Galois Theory for Linear Codes

A. Fotue Tabue ${ }^{1}$ and E. Martínez-Moro ${ }^{2}$ and C. Mouaha ${ }^{1}$

${ }^{1}$ Department of mathematics, Faculty of Sciences, University of Yaoundé 1, Cameroon, alexfotue@ gmail. com, cmouaha@ yahoo. fr
${ }^{2}$ Institute of Mathematics, University of Valladolid, Spain, Edgar. Martinez © uva. es
Let R a be finite chain ring of nilpotency index s, S the Galois extension of R of rank m, and G the group of ring automorphisms of S fixing R. We will denote by $\mathscr{L}\left(\mathrm{S}^{\ell}\right)\left(\right.$ resp. $\left.\mathscr{L}\left(\mathrm{R}^{\ell}\right)\right)$ the set of S -linear codes (resp. R-linear codes) of length ℓ. There are two classical constructions that allow us to build an element of $\mathscr{L}\left(\mathrm{R}^{\ell}\right)$ from an element \mathscr{B} of $\mathscr{L}\left(\mathrm{S}^{\ell}\right)$. One is the restriction code of \mathscr{B} which is defined as $\operatorname{Res}_{\mathbb{R}}(\mathscr{B}):=\mathscr{B} \cap \mathrm{R}^{\ell}$. The second one is based on the fact that the trace map $\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}=\sum_{\sigma \in G} \sigma$ is a linear form, therefore it follows that

$$
\begin{equation*}
\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}(\mathscr{B}):=\left\{\left(\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}\left(c_{1}\right), \cdots, \operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}\left(c_{\ell}\right)\right) \mid\left(c_{1}, \cdots, c_{\ell}\right) \in \mathscr{B}\right\}, \tag{1}
\end{equation*}
$$

is an R-linear code. The relation between the trace code and the restriction code will be given by a generalization of the celebrated result due to Delsarte [?]

$$
\begin{equation*}
\operatorname{Tr}_{\mathrm{R}}^{S}\left(\mathscr{B}^{\perp_{\varphi^{\prime}}}\right)=\operatorname{Res}_{\mathrm{R}}(\mathscr{B})^{\perp_{\varphi}}, \tag{2}
\end{equation*}
$$

where \perp_{φ} and $\perp_{\varphi^{\prime}}$ denote the duality operators associated to the nondegenerate bilinear forms $\varphi: R^{\ell} \times R^{\ell} \rightarrow R$ and $\varphi^{\prime}: S^{\ell} \times S^{\ell} \rightarrow S$ respectively defined as follows. Let be \mathbf{a} and \mathbf{b} in S^{ℓ}, their Euclidian inner product is defined as $(\mathbf{a}, \mathbf{b})_{\mathrm{E}}=a_{1} b_{1}+$ $a_{2} b_{2}+\cdots+a_{\ell} b_{\ell}$, and if m is even their Hermitian inner product is defined as $(\mathbf{a}, \mathbf{b})_{\mathrm{H}}=\left(\sigma^{\frac{m}{2}}(\mathbf{a}), \mathbf{b}\right)_{\mathrm{E}}$. Note that $(-,-)_{\mathrm{E}}$ is a nondegenerate symmetry bilinear form.
For all \mathbf{a} in S^{ℓ} and \mathbf{b} in $\mathrm{R}^{\ell}, \operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}\left((\mathbf{a}, \mathbf{b})_{\mathrm{E}}\right)=\left(\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}(\mathbf{a}), \mathbf{b}\right)_{\mathrm{E}}$, and if m is even, $\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}\left((\mathbf{a}, \mathbf{b})_{\mathrm{H}}\right)=$ $\operatorname{Tr}_{R}^{S}\left((\mathbf{a}, \mathbf{b})_{E}\right)$, since $\operatorname{Tr}_{R}^{S}\left(\sigma^{\frac{m}{2}}(\mathbf{a})\right)=\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}(\mathbf{a})$. Throughout the paper $\varphi=(-,-)_{\mathrm{E}}$ and if m is even $\varphi^{\prime}=(-,-)_{\mathrm{H}}$, otherwise $\varphi^{\prime}=(-,-)_{\mathrm{E}}$. It is clear that

$$
\begin{equation*}
\varphi\left(\mathbf{b}, \operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}(\mathbf{a})\right)=\varphi\left(\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}(\mathbf{a}), \mathbf{b}\right)=\operatorname{Tr}_{\mathrm{R}}^{\mathrm{S}}\left(\varphi^{\prime}(\mathbf{a}, \mathbf{b})\right), \text { for all } \mathbf{a} \in \mathrm{S}^{\ell} \text { and } \mathbf{b} \in \mathrm{R}^{\ell} . \tag{3}
\end{equation*}
$$

