Betti Numbers and Generalized Hamming Weights

Irene Márquez-Corbella and Edgar Martínez-Moro

Dept. of Mathematics, Statistics and O. Research, University of La Laguna, Spain. irene.marquez.corbella@ull.es Institute of Mathematics, University of Valladolid, Spain. Edgar.Martinez@uva.es

We can associate to each linear code \mathscr{C} defined over a finite field the matroid M[H] of its parity check matrix H. For any matroid M one can define its generalized Hamming weights which are the same as those of the code \mathscr{C} . In [2] the authors show that the generalized Hamming weights of a matroid are determined by the \mathbb{N} -graded Betti numbers of the Stanley-Reisner ring of the simplicial complex whose faces are the independent set of M. In this talk we go a step further. Our practical results indicate that the generalized Hamming weights of a linear code \mathscr{C} can be obtained from the monomial ideal associated with a test-set for \mathscr{C} . Moreover, recall that in [3] we use the Gröbner representation of a linear code \mathscr{C} to provide a test-set for \mathscr{C} .

Our results are still a work in progress, but its applications to Coding Theory and Cryptography are of great value.

1 Notation and Prerequisites

We begin with an introduction of basic definitions and some known results. By \mathbb{N} , \mathbb{Z} , \mathbb{F}_q (where *q* is a primer power) we denote the set of positive integers, the set of integers and the finite field with *q* elements, respectively.

Definition 1 A matroid M is a pair (E,I) consisting of a finite set E called ground set and a collection I of subsets of E called independent sets, satisfying the following conditions:

- *1. The empty set is independent, i.e.* $\emptyset \in I$
- 2. If $A \in I$ and $B \subset A$, then $B \in I$
- 3. If $A, B \in I$ and |A| < |B|, then there exists $e \in B \setminus A$ such that $A \cup \{e\} \in I$

Let M = (E, I) be a matroid. A maximal independent subset of E is called a *basis* of M. A direct consequence of the previous definition is that all bases of M have the same cardinality. Thus, we define the *rank* of the matroid M as the cardinality of any basis of M, denoted by rank(M). A subset E that does not belong to *I* is called *dependent set*. Minimal dependent subsets of *E* are known as *circuits* of *M*. A set is said to be a *cycle* if it is a disjoint union of circuits. The collection of cycles of *M* is denoted by $\mathscr{C}(M)$. For all $\sigma \in E$, the *nulity function* of σ is given by $n(\sigma) := |\sigma| - \operatorname{rank}(M_{\sigma})$ with $\operatorname{rank}(M_{\sigma}) = \max\{|A| \mid A \in I \text{ and } A \subset \sigma\}$, i.e. the restriction of $\operatorname{rank}(M)$ to the subsets of σ .

Let us consider an $m \times n$ matrix A in \mathbb{F}_q whose columns are indexed by $E = \{1, \ldots, n\}$ and take I to be the collection of subsets J of E for which the column vectors $\{A_j \mid j \in J\}$ are linearly independent over \mathbb{F}_q . Then (E, I) defines a matroid denoted by M[A]. A matroid M = (E, I) is \mathbb{F}_q -representable if it is isomorphic to M[A] for some $A \in \mathbb{F}_q^{m \times n}$. Then the matrix A is called the representation matrix of M. The following well known results describes the relation between the collection of all cycles of a matroid M and its representation matrix.

Proposition 1 Let M = (E, I) be a \mathbb{F}_q -representable matroid. Then $\mathscr{C}(M)$ is the null space of a representation matrix of M. Furthermore, the dimension of $\mathscr{C}(M)$ is $|E| - \operatorname{rank}(M)$.

