeared
in [11], [12] where the authors describe an algorithm for
retrieving an equivalent representation of the code C from
the single knowledge of the public key. Unfortunately, the
efficient construction of a decoding algorithm from this code’s
representation is still lacking. Indeed, the obtained embedding
of the curve lies in a high dimensional projective space making
difficult the computation of Riemann Roch spaces.

In this article, we use another approach based on the use
of the Schur product, that is the component wise product of
vectors. Our attack is inspired from the the attacks developed
in [3], [4]. Thanks to Schur products of codes, we are able to
compute an Error Correcting Pair [19] in O(n4) operations in
Fq , allowing us to decrypt any encrypted message in O(n3)
under the assumption that the users also use error correcting
pairs. Compared to Faure and Minder’s attack, ours does
not require the computation of minimum weight codewords
and its complexity is polynomial in the code length with no
exponential contribution of the genus. This allows us to break
schemes based on high genus algebraic geometry codes. It
should be pointed out that our attack is neither a generic
decoding attack like Information Set Decoding, nor a structural
attack as the structure of the code is not retrieved.

This alternative attack has been implemented in MAGMA
[2] and broke for instance a [729, 404] 126–error correcting
Hermitian code (with genus 36) over F81 which had 182-bits
security with respect to ISD attacks. Using an Intel r CoreTM
2 Duo 2.8 GHz, the attack ran in 21 minutes.

II. ALGEBRAIC GEOMETRY CODES

For basic notions on algebraic curves and algebraic geom-
etry (AG) codes, such as curves, function fields, valuations,
divisors and Riemann–Roch spaces we refer the reader to [25],
[26].

A. Notation
Let X denote a smooth projective geometrically connected

curve over a finite field Fq . The function field of X is
denoted by Fq(X ) and for all point P ∈ X the valuation
at P is denoted by vP . Given an Fq–divisor E on X , the
corresponding Riemann Roch space is denoted by L(E).
Given an n–tuple P = (P1, . . . , Pn) of pairwise distinct Fq–
points of X , we denote by DP the divisor DP := P1+· · ·+Pn.
For f ∈ Fq(X ), the divisor of f is denoted by (f). Given a
divisor E with support disjoint from that of DP , the code
CL(X ,P, E) is defined as

CL(X ,P, E) := {(f(P1), . . . , f(Pn)) | f ∈ L(E)} .
Finally, from now on the dimension of a linear code C will be
denoted by k(C) and its minimum distance by d(C).
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B. Some classical results in algebraic geometry coding theory

Let X , P and E be respectively a smooth projective
geometrically connected curve over Fq , an n–tuple of rational
points of X and an Fq–divisor of degree m on X . Then, we
have the following well–known statements.

Theorem 1. If deg(E) = m < n then

k(CL(X ,P, E)) ≥ m+ 1− g
d(CL(X ,P, E)) ≥ n−m.

Moreover, if n > m > 2g−2 then CL(X ,P, E) has dimension
m− g + 1.

Theorem 2. Let ω be a differential form with a simple pole
and residue 1 at Pj for all j = 1, . . . , n. Let K be the divisor
of ω. Then CL(X ,P, E)⊥ = CL(X ,P, E⊥), where E⊥ =
DP − E +K and deg(E⊥) = n−m+ 2g − 2.

Corollary 3. If m > 2g − 2 then

k(CL(X ,P, E)⊥) ≥ n−m− 1 + g
d(CL(X ,P, E)⊥) ≥ m− 2g + 2.

Moreover, if n > m > 2g − 2, then CL(X ,P, E)⊥ has
dimension n−m− 1 + g.

C. The McEliece encryption scheme

Let F be any family of linear codes with an efficient decod-
ing algorithm. Every element of this family is represented by
the triple (C,AC , t) where AC denotes a decoding algorithm
for C ∈ F which corrects up to t errors.

The McEliece scheme can be summarized as follows:
Key generation: Consider any element (C,AC , t) ∈ F . Let

G be a non structured generator matrix of C. Then the public
key and the private key are given respectively by

Kpub = (G, t) and Ksecret = (AC) .

Encryption: y = mG+ e where m is the message and e
is a random error vector of weight at most t.

