Betti Numbers and Generalized Hamming Weights

Irene Márquez-Corbella and Edgar Martínez-Moro

Dept. of Mathematics, Statistics and O. Research, University of La Laguna, Spain. irene.marquez.corbella@ull.es
Institute of Mathematics, University of Valladolid, Spain. Edgar.Martinez@uva.es
We can associate to each linear code \mathscr{C} defined over a finite field the matroid $M[H]$ of its parity check matrix H. For any matroid M one can define its generalized Hamming weights which are the same as those of the code \mathscr{C}. In [2] the authors show that the generalized Hamming weights of a matroid are determined by the \mathbb{N}-graded Betti numbers of the Stanley-Reisner ring of the simplicial complex whose faces are the independent set of M. In this talk we go a step further. Our practical results indicate that the generalized Hamming weights of a linear code \mathscr{C} can be obtained from the monomial ideal associated with a test-set for \mathscr{C}. Moreover, recall that in [3] we use the Gröbner representation of a linear code \mathscr{C} to provide a test-set for \mathscr{C}.

Our results are still a work in progress, but its applications to Coding Theory and Cryptography are of great value.

1 Notation and Prerequisites

We begin with an introduction of basic definitions and some known results. By \mathbb{N}, $\mathbb{Z}, \mathbb{F}_{q}$ (where q is a primer power) we denote the set of positive integers, the set of integers and the finite field with q elements, respectively.

Definition 1 A matroid M is a pair (E, I) consisting of a finite set E called ground set and a collection I of subsets of E called independent sets, satisfying the following conditions:

1. The empty set is independent, i.e. $\emptyset \in I$
2. If $A \in I$ and $B \subset A$, then $B \in I$
3. If $A, B \in I$ and $|A|<|B|$, then there exists $e \in B \backslash A$ such that $A \cup\{e\} \in I$

Let $M=(E, I)$ be a matroid. A maximal independent subset of E is called a basis of M. A direct consequence of the previous definition is that all bases of M have the same cardinality. Thus, we define the rank of the matroid M as the cardinality of any basis of M, denoted by $\operatorname{rank}(M)$. A subset E that does not belong
to I is called dependent set. Minimal dependent subsets of E are known as circuits of M. A set is said to be a cycle if it is a disjoint union of circuits. The collection of cycles of M is denoted by $\mathscr{C}(M)$. For all $\sigma \in E$, the nulity function of σ is given by $n(\sigma):=|\sigma|-\operatorname{rank}\left(M_{\sigma}\right)$ with $\operatorname{rank}\left(M_{\sigma}\right)=\max \{|A| \mid A \in I$ and $A \subset \sigma\}$, i.e. the restriction of $\operatorname{rank}(M)$ to the subsets of σ.

Let us consider an $m \times n$ matrix A in \mathbb{F}_{q} whose columns are indexed by $E=$ $\{1, \ldots, n\}$ and take I to be the collection of subsets J of E for which the column vectors $\left\{A_{j} \mid j \in J\right\}$ are linearly independent over \mathbb{F}_{q}. Then (E, I) defines a matroid denoted by $M[A]$. A matroid $M=(E, I)$ is \mathbb{F}_{q}-representable if it is isomorphic to $M[A]$ for some $A \in \mathbb{F}_{q}^{m \times n}$. Then the matrix A is called the representation matrix of M. The following well known results describes the relation between the colleciton of all cycles of a matroid M and its representation matrix.

Proposition 1 Let $M=(E, I)$ be a \mathbb{F}_{q}-representable matroid. Then $\mathscr{C}(M)$ is the null space of a representation matrix of M. Furthermore, the dimension of $\mathscr{C}(M)$ is $|E|-\operatorname{rank}(M)$.

Let Δ be a simplicial complex on the finite ground set E. Let \mathbb{K} be a field and let \mathbf{x} be the indeterminates $\mathbf{x}=\left\{x_{e} \mid e \in E\right\}$. The Stanley-Reisner ideal of Δ is, by definition,

$$
I_{\Delta}=\left\langle\mathbf{x}^{\sigma} \mid \sigma \notin \Delta\right\rangle
$$

The Stanley-Reisner ring of I_{Δ}, denoted by R_{Δ}, is defined to be the quotient ring $R_{\Delta}=\frac{\mathbb{K}[\mathbf{x}]}{I_{\Delta}}$. This ring has a minimal free resolution as \mathbb{N}^{E}-graded module:

$$
0 \longleftarrow R_{\Delta} \longleftarrow P_{0} \longleftarrow P_{1} \longleftarrow \cdots \longleftarrow P_{l} \longleftarrow 0
$$

where each P_{i} is given by $P_{i}=\bigoplus_{\alpha \in \mathbb{N}^{E}} \mathbb{K}[\mathbf{x}](-\alpha)^{\beta_{i, \alpha}}$. We write $\beta_{i, \alpha}$ for the \mathbb{N}^{E}-graded Betti Numbers of Δ.