Let Δ be a simplicial complex on the finite ground set *E*. Let \mathbb{K} be a field and let **x** be the indeterminates $\mathbf{x} = \{x_e \mid e \in E\}$. The *Stanley-Reisner* ideal of Δ is, by definition,

$$I_{\Delta} = \langle \mathbf{x}^{\sigma} \mid \sigma \notin \Delta \rangle$$

The *Stanley-Reisner ring* of I_{Δ} , denoted by R_{Δ} , is defined to be the quotient ring $R_{\Delta} = \frac{\mathbb{K}[\mathbf{x}]}{I_{\Delta}}$. This ring has a minimal free resolution as \mathbb{N}^{E} -graded module:

 $0 \quad \longleftarrow \quad R_{\Delta} \quad \longleftarrow \quad P_0 \quad \longleftarrow \quad P_1 \quad \longleftarrow \quad \cdots \quad \longleftarrow \quad P_l \quad \longleftarrow \quad 0$

where each P_i is given by $P_i = \bigoplus_{\alpha \in \mathbb{N}^E} \mathbb{K}[\mathbf{x}](-\alpha)^{\beta_{i,\alpha}}$. We write $\beta_{i,\alpha}$ for the \mathbb{N}^E -graded Betti Numbers of Δ .

1.1 Matroids and Simplicial complex

A matroid M = (E, I) is a simplicial complex whose faces are the independent sets. Thus, $I_M := \langle \mathbf{x}^{\sigma} | \sigma \in \mathscr{C} \rangle$ where \mathscr{C} is the set of all circuits of M. Define $N_i = \{ \sigma \in N | n(\sigma) = d \}$.

Theorem 1 ([2]Theorem 1) Let M be a matroid on the ground set E. Let $\sigma \subset E$. Then, $\beta_{i,\sigma} \neq 0$ if and only if σ is minimal in N_i .

Definition 2 Let M = (E,I) be a matroid, we define the generalized Hamming weights of M to be $d_i = \min\{|\sigma| \mid n(\sigma) = i\}$.

Corollary 1 Let M be a matroid on the ground set E. Then,

 $d_i = \min \left\{ d \mid \beta_{i,d} \neq 0 \quad \text{for all} \quad 1 \le i \le |E| - \operatorname{rank}(M) \right\}.$

1.2 Matroids and linear codes

An $[n,k]_q$ linear code \mathscr{C} is a k-dimensional subspace of \mathbb{F}_q^n . We define a generator matrix of \mathscr{C} to be a $k \times n$ matrix G whose row vectors span \mathscr{C} , while a parity check matrix of \mathscr{C} is an $(n-k) \times n$ matrix H whose null space is \mathscr{C} .

Let us denote by $d_H(\cdot, \cdot)$ and $w_H(\cdot)$ the *Hamming distance* and the *Hamming weight* on \mathbb{F}_q^n , respectively. We write d for the *minimum Hamming distance* of the code \mathscr{C} , which is equal to its minimum weight. Thus, the error correcting capability of \mathscr{C} is $t = \lfloor \frac{d-1}{2} \rfloor$ where $\lfloor \cdot \rfloor$ is the greatest integer function. For every codeword $\mathbf{c} \in \mathscr{C}$ its *support*, $\operatorname{supp}(\mathbf{c})$, is defined as its support as a vector in \mathbb{F}_q^n , i.e. $\operatorname{supp}(\mathbf{c}) = \{i \mid c_i \neq 0\}$. We will denote by $\mathscr{M}_{\mathscr{C}}$ the set of codewords of minimal support of \mathscr{C} .

A *test-set* $\mathscr{T}_{\mathscr{C}}$ for \mathscr{C} is a set of codewords such that for every word $\mathbf{y} \in \mathbb{F}_q^n$, either \mathbf{y} belongs to the set of coset leaders, or there exists an element $\mathbf{t} \in \mathscr{T}_{\mathscr{C}}$ such that $w_H(\mathbf{y} - \mathbf{t}) < w_H(\mathbf{y})$.

Definition 3 The r^{th} generalized Hamming weight of \mathscr{C} denoted by $d_r(\mathscr{C})$ is the smallest support of an *r*-dimensional subcode of \mathscr{C} . That is,

$$d_r(\mathscr{C}) = \min \{ \operatorname{supp}(D) \mid D \subseteq \mathscr{C} \text{ and } \operatorname{rank}(D) = r \}$$

In [3] the authors associate a binomial ideal to an arbitrary linear code provided by the rows of a generator matrix and the relations given by the additive table of the defining field.