Decryption: Using Ksecret, the receiver obtains m.

D. Context of the present article

Until the end of this article, X denotes a smooth pro-
jective geometrically connected curve over Fq of genus g,
P = (P1, . . . , Pn) denotes an n-tuple of mutually distinct
Fq-rational points of X , DP denotes the divisor DP :=
P1 + · · ·+Pn and E denotes an Fq–divisor of degree m ∈ Z
with m > 3g − 1 (see Remark 1 further) and support disjoint
from that of DP .

We assume that our public key is a generator matrix G of
the public code CL(X ,P, E)⊥ and the largest number t of
errors introduced during the encryption step.

We take t = b(d∗ − g − 1)/2c where d∗ = m − 2g + 2
is called the designed minimum distance of the public code
CL(X ,P, E)⊥. This correction capability seems reasonable if
the secret key of the scheme is a decoding algorithm based
on the so-called error correcting pairs (ECP). However, this
value is smaller than the actual error-correction capability of C

which is defined as b(d∗ − 1)/2c. This case will be considered
in a longer version of this article.

Thus,

Cpub : CL(X ,P, E)⊥ with t =
⌊
d∗ − g − 1

2

⌋
.

Our attack will consist in the computation of an ECP in order
to decode CL(X ,P, E)⊥. The following section is devoted to
the theory of error correcting pairs.

Remark 1. The lower bound m > 3g − 1 is chosen in order
to have t > 0.

III. DECODING BY ERROR CORRECTING PAIRS

Given two elements a and b in Fn
q , the Schur product is

defined by coordinatewise multiplication, that is

a ∗ b = (a1b1, . . . , anbn)

while the standard inner product is defined by a · b =∑n
i=1 aibi. In general, for two subsets A and B of Fn

q the
set A ∗B is given by

A ∗B := 〈 a ∗ b | a ∈ A and b ∈ B 〉 .

For B = A, then A ∗ A is denoted as A(2). Furthermore, we
denote by A ⊥ B if a · b = 0 for all a ∈ A and b ∈ B.

Definition 1. Let C be a linear code in Fn
q . A pair (A,B) of

linear codes over Fq of length n is called a t-error correcting
pair (ECP) for C if the following properties hold:
E.1 (A ∗B) ⊥ C,
E.2 k(A) > t,
E.3 d(B⊥) > t,
E.4 d(A) + d(C) > n.

The notion of error correcting pair for a linear code was
introduced by Pellikaan [18], [19] and independently by Kötter
[10]. It is shown that a linear code in Fn

q with a t-error
correcting pair has a decoding algorithm which corrects up
to t errors with complexity O

(
n3
)
.

The existence of ECP’s for GRS and AG codes was shown
in [18], [19]. For many cyclic codes Duursma and Kötter in
[5], [10] have found ECP’s which correct beyond the designed
BCH capacity.

The Schur product is also used for cryptanalytic applications
[3], [4], [11], [27], multiparty computation, secret sharing,
oblivious transfer or construction of lattices. See [22, §4] for
a summary of these applications.

A. ECP for AG codes

Theorem 4 ( [19, Theorem 3.3]). In the context of §II-D, the
pair of codes (A,B) defined by

A = CL(X ,P, F ) and B = CL(X ,P, E − F )

with m > deg(F ) ≥ t + g is a t-ECP for CL(X ,P, E)⊥.
Such a pair (A,B) for CL(X ,P, E)⊥ always exists whenever
m > 2g − 2.
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Corollary 5. Let us define A0 = (B ∗ CL(X ,P, E)⊥)
⊥

. Then
(A0, B) is a t-ECP for CL(X ,P, E)⊥.

Remark 2. The above corollary is central to our attack. It
asserts that, it is sufficient to compute a generator matrix of
a code of the type CL(X ,P, E − F ) for some divisor F with
deg(F ) ≥ t + g, in order to determine a t-ECP for the code
CL(X ,P, E)⊥.

IV. THE PRODUCT OF THE SPACES L(G) AND L(H) IN
L(G+H)

Proposition 6. Let G,H be two divisors on X such that
deg(G) ≥ 2g and deg(H) ≥ 2g + 1. Then

〈 gh | g ∈ L(G), h ∈ L(H) 〉 = L(G+H).