1.1 Matroids and Simplicial complex

A matroid $M=(E, I)$ is a simplicial complex whose faces are the independent sets. Thus, $I_{M}:=\left\langle\mathbf{x}^{\sigma} \mid \sigma \in \mathscr{C}\right\rangle$ where \mathscr{C} is the set of all circuits of M. Define $N_{i}=\{\sigma \in N \mid n(\sigma)=d\}$.
Theorem 1 ([2]Theorem 1) Let M be a matroid on the ground set E. Let $\sigma \subset E$. Then, $\beta_{i, \sigma} \neq 0$ if and only if σ is minimal in N_{i}.

Definition 2 Let $M=(E, I)$ be a matroid, we define the generalized Hamming weights of M to be $d_{i}=\min \{|\sigma| \mid n(\sigma)=i\}$.
Corollary 1 Let M be a matroid on the ground set E. Then,

$$
d_{i}=\min \left\{d \mid \beta_{i, d} \neq 0 \quad \text { for all } \quad 1 \leq i \leq|E|-\operatorname{rank}(M)\right\} .
$$

1.2 Matroids and linear codes

An $[n, k]_{q}$ linear code \mathscr{C} is a k-dimensional subspace of \mathbb{F}_{q}^{n}. We define a generator matrix of \mathscr{C} to be a $k \times n$ matrix G whose row vectors span \mathscr{C}, while a parity check matrix of \mathscr{C} is an $(n-k) \times n$ matrix H whose null space is \mathscr{C}.

Let us denote by $\mathrm{d}_{H}(\cdot, \cdot)$ and $\mathrm{w}_{H}(\cdot)$ the Hamming distance and the Hamming weight on \mathbb{F}_{q}^{n}, respectively. We write d for the minimum Hamming distance of the code \mathscr{C}, which is equal to its minimum weight. Thus, the error correcting capability of \mathscr{C} is $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ where $\lfloor\cdot\rfloor$ is the greatest integer function. For every codeword $\mathbf{c} \in \mathscr{C}$ its support, $\operatorname{supp}(\mathbf{c})$, is defined as its support as a vector in \mathbb{F}_{q}^{n}, i.e. $\operatorname{supp}(\mathbf{c})=\left\{i \mid c_{i} \neq 0\right\}$. We will denote by $\mathscr{M}_{\mathscr{C}}$ the set of codewords of minimal support of \mathscr{C}.

A test-set $\mathscr{T}_{\mathscr{C}}$ for \mathscr{C} is a set of codewords such that for every word $\mathbf{y} \in \mathbb{F}_{q}^{n}$, either \mathbf{y} belongs to the set of coset leaders, or there exists an element $\mathbf{t} \in \mathscr{T}_{\mathscr{C}}$ such that $\mathrm{w}_{H}(\mathbf{y}-\mathbf{t})<\mathrm{w}_{H}(\mathbf{y})$.

Definition 3 The $r^{\text {th }}$ generalized Hamming weight of \mathscr{C} denoted by $d_{r}(\mathscr{C})$ is the smallest support of an r-dimensional subcode of \mathscr{C}. That is,

$$
d_{r}(\mathscr{C})=\min \{\operatorname{supp}(D) \mid D \subseteq \mathscr{C} \text { and } \operatorname{rank}(D)=r\}
$$

In [3] the authors associate a binomial ideal to an arbitrary linear code provided by the rows of a generator matrix and the relations given by the additive table of the defining field.

