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We can associate to each linear code € defined over a finite field the matroid
MIH] of its parity check matrix H. For any matroid M one can define its gener-
alized Hamming weights which are the same as those of the code €. In [2] the
authors show that the generalized Hamming weights of a matroid are determined
by the N-graded Betti numbers of the Stanley-Reisner ring of the simplicial com-
plex whose faces are the independent set of M. In this talk we go a step further.
Our practical results indicate that the generalized Hamming weights of a linear
code % can be obtained from the monomial ideal associated with a test-set for €.
Moreover, recall that in [3] we use the Grébner representation of a linear code %
to provide a test-set for €.

Our results are still a work in progress, but its applications to Coding Theory
and Cryptography are of great value.

1 Notation and Prerequisites

We begin with an introduction of basic definitions and some known results. By N,
Z,F, (where ¢ is a primer power) we denote the set of positive integers, the set of
integers and the finite field with g elements, respectively.

Definition 1 A matroid M is a pair (E,I) consisting of a finite set E called ground
set and a collection I of subsets of E called independent sets, satisfying the follow-
ing conditions:

1. The empty set is independent, i.e. O € I
2. IfAc€land BCA, thenBel

3. IfA,Beland|A| < |B

, then there exists e € B\ A such that AU {e} € I

Let M = (E,I) be a matroid. A maximal independent subset of E is called
a basis of M. A direct consequence of the previous definition is that all bases
of M have the same cardinality. Thus, we define the rank of the matroid M as the
cardinality of any basis of M, denoted by rank(M). A subset E that does not belong



to [ is called dependent set. Minimal dependent subsets of E are known as circuits
of M. A set is said to be a cycle if it is a disjoint union of circuits. The collection
of cycles of M is denoted by €' (M). For all ¢ € E, the nulity function of ¢ is given
by n(o) := |6| — rank(Mg) with rank(Ms) = max{|A| | A €[ and A C 0}, i.e. the
restriction of rank(M) to the subsets of G.

Let us consider an m X n matrix A in [F, whose columns are indexed by E =
{1,...,n} and take [ to be the collection of subsets J of E for which the column
vectors {A; | j € J} are linearly independent over F,,. Then (E, 1) defines a matroid
denoted by M[A]. A matroid M = (E,I) is F,-representable if it is isomorphic to
MIA] for some A € F7"". Then the matrix A is called the representation matrix of
M. The following well known results describes the relation between the colleciton
of all cycles of a matroid M and its representation matrix.

Proposition 1 Let M = (E,I) be a F,-representable matroid. Then € (M) is the
null space of a representation matrix of M. Furthermore, the dimension of € (M)
is |E| —rank(M).

Let A be a simplicial complex on the finite ground set £. Let K be a field and
let x be the indeterminates X = {x, | e € E}. The Stanley-Reisner ideal of A is, by
definition,

Ia= (%[0 ¢A)

The Stanley-Reisner ring of I, denoted by Rj, is defined to be the quotient

ring Ry = %X]. This ring has a minimal free resolution as N¥-graded module:
0O ¢<— R\ +«— P <— P ¢&— -+ — B +— 0

where each B is given by P = @qene K[x](—a)Pie. We write o for the
NE-graded Betti Numbers of A.

1.1 Matroids and Simplicial complex

A matroid M = (E,I) is a simplicial complex whose faces are the independent
sets. Thus, Iy := (x® | 0 € €) where ¥ is the set of all circuits of M. Define
N;={o €N |n(o)=d}.

Theorem 1 ([2]Theorem 1) Let M be a matroid on the ground set E. Let 6 C E.
Then, Bi.c # 0 if and only if G is minimal in N;.

Definition 2 Ler M = (E,I) be a matroid, we define the generalized Hamming
weights of M to be d; = min{|o| | n(c) = i}.

Corollary 1 Let M be a matroid on the ground set E. Then,
di=min{d | Big#0 forall 1<i<|E|—rank(M)}.



1.2 Matroids and linear codes

An [n, k], linear code € is a k-dimensional subspace of IFy. We define a generator
matrix of € to be a k X n matrix G whose row vectors span ¢, while a parity check
matrix of € is an (n — k) x n matrix H whose null space is €.

Let us denote by dy(+,-) and wy(-) the Hamming distance and the Hamming
weight on F”, respectively. We write d for the minimum Hamming distance of
the code ¢, which is equal to its minimum weight. Thus, the error correcting
capability of € ist = L%J where |-| is the greatest integer function. For every
codeword ¢ € ¥ its support, supp(c), is defined as its support as a vector in F”, i.e.
supp(c) = {i| ¢; # 0}. We will denote by .#4 the set of codewords of minimal
support of €.

A test-set T for € is a set of codewords such that for every word y € F”,
either y belongs to the set of coset leaders, or there exists an element t € .7 such

that wy (y —t) < wg(y).

Definition 3 The r'" generalized Hamming weight of € denoted by d,(€) is the
smallest support of an r-dimensional subcode of €. That is,

d,(¢) = min{supp(D) | D C € and rank(D) = r}

In [3] the authors associate a binomial ideal to an arbitrary linear code provided
by the rows of a generator matrix and the relations given by the additive table of

the defining field.
Let X denote n vector variables Xi,...,X, such that each variable X; can be
decomposed into ¢ — 1 components x; 1,...,X; 41 Withi=1,...,n. A monomial in

X is a product of the form:

XU = XU XY = ('xlf,lil xi”q":i) (xZ’,lil xZ"q‘f:‘l)

where u € Zg(g_l). The total degree of X" is the sum deg(X") = Y7, ij];i Ui j.
When u = (0,...,0), note that X" = 1. Then, the polynomial ring K[X] is the set
of all polynomials in X with coefficients in K.