Proof: See [16, Theorem 6].

Corollary 7. Let G,H be two divisors on X such that
deg(G) ≥ 2g and deg(H) ≥ 2g + 1. Then,

CL(X ,P, G) ∗ CL(X ,P, H) = CL(X ,P, G+H).

From the single knowledge of a generator matrix of
CL(X ,P, E), one can compute deg(F ) = m and the genus g
of X using the following statement.

Proposition 8 ( [12, Proposition 18]). If 2g+1 ≤ m < n
2 . Let

k1 and k2 be the dimensions of C = CL(X ,P, E) and C(2)
respectively. Then, m = k2 − k1 and g = k2 − 2k1 + 1.

V. THE P –FILTRATION

Let P be a point of the n-tuple P . We focus on the sequence
of codes

Bi := (CL(X ,P, E − iP ))i∈N.

This sequence provides a filtration of CL(X ,P, E). The first
step of our attack consists of the computation of some elements
of this filtration.
Remark 3. Notice that for i > 0, the codes Bi are degenerated.

A. Which elements of the sequence do we know?

From a generator matrix of CL(X ,P, E)⊥, one can compute
CL(X ,P, E) by Gaussian elimination. Then, B0 is nothing but
the code CL(X ,P, E) and B1 is the set of codewords of the
code CL(X ,P, E), which are zero at position P which can
also be computed by Gaussian elimination. Thus, from now
on, we assume that B0 and B1 are known.

B. Effective computations

The only information available to the attacker is exactly
a generator matrix of CL(X ,P, E)⊥ and its error correcting
capability t.

From Remark 2, attacking the scheme reduces to compute a
generator matrix of a code of the form B = CL(X ,P, E − F )
for some F of degree t+ g and disjoint support from P .

In this section we present a polynomial time method to
compute a generator matrix of B. Then, a t-ECP (A,B) can
be deduced from B and the public code using Corollary 5.

Definition 2. Let G be a divisor and P be a rational point on
the curve X . An integer γ ≥ −deg(G) is called a G gap at
P if L(G+ γP ) = L(G+ (γ − 1)P ).

Theorem 9. If s ≥ 1 and n
2 > m ≥ 2g+ s+ 1, then Bs+1 is

the solution space of the following problem

z ∈ Bs and z ∗ Bs−1 ⊆ (Bs)(2) . (1)

Proof: From Corollary 7, every z ∈ Bs+1 satisfies (1).
Conversely, assume the existence of c ∈ Bs \ Bs+1 satisfying
(1). Then there exists f ∈ L(E − sP ) \ L(E − (s + 1)P )
such that (f(P1), . . . , f(Pn)) = c, i.e. vP (f) = s. From
Riemann-Roch Theorem, if deg(E) − s ≥ 2g + 1, then
any integer γ ≥ −s is an E non-gap at P . Thus, there
exists g ∈ L(E − (s − 1)P ) \ L(E − sP ), i.e. such that
vP (g) = s − 1. Since c satisfies (1), we have evP(fg) ∈
B(2)s = CL(X ,P, 2E − 2sP ). Moreover, since m < n

2 , then
the evaluation map from L(2E−2sP ) to CL(X ,P, 2E − 2sP )
is injective. Thus, fg ∈ L(2E−2sP ) but vP (fg) = 2s−1 <
2s, which yields a contradiction.

This result gives rise to Algorithm 1 for determining the
code Bt+g , which consists of (t+ g) repeated applications of
Theorem 9.

Algorithm 1: Let n
2 > m ≥ 3g + t+ 1

Data: Generator matrices for the codes B0 and B1
Result: A generator matrix for the code Bt+g

for s = 2, . . . , t+ g
Compute Bs from the codes Bs−1 and Bs−2 using
Theorem 9.

endfor

Algorithm complexity: We solve (t+ g) systems of
linear equations of type (1).

Actually, we can do better by decreasing the number of
iterations of the above algorithm and relaxing the parameters
conditions. The following theorem yields to a nice improve-
ment giving rise to Algorithm 2. We omit its proof which is
very similar to that of Theorem 9.