Let \mathbf{X} denote n vector variables X_{1}, \ldots, X_{n} such that each variable X_{i} can be decomposed into $q-1$ components $x_{i, 1}, \ldots, x_{i, q-1}$ with $i=1, \ldots, n$. A monomial in \mathbf{X} is a product of the form:

$$
\mathbf{X}^{\mathbf{u}}=X_{1}^{\mathbf{u}_{1}} \cdots \mathbf{X}_{n}^{\mathbf{u}_{n}}=\left(x_{1,1}^{u_{1,1}} \cdots x_{1, q-1}^{u_{1, q-1}}\right) \cdots\left(x_{n, 1}^{u_{n, 1}} \cdots x_{n, q-1}^{u_{n, q-1}}\right)
$$

where $\mathbf{u} \in \mathbb{Z}_{\geq 0}^{n(q-1)}$. The total degree of $\mathbf{X}^{\mathbf{u}}$ is the sum $\operatorname{deg}\left(\mathbf{X}^{\mathbf{u}}\right)=\sum_{i=1}^{n} \sum_{j=1}^{q-1} u_{i, j}$. When $\mathbf{u}=(0, \ldots, 0)$, note that $\mathbf{X}^{\mathbf{u}}=1$. Then, the polynomial ring $\mathbb{K}[\mathbf{X}]$ is the set of all polynomials in \mathbf{X} with coefficients in \mathbb{K}.

Recall that the multiplicative group \mathbb{F}_{q}^{*} of nonzero elements of \mathbb{F}_{q} is cyclic. A generator of the cyclic group \mathbb{F}_{q}^{*} is called a primitive element of \mathbb{F}_{q}, i.e. \mathbb{F}_{q} consist of 0 and all powers from 1 to $q-1$ of that primitive element. Let α be a primitive element of \mathbb{F}_{q}. We define by $\mathscr{R}_{X_{i}}$, the set of all the binomials on the variables X_{i} associated to the relations given by the additive table of the field $\mathbb{F}_{q}=$ $\left\langle\alpha^{j} \mid j=1, \ldots, q-1\right\rangle \cup\{0\}$, i.e.

$$
\mathscr{R}_{X_{i}}=\left\{\left\{x_{i, u} x_{i, v}-x_{i, w} \mid \alpha^{u}+\alpha^{v}=\alpha^{w}\right\} \cup\left\{x_{i, u} x_{i, v}-1 \mid \alpha^{u}+\alpha^{v}=0\right\}\right\}
$$

with $i=1, \ldots, n$. Note that there are $\binom{q}{2}$ different binomials in $\mathscr{R}_{X_{i}}$. We define $\mathscr{R}_{\mathbf{X}}$ as the ideal generated by the union of all binomial ideals $\mathscr{R}_{X_{i}}$, i.e. $\mathscr{R}_{\mathbf{X}}=\left\langle\cup_{i=1}^{n} \mathscr{R}_{X_{i}}\right\rangle$

We will use the following characteristic crossing functions. These applications aim at describing a one-to-one correspondence between the finite field \mathbb{F}_{q} with q elements and the standard basis of \mathbb{Z}^{q-1}, denoted as $E_{q}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{q-z}\right\}$ where \mathbf{e}_{i} is the unit vector with a 1 in the i-th coordinate and 0 's elsewhere.

$$
\Delta: \mathbb{F}_{q} \longrightarrow E_{q} \cup\{\mathbf{0}\} \subseteq \mathbb{Z}^{q-1} \quad \text { and } \quad \nabla: E_{q} \cup\{\mathbf{0}\} \longrightarrow \mathbb{F}_{q}
$$

1. The map Δ replaces the element $\mathbf{a}=\alpha^{i} \in \mathbb{F}_{q}$ by the vector \mathbf{e}_{i} and $0 \in \mathbb{F}_{q}$ by the zero vector $\mathbf{0} \in \mathbb{Z}^{q-1}$.
2. The map ∇ recovers the element $\alpha^{j} \in \mathbb{F}_{q}$ from the unit vector \mathbf{e}_{j} and the zero element $0 \in \mathbb{F}_{q}$ from the zero vector $\mathbf{0} \in \mathbb{Z}^{q-1}$.

These maps will be used with matrices and vectors acting coordinate-wise. Although Δ is not a linear function. Note that we have:

$$
\mathbf{X}^{\Delta \mathbf{a}} \cdot \mathbf{X}^{\Delta \mathbf{b}}=\mathbf{X}^{\Delta \mathbf{a}+\Delta \mathbf{b}}=\mathbf{X}^{\Delta(\mathbf{a}+\mathbf{b})} \quad \bmod \mathscr{R}_{\mathbf{X}} \text { for all } \mathbf{a}, \mathbf{b} \in \mathbb{F}_{q}^{n}
$$

