Galois Theory for Linear Codes
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Let R a be finite chain ring of nilpotency index s, S the Galois extension of R
of rank m, and G the group of ring automorphisms of S fixing R. We will denote
by .Z(8%) (resp. Z(RY)) the set of S-linear codes (resp. R-linear codes) of length
¢. There are two classical constructions that allow us to build an element of .Z’(R’)
from an element % of .Z(S!). One is the restriction code of % which is defined
as Resg (%) := ZNR’. The second one is based on the fact that the trace map

Tr§ = Y o is a linear form, therefore it follows that
ceG

Trlsi('%) = {(TI‘IS{(Cl),-“ ,TI‘IS{(Cg)) |(c1,+,cr) € *%)}7 (1)

is an R-linear code. The relation between the trace code and the restriction code
will be given by a generalization of the celebrated result due to Delsarte [?]

Trrsi(%’%’) = Resa(ﬁ’)“’, 2)

where Ly and L denote the duality operators associated to the nondegenerate
bilinear forms ¢ : R x R — R and ¢’ : 8¢ x 8! — S respectively defined as follows.
Let be a and b in S’, their Euclidian inner product is defined as (a,b)g = a1b; +
arby + --- +agby, and if m is even their Hermitian inner product is defined as
(a,b)g = (62 (a),b)s. Note that (—, —)g is a nondegenerate symmetry bilinear
form.

Forallain§‘andbinR’, Tr§ ((a,b)s) = (Tr§(a),b),,and if mis even, Trj ((a,b)x) =
Tr§ ((a,b)g), since Tr§ (02 (a)) = Tr§(a). Throughout the paper ¢ = (—,—)g and
if mis even ¢/ = (—, —)g, otherwise ¢’ = (—, —)g. It is clear that

@(b,Tr3(a)) = @(Tri(a),b) = Tri(¢'(a,b)), forallac S*and bcR’.  (3)

A finite commutative ring R with identity is called a finite chain ring if its ideals
are linearly ordered by inclusion R form a chainR DR 2 --- DRO~! DRO* = {0}.
The set I'(R) = I'(R)* U {0} is a complete set of representatives of R modulo 6
and each element a of R can be expressed uniquely as a 0-adic decomposition
a=1(a)+1(a)0+---+%_1(a)0* . Therefore we have a valuation function of
R, defined by g (a) :=min{t € {0,1,---,s}|%(a) # 0} and a degree function of



R, defined by degg (a) :=max{r € {0,1,--- ,s}|%:(a) # 0}, for each a in R. We will
assume that U5 (0) = s and degg (0) = —oo.

An R-linear code of length ¢ is a R-submodule of R!, and the elements of &
are called codewords. From now on we will assume that all codes are of length ¢
unless stated otherwise.

Let R and S be two finite chain rings with residue fields I, and Fy» respectively.
We say that S is an extension of R and we denote it by S|[R if R C S and 1 = Is.
Autg(S) will denote the group of automorphisms of S which fix the elements of R.

s—1
Note that the map o :a— Y. %(a)?6’ for all a € S, is in Autg(S) and throughout
=0

of this paper G will be the suTogroup of Autg(S) generated by o. For each subgroup
H of G one can define the fixed ring of H in S as

Fixg(H):= {a €S ‘p(a) =a, forall p EH}.

Definition 1 The ring S is a Galois extension of R with Galois group G if

1. Fizs(G) = Rand

2. there are elements Oy, 01, -+ , O0n—1;04, 0 -+, 0 _ in S such that
m—1 )
) o'(a)o’ (o) =61,
=0

foralli,j=0,1,--- |G| — I(where §; ; = 15 if i = j, and Og otherwise).

Let A be a matrix in $**¢ and A[i :] the i-th row of A; A[: j] the j-th column of
A; Ali; j] the (i, j)-entry of A.
1. The valuation function of A is the mapping ¥4 : {1,--- ,k} — {0,1,--- s},
defined by
Ba(i) :=Og(Ali :]) ;== min{Os(A[isj]) |1 < j < (}.

2. The pivot of a nonzero row Ali :] of A, is the first entry among all the entries
least with valuation in that row. By convention, the pivot of the zero row is
its first entry.

3. The pivot function of A is the mapping p : {1,--- ,k} — {1,---,¢}, defined
by

p(i) :=min{je [Liee- 0} | O5(Alis]) = 19}



Note that the pivot of the row A[i :] is the element A[i, p(i)]. Let p be a ring
automorphism of S, it is clear that the pivot function and valuation function of the

matrices A and (p(A[i; j]))1<i<x provide the same values.
j<t

1<
1<

Definition 2 (Matrix in row standard form [?]) A matrixA € S s in row stan-
dard form if it satisfies the following conditions

1. The pivot function of A is injective and the valuation function of A is increas-
ing,

2. forallic {1, -k}, thereis O; € {0,1,--- s — 1} such that A[i;p(i)] = 6%
and Ali:] € (6%5)" and

3. forallpairsi,t € {1,--- ,k} suchthatt #i, then eitheri>t and degy (A[t;p(i)]) <
O or Ali;p(t)] = 0.

