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ABSTRACT. In order to obtain the set of codewords of minimal support of codes defined
over Z, we must compute a Graver basis of the ideal associated to such codes, see [9].
The main aim of this article is to reduce the complexity of the previous algorithm taking
advantage of the powerful decomposition theory for linear codes provided by the decompo-
sition theory of representable matroids over finite fields. Following the works of Kashyap
[6] we achieve our goal for every binary linear code and for the rest several improvement
are presented.

INTRODUCTION

By Z, Z4, F; we mean the ring of integers, the ring of integers modulo ¢ and the finite
field with ¢ elements. A modular code C over Z4 of length n and dimension k is a subspace of
the abelian group <Z;‘, —|—>, but for the shake of brevity we will just say an [n, k] code. Note
that elementary row operations can also be carried over any generator matrix of modular
codes with the understanding that only multiplication of a row by a unit is allowed.

Let x € Zy and J be a subset of {1,...,n}, we denote by x; the restriction of x to the

coordinates indexed by J and by J the relative complement of .J in {1,...,n}. The process
of deleting columns from a parity check matrix of an [n, k, d] code C is known as shortening
where d denotes the minimum distance between distinct codewords. The shortened code
C. is obtained by puncturing at J the set of codewords that have a zero in the J-locations,
ie. C.j= {cj |[ceCandcy= 0}. If J consist of m elements then the shortened code C.;
has parameters [n — m, k', d'] with k —m <k’ <k and d < d'.

From now on, for any positive integer 4, let C; be an [n;, k;] modular code over Z, defined
on the index set I;. We define the star product of two linear codes C; and Cs, denoted by
C1 * Co as the set of words of the form the form ¢ = (¢; | i € I; U I3) where

ot ie L\ | |
= cg) i€l \I; forsomecy = (c(f) |i€ )€ and cg = (c(;) | i € Iz) € Ca.

A+ ) iennm

From C; *Co we can obtain a new code S(Cy,C2) by shortening at the m = |I; N I| positions
where C; and Cy overlap. The codewords of this code will be denoted by ¢ ||, c2 where
c1 € C1 and co € Cy. We are interested in just an specific case of the above construction
called r-sum and denoted by C; @, Ca, for each positive integer r, in which the codes C;
and Co must verify some specific conditions. For further details and terminology, we refer
the reader to |6, 7|. C1 @, Cq is a linear code of lenght n; + ng — 2|I; N I3| and dimension
dim(Cy) + dim(Cq) — 7.
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We will use the following characteristic crossing functions:
v: Z° — Z; and A: Z; — Z°

The map V¥ is reduction modulo ¢ whereas the map A replaces the class of 0,1...,¢— 1 by
the same symbols regarded as integers. The integer s is determined by context and both
maps act coordinate-wise.

Let x denote the set of variables x1, ..., 2z,. Given an [n, k] code C and letting w1, ..., wg
be the rows of a generator matrix of C, then we define the ideal associated to C, denoted by
I(C) as the subset: ({xA™' —1 ... xAWr —1}U{a? —1|i=1,...,n}) C Fy[x]. Ikegami
and Kaji [5] gives us a method for computing a test set for the code C which works only
in the binary case. This complete decoding scheme is equivalent to the gradient descent
decoding given by Barg [1| which has been proven to be equivalent to Liebler approach [8]
in [4]. In [9] we consider the Graver basis associated to a modular integer programming
problem that provides us a universal test set, which turns out to be the set of codewords
of minimal support of codes defined on Z,. A codeword c is a minimal support codeword if
it is non-zero and supp(c) is not contained in the support of any other codeword. We will
denote by M the set of codewords of minimal support of C. This result give us a method
to compute M for any linear code defined on Z,. In particular for codes over I, with p
prime. But not for the case ¢ = p" since Fyr # Zyr.

Therefore, in order to obtain a Grobner test-set, for the binary case, or the set of codewords
of minimal support for any linear code C defined over Z,;, we must compute a reduced
Grobner basis of an ideal from whom we known a generating set, thus we can use the
FGLM-based trick in [3]. Note that the complexity of this algorithm was stated in |3, 2]
and it is O (an"*k) where k is the dimension of the code and n is the number of variables
involved in our ideal. The main task of this paper is trying to reduce the complexity of the
previous algorithms by using the decomposition of a code into smaller ones.

1. DIRECT SUM

Definition 1.1. Let C; and C be linear codes over Z, defined on mutually disjoint index
set Iy and I, i.e. I N Is = (). We can construct the code C; @ Co with I; U I as its index
set such that any codeword c of C is defined by ¢ = (¢; | i € I; U I3) where

(@)

o ng') forieI; forsomecy=(¢|iel)eC
' cy for i € I for some ¢y = (¢; | i € I1) € Cy

The following proposition states the connection between the direct sum of two codes and
the sum of its associated ideals.