Let \mathscr{C} be an $[n, k]_{q}$ linear code. We define the ideal associated to \mathscr{C} as the binomial ideal:

$$
I(\mathscr{C})=\left\langle\left\{\mathbf{X}^{\Delta \mathbf{a}}-\mathbf{X}^{\Delta \mathbf{b}} \mid \mathbf{a}-\mathbf{b} \in \mathscr{C}\right\}\right\rangle \subseteq \mathbb{K}[\mathbf{X}]
$$

Given the rows of a generator matrix \mathscr{C}, labelled by $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\} \subseteq \mathbb{F}_{q}^{n}$, we define the following ideal:

$$
I_{+}(\mathscr{C})=\left\langle\left\{\mathbf{X}^{\Delta\left(\alpha^{j} \mathbf{w}_{i}\right)}-1\right\}_{\substack{i=1, \ldots, n \\ j=1, \ldots q-1}} \cup\left\{\mathscr{R}_{X_{i}}\right\}_{i=1, \ldots, n}\right\rangle \subseteq \mathbb{K}[\mathbf{X}]
$$

Theorem 2 [3][Theorem 2.3] $I(\mathscr{C})=I_{+}(\mathscr{C})$
Remark 1 In the binary case, given a generator matrix $G \in \mathbb{F}_{2}^{k \times n}$ of an $[n, k]_{2}$-code \mathscr{C} and let label its rows by $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\} \subseteq \mathbb{F}_{2}^{n}$. We define the ideal associated to \mathscr{C} as the binomial ideal:

$$
I_{+}(\mathscr{C})=\left\langle\left\{\mathbf{X}^{\mathbf{w}_{i}}-1\right\}_{i=1, \ldots, k} \cup\left\{x_{i}^{2}-1\right\}_{i=1, \ldots, n}\right\rangle \subseteq \mathbb{K}[\mathbf{X}]
$$

Now, let $\mathscr{G}=\left\{g_{1}, \ldots, g_{s}\right\}$ be the reduced Gröbner basis of the ideal $I_{+}(\mathscr{C})$ with respect to \succ, where we take \succ to be any degree compatible ordering on $\mathbb{K}[\mathbf{X}]$ with
$X_{1} \prec \ldots \prec X_{n}$. By Lemma [3][Lemma 3.3] we know that all elements of $\mathscr{G} \backslash \mathscr{R}_{\mathbf{X}}$ are in standard form, so for $g_{i} \in \mathscr{G} \backslash \mathscr{R}_{\mathbf{X}}$ with $i=1, \ldots, s$, we define

$$
g_{i}=\mathbf{X}^{\Delta \mathbf{g}_{i}^{+}}-\mathbf{X}^{\Delta \mathbf{g}_{i}^{-}} \quad \text { with } \quad \mathbf{X}^{\Delta \mathbf{g}_{i}^{+}} \succ \mathbf{X}^{\Delta \mathbf{g}_{i}^{-}} \quad \text { and } \quad \mathbf{g}_{i}^{+}-\mathbf{g}_{i}^{-} \in \mathscr{C}
$$

Using [3][Proposition 4], we know that the set $\mathscr{T}=\left\{\mathbf{g}_{i}^{+}-\mathbf{g}_{i}^{-} \mid i=1, \ldots, s\right\}$ is a test-set for \mathscr{C}.

Example 1 Consider the $[6,3,2]_{2}$ binary code \mathscr{C} defined by the following generator matrix:

$$
G=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \in \mathbb{F}_{2}^{3 \times 6}
$$

Let us label the rows of G by \mathbf{w}_{1} and \mathbf{w}_{2}. By the previous theorem, the ideal associated to the linear code \mathscr{C} may be defined as the following ideal:

$$
\begin{aligned}
I_{+}(\mathscr{C}) & =\left\langle\left\{\mathbf{X}^{\mathbf{w}_{i}}-1\right\}_{i=1,2} \cup\left\{\mathscr{R}_{X_{i}}\right\}_{i=1, \ldots, 6}\right\rangle \\
& =\left\langle\left\{\begin{array}{c}
x_{1} x_{6}-1 \\
x_{2} x_{3} x_{5}-1 \\
x_{4} x_{5} x_{6}-1
\end{array}\right\} \cup\left\{x_{i}^{2}-1\right\}_{i=1, \ldots, 6}\right\rangle
\end{aligned}
$$

If we compute a reduced Gröbner basis \mathscr{G} of $I_{+}(\mathscr{C})$ we obtained a test-set consisting of 4 codewords:

$$
\mathscr{T}_{\mathscr{C}}=\{(1,0,0,0,0,1),(0,1,1,0,1,0),(0,1,1,1,1,0,1),(0,0,0,1,1,1)\}
$$

For fuller discussion of this algebraic structure see [4, 1] and the references therein.
The connection between linear codes and matroids will turn out to be fundamental for the development of the subsequent results. Thus, a brief review will be provided here.

