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Abstract. In order to obtain the set of codewords of minimal support of codes defined
over Zq we must compute a Graver basis of the ideal associated to such codes, see [9].
The main aim of this article is to reduce the complexity of the previous algorithm taking
advantage of the powerful decomposition theory for linear codes provided by the decompo-
sition theory of representable matroids over finite fields. Following the works of Kashyap
[6] we achieve our goal for every binary linear code and for the rest several improvement
are presented.

Introduction

By Z, Zq, Fq we mean the ring of integers, the ring of integers modulo q and the finite
field with q elements. A modular code C over Zq of length n and dimension k is a subspace of
the abelian group

〈
Znq ,+

〉
, but for the shake of brevity we will just say an [n, k] code. Note

that elementary row operations can also be carried over any generator matrix of modular
codes with the understanding that only multiplication of a row by a unit is allowed.

Let x ∈ Znq and J be a subset of {1, . . . , n}, we denote by xJ the restriction of x to the
coordinates indexed by J and by J the relative complement of J in {1, . . . , n}. The process
of deleting columns from a parity check matrix of an [n, k, d] code C is known as shortening
where d denotes the minimum distance between distinct codewords. The shortened code
C.J is obtained by puncturing at J the set of codewords that have a zero in the J-locations,
i.e. C.J =

{
cJ | c ∈ C and cJ = 0

}
. If J consist of m elements then the shortened code C.J

has parameters [n−m, k′, d′] with k −m ≤ k′ ≤ k and d ≤ d′.
From now on, for any positive integer i, let Ci be an [ni, ki] modular code over Zq defined

on the index set Ii. We define the star product of two linear codes C1 and C2, denoted by
C1 ∗ C2 as the set of words of the form the form c = (ci | i ∈ I1 ∪ I2) where

ci =


c
(i)
1 i ∈ I1 \ I2
c
(i)
2 i ∈ I2 \ I1
c
(i)
1 + c

(i)
2 i ∈ I1 ∩ I2

for some c1 = (c
(i)
1 | i ∈ I1) ∈ C1 and c2 = (c

(i)
2 | i ∈ I2) ∈ C2.

From C1 ∗C2 we can obtain a new code S(C1, C2) by shortening at the m = |I1∩ I2| positions
where C1 and C2 overlap. The codewords of this code will be denoted by c1 ||m c2 where
c1 ∈ C1 and c2 ∈ C2. We are interested in just an specific case of the above construction
called r-sum and denoted by C1 ⊕r C2, for each positive integer r, in which the codes C1
and C2 must verify some specific conditions. For further details and terminology, we refer
the reader to [6, 7]. C1 ⊕r C2 is a linear code of lenght n1 + n2 − 2|I1 ∩ I2| and dimension
dim(C1) + dim(C2)− r.
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We will use the following characteristic crossing functions:

H : Zs −→ Zsq and N : Zsq −→ Zs

The map H is reduction modulo q whereas the map N replaces the class of 0, 1 . . . , q − 1 by
the same symbols regarded as integers. The integer s is determined by context and both
maps act coordinate-wise.

Let x denote the set of variables x1, . . . , xn. Given an [n, k] code C and letting w1, . . . ,wk

be the rows of a generator matrix of C, then we define the ideal associated to C, denoted by
I(C) as the subset: 〈{xNw1 − 1, . . . ,xNwk − 1} ∪ {xqi − 1 | i = 1, . . . , n}〉 ⊆ F2[x]. Ikegami
and Kaji [5] gives us a method for computing a test set for the code C which works only
in the binary case. This complete decoding scheme is equivalent to the gradient descent
decoding given by Barg [1] which has been proven to be equivalent to Liebler approach [8]
in [4]. In [9] we consider the Graver basis associated to a modular integer programming
problem that provides us a universal test set, which turns out to be the set of codewords
of minimal support of codes defined on Zq. A codeword c is a minimal support codeword if
it is non-zero and supp(c) is not contained in the support of any other codeword. We will
denote byMC the set of codewords of minimal support of C. This result give us a method
to compute MC for any linear code defined on Zq. In particular for codes over Fp with p
prime. But not for the case q = pr since Fpr 6= Zpr .

Therefore, in order to obtain a Gröbner test-set, for the binary case, or the set of codewords
of minimal support for any linear code C defined over Zq, we must compute a reduced
Gröbner basis of an ideal from whom we known a generating set, thus we can use the
FGLM-based trick in [3]. Note that the complexity of this algorithm was stated in [3, 2]
and it is O

(
n2qn−k

)
where k is the dimension of the code and n is the number of variables

involved in our ideal. The main task of this paper is trying to reduce the complexity of the
previous algorithms by using the decomposition of a code into smaller ones.

1. Direct sum

Definition 1.1. Let C1 and C2 be linear codes over Zq defined on mutually disjoint index
set I1 and I2, i.e. I1 ∩ I2 = ∅. We can construct the code C1 ⊕ C2 with I1 ∪ I2 as its index
set such that any codeword c of C is defined by c = (ci | i ∈ I1 ∪ I2) where

ci =

{
c
(i)
1 for i ∈ I1 for some c1 = (ci | i ∈ I1) ∈ C1
c
(i)
2 for i ∈ I2 for some c2 = (ci | i ∈ I2) ∈ C2

The following proposition states the connection between the direct sum of two codes and
the sum of its associated ideals.