Theorem 10. If n
2 > m ≥ 2g +

⌊
s+1
2

⌋
+ 1, then Bs is the

solution space of the following problem

z ∈ Bb(s+1)/2c and z ∗ B0 ⊆ Bbs/2c ∗ Bb(s+1)/2c. (2)

C. Extending the attack

We have been working under the assumption that m < n
2 .

In the remainder of this section we will see how by shortening
arguments this condition can be weakened.

Definition 3. Consider the code C = CL(X ,P, E). Let I be
a subset of {1, . . . , n} and EI the divisor E −

∑
j∈I Pj . We

define as C(I) the code CL(X ,P, EI).

Lemma 11. Let m ≥ n
2 . Let I be a subset of {1, . . . , n} with

|I| > 2m− n+ 1. Then deg(EI) <
n
2 .
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Algorithm 2: Let n
2 > m ≥ 5g+t

2 + 1

Data: Generator matrices for the codes B0 and B1
Result: A generator matrix for the code Bt+g

Let b = blog2 nc+ 1, then n satisfies: 2b−1 ≤ n < 2b.
Therefore, 2 ≤ n/2b−2 < 4.

Compute B2 and B3 using Proposition 9;
for s = b− 2, . . . , 1

Compute the codes
Bb(t+g)/2s−1c and Bb(t+g+1)/2s−1c from the

codes Bb(t+g)/2sc and Bb(t+g+1)/2sc by applying
twice Theorem 10.

endfor

Algorithm complexity: We solve 2dlog2(t+ g)e+ 2
systems of linear equations of type (1) and (2).

Lemma 12. Let I1, . . . , Is be different subsets of {1, . . . , n}
such that

∩sj=1Ij = ∅ and k(C)− |Ij | ≥ | ∩si=j+1 Ii| − | ∩si=j Ii|

Then C = C(I1) + · · ·+ C(Is) =
∑s

j=1 C(Ij).

Remark 4. Suppose m ≥ n
2 . Then, to compute Bt+g , it suffices

to find different subsets I1, . . . , Is of {2, . . . , n} with at least
i > 2m−n+1 elements and each satisfying the assumptions
of Lemma 12. Let us use the following notation:

Bl(Ij) := CL(X ,P, E − l(P1 +
∑
i∈Ij

Pi)) with l ∈ N.

Then, Algorithm 1 or 2 will provide the codes Bt+g(Ij) with
j = 1, . . . , s from which we obtain the desired code using
Lemma 12.

D. From degenerate to non degenerate codes

In summary, from the single knowledge of CL(X ,P, E)⊥

we are able to compute a subcode CL(X ,P, E − F ) of
CL(X ,P, E) for some positive divisor E. Unfortunately, since
E is supported by elements of P , the code CL(X ,P, E − F )
is degenerated and hence not suitable for the construction of
an ECP using Corollary 5. In what follows, we explain how to
compute another code CL(X ,P, E − F ′), where F ′ is linearly
equivalent to F and has disjoint support with DP . It should be
pointed out that we do not need to compute h but just prove
its existence.

On the following, we explain how to compute a generator
matrix of CL(X ,P, E − (t+ g)P − (h)) knowing generator
matrices of Bt+g and Bt+g+1.

Theorem 13. Let G be a generator matrix of Bt+g of the
form

G =

(
0 c1
(0) G1

)
,

where c1 ∈ Fn−1
q and

(
0 c1

)
∈ Bt+g \ Bt+g+1 and(

(0) G1

)
is a generator matrix of Bt+g+1. Then, there

exists a rational function h on X such that the matrix

G′ :=

(
1 c1
(0) G1

)
is a generator matrix for CL(X ,P, E − (t+ g)P − (h)).

Proof: Let P be any Pi, for simplicity take i = 1.
Let f ∈ L(E−(t+g)P )\L(E−(t+g+1)P ) be such that

(0 | c1) = (f(P1), . . . , f(Pn)). By definition, vP1
(f) = t+g.

From the weak approximation Theorem [25, Theorem 1.3.1],
there exists a rational function h ∈ Fq(X ) such that

(i) ∀i ≥ 2, h(Pi) = 1;
(ii) vP1

(h) = −t− g and hf(P1) = 1.