Proposition 1.2. C =C; @ Cy if and only if I(C) = I(Cy) + I(Cs).

Corollary 1.3. Let C = C1®Cq then I(C) is generated by the disjoint union of the generators
of each I(C;) withi=1,2.

The above result is also true for Groébner basis and Graver basis. Consequently we can
study the test-sets (or the set of codewords of minimal support) of C by using the test-set
(or the set codewords of minimal support) of each C; with ¢ =1, 2.
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The definition of direct sum can be easily extends to a finite family of linear codes. Indeed
let {Ca}qeq be linear codes over Z, of parameters [nq, kq| and defined on mutually disjoint
index sets I, with o € A then we can define ®,c4C, and a similar study of this code can
be done. Therefore if we achieve to decompose a code C as a direct sum of several smaller
codes C;, then the cost of computing a Grobner test set (or the set of codewords of minimal
support) for C is reduced to computing a Grobner test set for every C; that appears on its
decomposition. Furthermore, since this procedure can be parallelize, then we can reduce
the time required for computing a Grobner test set of C to the time needed to compute a
Grobner test set of the largest C; that appears on its decomposition.

2. 2-SUM

Definition 2.1. Let C; and C2 be modular codes over Z, of length at least 3 such that
11N 15 = j. Moreover, if c = (ci € Z;’; fori=jand 0 otherwise) is not a codeword of C; and
the j-th coordinate of C; is neither identically zero nor a zero divisor, for ¢ = 1 or 2, then
the 2-sum code C1 @9 Cy can be defined.

The following lemma allows us to characterize the set of codewords of the code C; @2 Co.

Lemma 2.2. ¢ € C; &2 Cq if and only if there exists two codewords c1 € C1 and co € Co
such that cgm) + cél) =0andc=cy ||2 ca.

The following proposition states the connection between the 2-sum of two codes and the
sum of its associated ideals.

Proposition 2.3. C = C; @2 Cs if and only if I(C) = I(Cl'{nl}) + I(Cg.{l}) + (xAz — yAW)

for some special vectors v, € Z;“_l and vy € Zg‘rl.

Next proposition is related to the set of codewords of minimal support. In its proof we
use some notions from Fg-representable matroid theory, thus our results are restricted to
linear codes defined over F,, with p prime, or similarly for any code defined on Z, with p
prime.

Proposition 2.4. Let C = C; ©2 Cy be a linear code defined over ), with p prime, then the
following statements are equivalent:

(1) ce Me.
(2) c belongs to one of the following sets:

MCL{nl} HQ 0, 0 H2 MCQ.{1}7 or {cl H2 C2 1€ € MCI\Cl.{n1}7C2 S Mcz\cz{l}} :

3. 3-sUM

Definition 3.1. Let C; and C» be modular codes over Z,; of length at least 7 such that
1N I3] = 3. If ¢ = (¢j =1for j € I; NIy and 0 otherwise) € Mg, and all possible 3-bit
words appear in the |I; N I3] coordinates of C; for i« = 1 or 2, then the 3-sum code C; ®3 Co
can be defined.

Analogous to the 2-sum case we have a characterization Lemma for the set of codewords
of the code C1 ®3Cs and a result which states the connection between the 3-sum of two codes
and the sum of its associated ideals, but for lack of space we will not introduce them here.



4 IRENE MARQUEZ-CORBELLA AND EDGAR MARTINEZ-MORO

Next proposition is related to the set of codewords of minimal support.

Proposition 3.2. Let C = C1®3C2 be a linear code defined over ), with p prime. If c € M¢
then c belongs to one of the following sets:

Mcl‘{n1—2,n1—1,n1} ”3 07 0 H3 MCQ‘{1,2,3}7

or {Cl Hg C2 : C] € Mcl\cl'{nl_Q ni—img}’ Co € Mcz\cz{l 23} } .

4. CONCLUDING REMARKS

If we know the decomposition of a modular code C defined over IF,, with p prime as a
m~sum of smaller codes with m < 3, then we have found an effective method to reduce the
complexity of computing the set of codewords of minimal support of C, since the computa-
tion can be carried out in parallel for each component. In particular we have reduced the
complexity for any binary linear code, since it follows from [6] that for any binary linear
code C there exists linear codes C; and Co, both obtained from C via a sequence of shortening
and puncturing operations, and a permutation 7 of the coordinate set of C such that

C=7n(Ci®C), C=7(Cid2C2) or C=mu(C;D3Ca).

Such decomposition of any given binary linear code can be obtained in polynomial time
in the length of the code. Furthermore, by definition the codes C; and Co have smaller
length than C. Therefore the complexity of the search problem is reduced from O(n?2"*)
to O(m?2m~*") where m = max{ni,no} <n and k' < k.
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