Proposition 1.2. C = C1 ⊕ C2 if and only if I(C) = I(C1) + I(C2).

Corollary 1.3. Let C = C1⊕C2 then I(C) is generated by the disjoint union of the generators
of each I(Ci) with i = 1, 2.

The above result is also true for Gröbner basis and Graver basis. Consequently we can
study the test-sets (or the set of codewords of minimal support) of C by using the test-set
(or the set codewords of minimal support) of each Ci with i = 1, 2.
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The definition of direct sum can be easily extends to a finite family of linear codes. Indeed
let {Cα}α∈A be linear codes over Zq of parameters [nα, kα] and defined on mutually disjoint
index sets Iα with α ∈ A then we can define ⊕α∈ACα and a similar study of this code can
be done. Therefore if we achieve to decompose a code C as a direct sum of several smaller
codes Ci, then the cost of computing a Gröbner test set (or the set of codewords of minimal
support) for C is reduced to computing a Gröbner test set for every Ci that appears on its
decomposition. Furthermore, since this procedure can be parallelize, then we can reduce
the time required for computing a Gröbner test set of C to the time needed to compute a
Gröbner test set of the largest Ci that appears on its decomposition.

2. 2-sum

Definition 2.1. Let C1 and C2 be modular codes over Zq of length at least 3 such that
I1∩I2 = j. Moreover, if c =

(
ci ∈ Z∗q for i = j and 0 otherwise

)
is not a codeword of Ci and

the j-th coordinate of Ci is neither identically zero nor a zero divisor, for i = 1 or 2, then
the 2-sum code C1 ⊕2 C2 can be defined.

The following lemma allows us to characterize the set of codewords of the code C1 ⊕2 C2.

Lemma 2.2. c ∈ C1 ⊕2 C2 if and only if there exists two codewords c1 ∈ C1 and c2 ∈ C2
such that c(n1)

1 + c
(1)
2 = 0 and c = c1 ||2 c2.

The following proposition states the connection between the 2-sum of two codes and the
sum of its associated ideals.

Proposition 2.3. C = C1 ⊕2 C2 if and only if I(C) = I(C1.{n1}
) + I(C2.{1}) + 〈xNγx − yNγy〉

for some special vectors γx ∈ Zn1−1
q and γy ∈ Zn2−1

q .

Next proposition is related to the set of codewords of minimal support. In its proof we
use some notions from Fq-representable matroid theory, thus our results are restricted to
linear codes defined over Fp with p prime, or similarly for any code defined on Zp with p
prime.

Proposition 2.4. Let C = C1 ⊕2 C2 be a linear code defined over Fp with p prime, then the
following statements are equivalent:

(1) c ∈MC.
(2) c belongs to one of the following sets:

MC1.{n1}
||2 0, 0 ||2 MC2.{1} , or

{
c1 ||2 c2 : c1 ∈MC1\C1.{n1}

, c2 ∈MC2\C2.{1}
}
.

3. 3-sum

Definition 3.1. Let C1 and C2 be modular codes over Zq of length at least 7 such that
|I1 ∩ I2| = 3. If c = (cj = 1 for j ∈ I1 ∩ I2 and 0 otherwise) ∈ MCi and all possible 3-bit
words appear in the |I1 ∩ I2| coordinates of Ci for i = 1 or 2, then the 3-sum code C1 ⊕3 C2
can be defined.

Analogous to the 2-sum case we have a characterization Lemma for the set of codewords
of the code C1⊕3C2 and a result which states the connection between the 3-sum of two codes
and the sum of its associated ideals, but for lack of space we will not introduce them here.
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Next proposition is related to the set of codewords of minimal support.

Proposition 3.2. Let C = C1⊕3C2 be a linear code defined over Fp with p prime. If c ∈MC
then c belongs to one of the following sets:

MC1.{n1−2,n1−1,n1}
||3 0, 0 ||3 MC2.{1,2,3} ,

or
{
c1 ||3 c2 : c1 ∈MC1\C1.{n1−2,n1−1,n1}

, c2 ∈MC2\C2.{1,2,3}
}
.

4. Concluding remarks

If we know the decomposition of a modular code C defined over Fp with p prime as a
m-sum of smaller codes with m ≤ 3, then we have found an effective method to reduce the
complexity of computing the set of codewords of minimal support of C, since the computa-
tion can be carried out in parallel for each component. In particular we have reduced the
complexity for any binary linear code, since it follows from [6] that for any binary linear
code C there exists linear codes C1 and C2, both obtained from C via a sequence of shortening
and puncturing operations, and a permutation π of the coordinate set of C such that

C = π(C1 ⊕ C2), C = π(C1 ⊕2 C2) or C = π(C1 ⊕3 C2).
Such decomposition of any given binary linear code can be obtained in polynomial time
in the length of the code. Furthermore, by definition the codes C1 and C2 have smaller
length than C. Therefore the complexity of the search problem is reduced from O(n22n−k)
to O(m22m−k

′
) where m = max{n1, n2} < n and k′ ≤ k.
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