Such a function h yields the result. Details are left to the
reader.

VI. THE ATTACK

A. The algorithm

Recall that the attacker knows a generator matrix of the
public code Cpub = CL(X ,P, E)⊥ and the integer t.

If n
2 > m, then the attack summarizes as follows. Otherwise

we have to apply techniques from §V-C.

Step 1. Determine the values g and m using Proposition 8.
Step 2. Compute CL(X ,P, E) by Gaussian elimination.
Step 3. Compute the code B = CL(X ,P, E − (t+ g)P1),

using one of the algorithms described in §V-B.
Step 4. Deduce from B a non degenerated code B̂ =

CL(X ,P, E − (t+ g)P1 − (h)) using §V-D.
Step 5. Apply Corollary 5 to deduce an ECP from B̂.

B. Complexity

The costly part of the attack is the computation of the code
B = CL(X ,P, E − P1) such that (A0, B) forms an t-ECP for
C = CL(X ,P, E). For that purpose we can apply one of the
algorithms proposed in §V-B. Take notice that computing a
generator matrix of C(2) and then apply Gaussian elimination
to such matrix costs O

(
k2n2

)
operations in Fq . Roughly

speaking the cost of our attack is about O
(
(λ+ 1)n4

)
op-

erations in Fq where λ denotes the number of linear systems
to solve depending on the chosen algorithm from §V-B. The
“+1” in λ+ 1 is due to Theorem 13.

It seems logical to chose Algorithm 2, which has a better
complexity and works for a larger set of possible m. However
Algorithm 1 allows to compute a sequence of codes (called
GAP-filtration)

Bt+g ⊆ Bt+g−1 ⊆ . . .B1 ⊆ B0.

In a longer version of this article, we expect to provide an
attack allowing the correction of up to t = b(d∗ − 1)/2c
errors. This attack will use the concept of error correcting
arrays [9, Definition 2.1], [20] or well-behaving sequences [7].
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VII. PARAMETERS UNDER ATTACK

Our attack has been implemented with MAGMA [2], we
summarize in the following tables the average running times
for several examples of codes, obtained with an Intel r
CoreTM 2 Duo 2.8 GHz. The table includes for each code
its base field size q, its length n, its dimension k and the
correction capability t when using Error Correcting pairs.
Moreover, the work factor w of and ISD attack is given. These
work factors have been computed thanks to Christiane Peter’s
Software [21].

Example 1. The Hermitian curve Hr over Fq with q = r2 is
defined by the affine equation Y r + Y = Xr+1. This curve
has P∞ = (0 : 1 : 0) as the only point at infinity.

Take E = mP∞ and let P be the n = q
√
q = r3 affine Fq-

rational points of the curve. Table I considers different codes
of type CL(Hr,P, E)⊥ with n > m > 2g − 2.

q g n k t w key size time
72 21 343 193 54 284 163 ko 74 s
92 36 729 404 126 2182 833 ko 21 min
112 55 1331 885 168 2311 2730 ko 67 min

Table I
COMPARISON WITH HERMITIAN CODES

Example 2. The Suzuki curves are curves X defined over Fq

by the following equation Y q − Y = Xq0(Xq − X) with
q = 2q20 ≥ 8 and q0 = 2r This curve has exactly q2+1 rational
places and a single place at infinity P∞. Let E = mP∞ and
P be the q2 rational points of the curve. Table II considers a
code of type CL(X ,P, E)⊥ with n > m > 2g − 2.

q g n k t w key size time
25 124 1024 647 64 2110 1220 ko 30 min

Table II
COMPARISON WITH SUZUKI CODES

VIII. CONCLUSION

We constructed a polynomial-time algorithm which breaks
the McEliece scheme based on the AG codes whenever the
number of errors introduced is 2 < t ≤ b(d∗ − g − 1)/2c,
that is whenever the decoding algorithm chosen by the users
is based on ECP’s.

It would be desirable to have an attack for t = b(d∗ − 1)/2c
errors which will be considered in a long version of this article
using the concepts of error correcting arrays or well-behaving
sequences. This algorithm runs in O

(
n4
)

operations in the
base field and is based on an explicit computation of a GAP-
filtration of the public code.
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