Let **X** denote *n* vector variables X_1, \ldots, X_n such that each variable X_i can be decomposed into q - 1 components $x_{i,1}, \ldots, x_{i,q-1}$ with $i = 1, \ldots, n$. A monomial in **X** is a product of the form:

$$\mathbf{X}^{\mathbf{u}} = X_1^{\mathbf{u}_1} \cdots \mathbf{X}_n^{\mathbf{u}_n} = \left(x_{1,1}^{u_{1,1}} \cdots x_{1,q-1}^{u_{1,q-1}} \right) \cdots \left(x_{n,1}^{u_{n,1}} \cdots x_{n,q-1}^{u_{n,q-1}} \right)$$

where $\mathbf{u} \in \mathbb{Z}_{\geq 0}^{n(q-1)}$. The total degree of $\mathbf{X}^{\mathbf{u}}$ is the sum deg $(\mathbf{X}^{\mathbf{u}}) = \sum_{i=1}^{n} \sum_{j=1}^{q-1} u_{i,j}$. When $\mathbf{u} = (0, ..., 0)$, note that $\mathbf{X}^{\mathbf{u}} = 1$. Then, the polynomial ring $\mathbb{K}[\mathbf{X}]$ is the set of all polynomials in \mathbf{X} with coefficients in \mathbb{K} .

Recall that the multiplicative group \mathbb{F}_q^* of nonzero elements of \mathbb{F}_q is cyclic. A generator of the cyclic group \mathbb{F}_q^* is called a primitive element of \mathbb{F}_q , i.e. \mathbb{F}_q consist of 0 and all powers from 1 to q-1 of that primitive element. Let α be a primitive element of \mathbb{F}_q . We define by \mathscr{R}_{X_i} , the set of all the binomials on the variables X_i associated to the relations given by the additive table of the field $\mathbb{F}_q = \langle \alpha^j | j = 1, ..., q-1 \rangle \cup \{0\}$, i.e.

$$\mathscr{R}_{X_{i}} = \left\{ \begin{array}{cc} \left\{ x_{i,u} x_{i,v} - x_{i,w} \mid \alpha^{u} + \alpha^{v} = \alpha^{w} \right\} & \cup & \left\{ x_{i,u} x_{i,v} - 1 \mid \alpha^{u} + \alpha^{v} = 0 \right\} \end{array} \right\}$$

with i = 1, ..., n. Note that there are $\binom{q}{2}$ different binomials in \mathscr{R}_{X_i} . We define $\mathscr{R}_{\mathbf{X}}$ as the ideal generated by the union of all binomial ideals \mathscr{R}_{X_i} , i.e. $\mathscr{R}_{\mathbf{X}} = \langle \bigcup_{i=1}^n \mathscr{R}_{X_i} \rangle$

We will use the following characteristic crossing functions. These applications aim at describing a one-to-one correspondence between the finite field \mathbb{F}_q with q elements and the standard basis of \mathbb{Z}^{q-1} , denoted as $E_q = \{\mathbf{e}_1, \dots, \mathbf{e}_{q-z}\}$ where \mathbf{e}_i is the unit vector with a 1 in the *i*-th coordinate and 0's elsewhere.

- $\Delta\colon \ \mathbb{F}_q \ \longrightarrow \ E_q\cup \{\mathbf{0}\}\subseteq \mathbb{Z}^{q-1} \quad \text{ and } \quad \nabla\colon \ E_q\cup \{\mathbf{0}\} \ \longrightarrow \ \mathbb{F}_q$
- 1. The map Δ replaces the element $\mathbf{a} = \boldsymbol{\alpha}^i \in \mathbb{F}_q$ by the vector \mathbf{e}_i and $0 \in \mathbb{F}_q$ by the zero vector $\mathbf{0} \in \mathbb{Z}^{q-1}$.
- 2. The map ∇ recovers the element $\alpha^j \in \mathbb{F}_q$ from the unit vector \mathbf{e}_j and the zero element $0 \in \mathbb{F}_q$ from the zero vector $\mathbf{0} \in \mathbb{Z}^{q-1}$.