Given an $m \times n$ matrix H in \mathbb{F}_{q}, then H can be seen not only as the representation matrix of the \mathbb{F}_{q}-representable matroid $M[H]$ but also as a parity check matrix of an $[n, k]$-code \mathscr{C}. Furthermore, there exists a one to one correspondence between \mathbb{F}_{q}-representable matroids and linear codes, since for any $H, H^{\prime} \in \mathbb{F}_{q}^{m \times n}$, $M[H]=M\left[H^{\prime}\right]$ if an only if H and H^{\prime} are parity check matrices of the same code \mathscr{C}. This association enables us to work with \mathbb{F}_{q}-representable matroids and linear codes as if they were the same object and thus we can conclude some properties of linear codes using tools from matroid theory and vice-versa.

2 Our Conjecture

Let $M=(E, I)$ be a matroid and \mathscr{C} be the set of all circuits of M. Consider \mathscr{T} a collection of cycles of M with the following property: $\bigcup_{\tau \in \mathscr{C}} \tau=\bigcup_{\tau \in \mathscr{T}} \tau$. We define the ideal $I_{\mathscr{T}}=\left\langle\mathbf{x}^{\sigma} \mid \sigma \in \mathscr{T}\right\rangle$.
Conjecture 1 Let $\beta_{i, \alpha}^{\prime}$ the \mathbb{N}^{E}-graded betti number of $I_{\mathscr{T}}$, related with the minimal free resolution of $R=\frac{\mathbb{K}[X]}{I_{\mathscr{G}}}$ as \mathbb{N}^{E}-graded module. Then, we have a similar result as Theorem 1 and Corollary 1.

If we talk about linear codes, the conjecture allows us to compute the set of generalized Hamming weight of a linear code \mathscr{C} using a Test-set for \mathscr{C}, in other words, by computing a Grobner basis of the ideal associated to \mathscr{C}.

Corollary 2 Let $\mathscr{T}_{\mathscr{C}}$ be a test-set for the linear code \mathscr{C}. Consider the monomial ideal: $I_{\mathscr{T}_{6}}=\left\langle\mathbf{x}^{\sigma} \mid \sigma \in \mathscr{T}_{\mathscr{C}}\right\rangle$. Let $\beta_{i, \alpha}^{\prime}$ the \mathbb{N}^{E}-graded betti numbers of $I_{\mathscr{T}_{6}}$. Then,

$$
d_{i}(\mathscr{C})=\min \left\{d \mid \beta_{i, d}^{\prime} \neq 0\right\} \text { for } 1 \leq i \leq n-k
$$

Example 2 Now we use the same code of Example 1. In this case the support of a test-set $T_{\mathscr{C}}$ is given by: $\mathscr{T}=\{\{2,3,5\},\{2,3,4,6\},\{4,5,6\},\{1,6\}\}$ i.e. we consider the ideal: $I_{\mathscr{T}}=\left\langle x_{2} x_{3} x_{5}, x_{2} x_{3} x_{4} x_{6}, x_{4} x_{5} x_{6}, x_{1} x_{6}\right\rangle \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{6}\right]$. We get the Betti diagram

	1	2	3
1	1		
2	2	1	
3	1	4	2

Thus $\beta_{1,2}^{\prime}, \beta_{2,4}^{\prime}$ and $\beta_{3,6}^{\prime}$ are the minimal $\beta_{i, d}^{\prime} \neq 0$ with $i=1,2,3$. Or equivalently, $d_{1}=2, d_{2}=4$ and $d_{3}=6$.

References

[1] M. Borges-Quintana, M.A. Borges-Trenard, P. FitzPatrick and E. Martínez-Moro. Gröbner bases and combinatorics for binary codes. Applicable Algebra in Engineering, Communication and Computing. 19(5): 393-411, 2008.
[2] J. T. Johnsen and H. Verdure. Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids. Applicable Algebra in Engineering, Communication and Computing. 24(1): 73-93, 2013.
[3] I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications (AMC). 10(2): 229-254, 2016.
[4] I. Márquez-Corbella and E. Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications (AMC). 5(2): 233-244, 2011.