A finite commutative ring R with identity is called a finite chain ring if its ideals are linearly ordered by inclusion R form a chain $R \supsetneq R \theta \supsetneq \cdots \supsetneq R \theta^{s-1} \supsetneq R \theta^{s}=\{0\}$. The set $\Gamma(\mathrm{R})=\Gamma(\mathrm{R})^{*} \cup\{0\}$ is a complete set of representatives of R modulo θ and each element a of R can be expressed uniquely as a θ-adic decomposition $a=\gamma_{0}(a)+\gamma_{1}(a) \theta+\cdots+\gamma_{s-1}(a) \theta^{s-1}$. Therefore we have a valuation function of R , defined by $\vartheta_{\mathrm{R}}(a):=\min \left\{t \in\{0,1, \cdots, s\} \mid \gamma_{t}(a) \neq 0\right\}$ and a degree function of

R , defined by $\operatorname{deg}_{\mathrm{R}}(a):=\max \left\{t \in\{0,1, \cdots, s\} \mid \gamma_{t}(a) \neq 0\right\}$, for each a in R. We will assume that $\vartheta_{\mathrm{R}}(0)=s$ and $\operatorname{deg}_{\mathrm{R}}(0)=-\infty$.

An R-linear code of length ℓ is a R -submodule of R^{ℓ}, and the elements of \mathscr{B} are called codewords. From now on we will assume that all codes are of length ℓ unless stated otherwise.

Let R and S be two finite chain rings with residue fields \mathbb{F}_{q} and $\mathbb{F}_{q^{m}}$ respectively. We say that S is an extension of R and we denote it by $S \mid R$ if $R \subseteq S$ and $1_{R}=1_{S}$. $A u t_{R}(S)$ will denote the group of automorphisms of S which fix the elements of R. Note that the map $\sigma: a \mapsto \sum_{t=0}^{s-1} \gamma_{t}(a)^{q} \boldsymbol{\theta}^{t}$ for all $a \in \mathrm{~S}$, is in $\operatorname{Aut}_{\mathrm{R}}(\mathrm{S})$ and throughout of this paper G will be the subgroup of $\operatorname{Aut}_{R}(S)$ generated by σ. For each subgroup H of G one can define the fixed ring of H in S as

$$
\operatorname{Fix}_{\mathrm{S}}(H):=\{a \in \mathrm{~S} \mid \rho(a)=a, \text { for all } \rho \in H\}
$$

Definition 1 The ring S is a Galois extension of R with Galois group G if

1. $F i x_{S}(G)=R$ and
2. there are elements $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{m-1} ; \alpha_{0}^{*}, \alpha_{1}^{*}, \cdots, \alpha_{m-1}^{*}$ in S such that

$$
\sum_{t=0}^{m-1} \sigma^{i}\left(\alpha_{t}\right) \sigma^{j}\left(\alpha_{t}^{*}\right)=\delta_{i, j}
$$

$$
\text { for all } i, j=0,1, \cdots,|G|-1\left(\text { where } \delta_{i, j}=1_{S} \text { if } i=j, \text { and } 0_{S} \text { otherwise }\right) .
$$

Let A be a matrix in $\mathrm{S}^{k \times \ell}$ and $A[i:]$ the i-th row of $A ; A[: j]$ the j-th column of $A ; A[i ; j]$ the (i, j)-entry of A.

1. The valuation function of A is the mapping $\vartheta_{A}:\{1, \cdots, k\} \rightarrow\{0,1, \cdots, s\}$, defined by

$$
\vartheta_{A}(i):=\vartheta_{\mathrm{S}}(A[i:]):=\min \left\{\vartheta_{\mathrm{S}}(A[i ; j]) \mid 1 \leq j \leq \ell\right\}
$$

2. The pivot of a nonzero row $A[i:]$ of A, is the first entry among all the entries least with valuation in that row. By convention, the pivot of the zero row is its first entry.
3. The pivot function of A is the mapping $\rho:\{1, \cdots, k\} \rightarrow\{1, \cdots, \ell\}$, defined by

$$
\rho(i):=\min \left\{j \in\{1 ; \cdots ; \ell\} \mid \vartheta_{S}(A[i ; j])=\vartheta_{i}\right\}
$$

Note that the pivot of the row $A[i:]$ is the element $A[i, \rho(i)]$. Let ρ be a ring automorphism of S, it is clear that the pivot function and valuation function of the matrices A and $(\rho(A[i ; j]))_{\substack{1 \leq i \leq k \\ 1 \leq j \leq \ell}}$ provide the same values.