These maps will be used with matrices and vectors acting coordinate-wise. Although Δ is not a linear function. Note that we have:

$$\mathbf{X}^{\Delta \mathbf{a}} \cdot \mathbf{X}^{\Delta \mathbf{b}} = \mathbf{X}^{\Delta \mathbf{a} + \Delta \mathbf{b}} = \mathbf{X}^{\Delta(\mathbf{a} + \mathbf{b})} \mod \mathscr{R}_{\mathbf{X}} \text{ for all } \mathbf{a}, \mathbf{b} \in \mathbb{F}_{a}^{n}.$$

Let \mathscr{C} be an $[n,k]_q$ linear code. We define the *ideal associated* to \mathscr{C} as the binomial ideal:

$$I(\mathscr{C}) = \left\langle \left\{ \mathbf{X}^{\Delta \mathbf{a}} - \mathbf{X}^{\Delta \mathbf{b}} \mid \mathbf{a} - \mathbf{b} \in \mathscr{C}
ight\}
ight
angle \subseteq \mathbb{K}[\mathbf{X}]$$

Given the rows of a generator matrix \mathscr{C} , labelled by $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\} \subseteq \mathbb{F}_q^n$, we define the following ideal:

$$I_{+}(\mathscr{C}) = \left\langle \left\{ \mathbf{X}^{\Delta(\alpha^{j}\mathbf{w}_{i})} - 1 \right\}_{\substack{i=1,\dots,n\\j=1,\dots,q-1}} \cup \left\{ \mathscr{R}_{X_{i}} \right\}_{i=1,\dots,n} \right\rangle \subseteq \mathbb{K}[\mathbf{X}]$$

Theorem 2 [3][Theorem 2.3] $I(\mathscr{C}) = I_+(\mathscr{C})$

Remark 1 In the binary case, given a generator matrix $G \in \mathbb{F}_2^{k \times n}$ of an $[n,k]_2$ -code \mathscr{C} and let label its rows by $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\} \subseteq \mathbb{F}_2^n$. We define the ideal associated to \mathscr{C} as the binomial ideal:

$$I_{+}(\mathscr{C}) = \left\langle \{\mathbf{X}^{\mathbf{w}_{i}} - 1\}_{i=1,\dots,k} \cup \{x_{i}^{2} - 1\}_{i=1,\dots,n} \right\rangle \subseteq \mathbb{K}[\mathbf{X}]$$

Now, let $\mathscr{G} = \{g_1, \ldots, g_s\}$ be the reduced Gröbner basis of the ideal $I_+(\mathscr{C})$ with respect to \succ , where we take \succ to be any degree compatible ordering on $\mathbb{K}[\mathbf{X}]$ with

 $X_1 \prec \ldots \prec X_n$. By Lemma [3][Lemma 3.3] we know that all elements of $\mathscr{G} \setminus \mathscr{R}_{\mathbf{X}}$ are in standard form, so for $g_i \in \mathscr{G} \setminus \mathscr{R}_{\mathbf{X}}$ with $i = 1, \ldots, s$, we define

$$g_i = \mathbf{X}^{\Delta \mathbf{g}_i^+} - \mathbf{X}^{\Delta \mathbf{g}_i^-}$$
 with $\mathbf{X}^{\Delta \mathbf{g}_i^+} \succ \mathbf{X}^{\Delta \mathbf{g}_i^-}$ and $\mathbf{g}_i^+ - \mathbf{g}_i^- \in \mathscr{C}$.

Using [3][Proposition 4], we know that the set $\mathscr{T} = \{\mathbf{g}_i^+ - \mathbf{g}_i^- \mid i = 1, \dots, s\}$ is a test-set for \mathscr{C} .

Example 1 Consider the $[6,3,2]_2$ binary code C defined by the following generator matrix:

Let us label the rows of G by \mathbf{w}_1 and \mathbf{w}_2 . By the previous theorem, the ideal associated to the linear code \mathscr{C} may be defined as the following ideal:

$$I_{+}(\mathscr{C}) = \left\langle \{\mathbf{X}^{\mathbf{w}_{i}} - 1\}_{i=1,2} \cup \{\mathscr{R}_{X_{i}}\}_{i=1,...,6} \right\rangle$$
$$= \left\langle \left\{ \begin{array}{c} x_{1}x_{6} - 1 \\ x_{2}x_{3}x_{5} - 1 \\ x_{4}x_{5}x_{6} - 1 \end{array} \right\} \cup \left\{ x_{i}^{2} - 1 \right\}_{i=1,...,6} \right\rangle$$

If we compute a reduced Gröbner basis \mathscr{G} of $I_+(\mathscr{C})$ we obtained a test-set consisting of 4 codewords:

$$\mathscr{T}_{\mathscr{C}} = \{(1,0,0,0,0,1), (0,1,1,0,1,0), (0,1,1,1,1,0,1), (0,0,0,1,1,1)\}$$

For fuller discussion of this algebraic structure see [4, 1] and the references therein.