Let A € $¥*¢ be a nonzero matrix, we say that a matrix B € S/ is the row
standard form of A if B is in row standard form and B is row-equivalent to A. A
proof of the existence and unicity of the row standard form of a matrix can be
found in [?]. Since the set of all generator matrices of any S-linear code & is a
coset under row equivalence, it follows that 2 has a unique generator matrix in
row standard form that will be denoted by RSF(#). As usual we define the type of
a linear code as follows. Let 2 be an S-linear code of length £. Denoted by 87 the
i-th pivot of RSF(Z#). The type £ is the (s+ 1)-tuples (¢;ko,k1,--- ,ks—1) where
ke :=|{9| ¥ = t}|. Clearly the S-rank of 2 and the number of codewords of .2,
are

s—1 s—1
m( Y ki(s—
ranks(#) =) k, and |[#|=q (r:o ( t)>'
t=0

Let S|R be a Galois extension of finite chain ring with Galois group G. The
Galois group G acts on .Z(S*) as follows; Let  in £ (S) and ¢ in G

o() = {<o<co>,a<c1>,~- o(er))

(00,61,"',%—1)6@}- 4)

A linear code 2 over S is called Galois invariant if 6(#) = % forall ¢ € G.

Theorem 3 Let % be an S-linear code and A € S** a generator matrix of 2.
Then the following facts are equivalent.

1. A is Galois invariant.

2. RSF() in B~



Corollary 1 Let & be a linear code over S, A is Galois invariant if and only if
RSF(A) = RSF(Res(A)).

Corollary 2 Let & be a linear code over S of the type ({;ko,ky,- - ,ks—1). Then
the following conditions are equivalent.

1. A is Galois invariant,
2. Resp(RB) is of type (L;ko, ki, -+ ks—1).

For all 4,, %, € X(SE), BN By = By + P> is the smallest S-linear code con-
taining %, and %,, note that (X(Sf);ﬂ, \/) is a lattice. Let & be a subset of S,
we define the extension code of & to S, denoted Ext (&), as the code form by all
S-linear combinations of elements in &.

Proposition 1 The operators

T’r‘i;]lesﬂ
Z(8") = L(R) 5)

Ezt

are lattice morphisms. Moreover,
Ext(€) = Ext(€)" and Tri(Ext(€)) = Resy(Ext(€)) =€ for all € € Z£,(R).
Definition 4 (Galois closure and Galois interior) Ler A be a linear code over S.

1. The Galois closure of 4, denoted by B, is the smallest linear code over S,
containing A, which is Galois invariant,

B = ﬂ{y e 2(5" ' T C A and T Galois invariant }
2. The Galois interior of 4, denoted A, is the greatest S-linear subcode of A,
which is Galois invariant,

%:—\/{963(5[)'ﬂgﬂandﬂGalois invariant}.

A map Jg : Z(8") — Z(8") is called a Galois operator if Jg is an morphism of
lattices such that

1. J(;(JG(%)) = JG(%) and



2. for all Z in .Z(S") the code JG(2) is Galois invariant.

o o
The Galois closure and Galois interior are indeed Galois operators and & = 4,

o

% = 9. From Definition 4, it follows that % is Galois invariant if and only if

~ o

PB=2R.

° L
Proposition 2 If 2 is a linear code over S then (%) = (%) .
Lemma 5 Let % be a linear code over S. Then 3 = Ext(Resg(#)) = () o(A).

oeG

For any # in .Z (Sg) , we consider .Z () the lattice of S-linear subcode of Z.
Let us define

Stab: Z(#) —  Sub(G) g s Sub(G) — ZL(#
7 = ostap(7), " H — 00

where Stab(.7) = {G € G’G(c) =c, forallce T 5.

Let H a subgroup of G, we say that & is H-invariant if Fix»(H) = %. Note
that Fix»(H) is an H-interior of . From Lemma 5 it follows that

Fixy(H) = Ext(Rest (%)),

where T = Fixg(H ). Moreover Fixz(Stab(#)) = % and Stab(Fixgz(H)) =H.
Therefore we have a Galois correspondence on .2 (£) as follows.

Theorem 6 For each # in £ (SZ) , the pair (Stab; Fizy) is a Galois correspon-
dence between % and G.
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