Recall that the multiplicative group F; of nonzero elements of [, is cyclic.
A generator of the cyclic group Iy is called a primitive element of Fy, i.e. F,
consist of 0 and all powers from 1 to g — 1 of that primitive element. Let o be
a primitive element of IF,. We define by Z,, the set of all the binomials on the
variables X; associated to the relations given by the additive table of the field F, =

(/] j=1,...,q—1)U{0},ie.

‘@Xi = { {xwx,-,v — Xjw ‘ o+ ¥ = Olw} U {xi,uxl',v —1 | o+ o’ = 0} }



with i =1,...,n. Note that there are () different binomials in Zx,. We define %x
as the ideal generated by the union of all binomial ideals Zx,, i.e. Z#x = <U;’:1 %Xi>

We will use the following characteristic crossing functions. These applications
aim at describing a one-to-one correspondence between the finite field I, with g
elements and the standard basis of Z4~!, denoted as E, = {ey,...,e,_.} where ¢
is the unit vector with a 1 in the i-th coordinate and 0’s elsewhere.

A: F, — E,u{0}CZ!' and V: E,U{0} — F,

1. The map A replaces the element a = &' € IF, by the vector ¢; and 0 € F, by
the zero vector 0 € Z4~ !,

2. The map V recovers the element o/ € F,, from the unit vector e; and the zero
element 0 € F,, from the zero vector 0 € Z4~!.

These maps will be used with matrices and vectors acting coordinate-wise. Al-
though A is not a linear function. Note that we have:

X4a. XAb — xAa+Ab _ xA@+b)  pod gy foralla,b € .

Let € be an [n,k|, linear code. We define the ideal associated to ¢ as the
binomial ideal:

(€)= ({X**-X*|a-be¥}) CK[X]

Given the rows of a generator matrix %, labelled by {wy,...,w;} C F? we
define the following ideal:

Theorem 2 [3][Theorem 2.3] (€)= 1. (%)

Remark 1 In the binary case, given a generator matrix G € Fx*" of an [n,k|2-code
¢ and let label its rows by {wy,...,wi} C F4. We define the ideal associated to €
as the binomial ideal:

L.(¢)= < (XVi—1}y o U {xF - 1}i=1,.._,n > C KX]

Now, let = {g1,...,gs} be the reduced Grébner basis of the ideal I, (%") with
respect to >, where we take > to be any degree compatible ordering on K[X] with



X) <...=<X,. By Lemma [3][Lemma 3.3] we know that all elements of ¢ \ %x
are in standard form, so for g; € ¥4\ Zx withi=1,...,s, we define

g =X X% with X% -~ X% and g —g €%.

Using [3][Proposition 4], we know that the set .7 = {gfr —-g |i=1,... ,s} is
a test-set for %

Example 1 Consider the [6,3,2], binary code € defined by the following genera-
tor matrix:

0 0 1

01 0 |er®

1 11

Let us label the rows of G by wy and wy. By the previous theorem, the ideal
associated to the linear code € may be defined as the following ideal:

L(€) = ({X“—1} 1o U {Zx}ioi 6 )

x1xg — 1
= < Xpx3x5 — 1 U {xzz - 1}1':1,,..,6 >

X4X5X6 — 1

If we compute a reduced Gribner basis G of I.(€') we obtained a test-set consist-
ing of 4 codewords:

v =1{(1,0,0,0,0,1),(0,1,1,0,1,0),(0,1,1,1,1,0,1),(0,0,0,1,1,1)}

For fuller discussion of this algebraic structure see [4, 1] and the references therein.

The connection between linear codes and matroids will turn out to be funda-
mental for the development of the subsequent results. Thus, a brief review will be
provided here.

Given an m X n matrix H in [F, then H can be seen not only as the repre-
sentation matrix of the F-representable matroid M[H| but also as a parity check
matrix of an [n,k]-code €. Furthermore, there exists a one to one correspondence
between I -representable matroids and linear codes, since for any H,H' € Fg=",
M[H] = M[H'] if an only if H and H’ are parity check matrices of the same code
¢ . This association enables us to work with [F,-representable matroids and linear
codes as if they were the same object and thus we can conclude some properties of
linear codes using tools from matroid theory and vice-versa.



2 Our Conjecture

Let M = (E,I) be a matroid and % be the set of all circuits of M. Consider .7
a collection of cycles of M with the following property: J;cx T = U;co7 7. We
define the ideal I = (x° |6 € F).

Conjecture 1 Let Bl” o the NE-graded betti number of 1 7, related with the minimal

K[X]

Jfree resolution of R = == as NE-graded module. Then, we have a similar result

as Theorem 1 and Corollary 1.

If we talk about linear codes, the conjecture allows us to compute the set of
generalized Hamming weight of a linear code % using a Test-set for €, in other
words, by computing a Grobner basis of the ideal associated to €.

Corollary 2 Let T be a test-set for the linear code €. Consider the monomial
ideal: 17, = (x° | 0 € J). Let Bl’ o the NE-graded betti numbers of 17,. Then,

di(¢)=min{d | B/, #0} for 1 <i<n—k

Example 2 Now we use the same code of Example 1. In this case the support
of a test-set Ty is given by: 7 = {{2,3,5},{2,3,4,6},{4,5,6},{1,6}} i.e. we
consider the ideal: 7 = (xyx3x5,XX3X4X6,X4X5X6,X1X6) C K[x1,...,x6]. We get
the Betti diagram

1 23
1|1

212 1
311 4 2

Thus B} 5, B3 4 and B; ¢ are the minimal B}, # 0 with i = 1,2,3. Or equivalently,
di=2dy=4andd; =6.
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