The connection between linear codes and matroids will turn out to be fundamental for the development of the subsequent results. Thus, a brief review will be provided here.

Given an $m \times n$ matrix H in \mathbb{F}_q , then H can be seen not only as the representation matrix of the \mathbb{F}_q -representable matroid M[H] but also as a parity check matrix of an [n,k]-code \mathscr{C} . Furthermore, there exists a one to one correspondence between \mathbb{F}_q -representable matroids and linear codes, since for any $H, H' \in \mathbb{F}_q^{m \times n}$, M[H] = M[H'] if an only if H and H' are parity check matrices of the same code \mathscr{C} . This association enables us to work with \mathbb{F}_q -representable matroids and linear codes as if they were the same object and thus we can conclude some properties of linear codes using tools from matroid theory and vice-versa.

2 Our Conjecture

Let M = (E, I) be a matroid and \mathscr{C} be the set of all circuits of M. Consider \mathscr{T} a collection of cycles of M with the following property: $\bigcup_{\tau \in \mathscr{C}} \tau = \bigcup_{\tau \in \mathscr{T}} \tau$. We define the ideal $I_{\mathscr{T}} = \langle \mathbf{x}^{\sigma} | \sigma \in \mathscr{T} \rangle$.

Conjecture 1 Let $\beta'_{i,\alpha}$ the \mathbb{N}^E -graded betti number of $I_{\mathscr{T}}$, related with the minimal free resolution of $R = \frac{\mathbb{K}[X]}{I_{\mathscr{T}}}$ as \mathbb{N}^E -graded module. Then, we have a similar result as Theorem 1 and Corollary 1.

If we talk about linear codes, the conjecture allows us to compute the set of generalized Hamming weight of a linear code \mathscr{C} using a Test-set for \mathscr{C} , in other words, by computing a Grobner basis of the ideal associated to \mathscr{C} .

Corollary 2 Let $\mathscr{T}_{\mathscr{C}}$ be a test-set for the linear code \mathscr{C} . Consider the monomial ideal: $I_{\mathscr{T}_{\mathscr{C}}} = \langle \mathbf{x}^{\sigma} | \sigma \in \mathscr{T}_{\mathscr{C}} \rangle$. Let $\beta'_{i,\alpha}$ the \mathbb{N}^{E} -graded betti numbers of $I_{\mathscr{T}_{\mathscr{C}}}$. Then,

 $d_i(\mathscr{C}) = \min\left\{d \mid \beta'_{i,d} \neq 0\right\} \text{ for } 1 \le i \le n-k$

Example 2 Now we use the same code of Example 1. In this case the support of a test-set $T_{\mathscr{C}}$ is given by: $\mathscr{T} = \{\{2,3,5\},\{2,3,4,6\},\{4,5,6\},\{1,6\}\}$ i.e. we consider the ideal: $I_{\mathscr{T}} = \langle x_2x_3x_5, x_2x_3x_4x_6, x_4x_5x_6, x_1x_6 \rangle \subseteq \mathbb{K}[x_1, \dots, x_6]$. We get the Betti diagram

Thus $\beta'_{1,2}$, $\beta'_{2,4}$ and $\beta'_{3,6}$ are the minimal $\beta'_{i,d} \neq 0$ with i = 1, 2, 3. Or equivalently, $d_1 = 2, d_2 = 4$ and $d_3 = 6$.

References

- M. Borges-Quintana, M.A. Borges-Trenard, P. FitzPatrick and E. Martínez-Moro. *Gröbner* bases and combinatorics for binary codes. Applicable Algebra in Engineering, Communication and Computing. 19(5): 393-411, 2008.
- [2] J. T. Johnsen and H. Verdure. *Hamming weights and Betti numbers of Stanley–Reisner rings associated to matroids*. Applicable Algebra in Engineering, Communication and Computing. 24(1): 73-93, 2013.
- [3] I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications (AMC). 10(2): 229-254, 2016.
- [4] I. Márquez-Corbella and E. Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications (AMC). 5(2): 233-244, 2011.