Definition 2 (Matrix in row standard form [?]) A matrix $A \in S^{k \times \ell}$ is in row standard form if it satisfies the following conditions

1. The pivot function of A is injective and the valuation function of A is increasing,
2. for all $i \in\{1, \cdots, k\}$, there is $\vartheta_{i} \in\{0,1, \cdots, s-1\}$ such that $A[i ; \rho(i)]=\theta^{\vartheta_{i}}$ and $A[i:] \in\left(\theta^{\vartheta_{i}} S\right)^{\ell}$ and
3. for all pairs $i, t \in\{1, \cdots, k\}$ such that $t \neq i$, then either $i>$ t and $\operatorname{deg}_{R}(A[t ; \rho(i)])<$ ϑ_{i} or $A[i ; \rho(t)]=0$.

Let $A \in \mathrm{~S}^{k \times \ell}$ be a nonzero matrix, we say that a matrix $B \in \mathrm{~S}^{k \times \ell}$ is the row standard form of A if B is in row standard form and B is row-equivalent to A. A proof of the existence and unicity of the row standard form of a matrix can be found in [?]. Since the set of all generator matrices of any S-linear code \mathscr{B} is a coset under row equivalence, it follows that \mathscr{B} has a unique generator matrix in row standard form that will be denoted by $\operatorname{RSF}(\mathscr{B})$. As usual we define the type of a linear code as follows. Let \mathscr{B} be an S-linear code of length ℓ. Denoted by $\theta^{\vartheta_{i}}$ the i-th pivot of $\operatorname{RSF}(\mathscr{B})$. The type \mathscr{B} is the $(s+1)$-tuples $\left(\ell ; k_{0}, k_{1}, \cdots, k_{s-1}\right)$ where $k_{t}:=\left|\left\{\vartheta_{i} \mid \vartheta_{i}=t\right\}\right|$. Clearly the S-rank of \mathscr{B} and the number of codewords of \mathscr{B}, are

$$
\operatorname{rank}_{\mathrm{S}}(\mathscr{B})=\sum_{t=0}^{s-1} k_{t}, \quad \text { and } \quad|\mathscr{B}|=q^{m\left(\sum_{t=0}^{s-1} k_{t}(s-t)\right)}
$$

Let $\mathrm{S} \mid \mathrm{R}$ be a Galois extension of finite chain ring with Galois group G. The Galois group G acts on $\mathscr{L}\left(\mathrm{S}^{\ell}\right)$ as follows; Let \mathscr{B} in $\mathscr{L}\left(\mathrm{S}^{\ell}\right)$ and σ in G

$$
\begin{equation*}
\sigma(\mathscr{B})=\left\{\left(\sigma\left(c_{0}\right), \sigma\left(c_{1}\right), \cdots, \sigma\left(c_{\ell-1}\right)\right) \mid\left(c_{0}, c_{1}, \cdots, c_{\ell-1}\right) \in \mathscr{B}\right\} \tag{4}
\end{equation*}
$$

A linear code \mathscr{B} over S is called Galois invariant if $\sigma(\mathscr{B})=\mathscr{B}$ for all $\sigma \in G$.
Theorem 3 Let \mathscr{B} be an S-linear code and $A \in S^{k \times \ell}$ a generator matrix of \mathscr{B}. Then the following facts are equivalent.

1. \mathscr{B} is Galois invariant.
2. $R S F(\mathscr{B})$ in $R^{k \times \ell}$.

Corollary 1 Let \mathscr{B} be a linear code over S, \mathscr{B} is Galois invariant if and only if $R S F(\mathscr{B})=\operatorname{RSF}(\operatorname{Res}(\mathscr{B}))$.

Corollary 2 Let \mathscr{B} be a linear code over S of the type $\left(\ell ; k_{0}, k_{1}, \cdots, k_{s-1}\right)$. Then the following conditions are equivalent.

1. \mathscr{B} is Galois invariant,
2. $\operatorname{Res}_{R}(\mathscr{B})$ is of type $\left(\ell ; k_{0}, k_{1}, \cdots, k_{s-1}\right)$.

For all $\mathscr{B}_{1}, \mathscr{B}_{2} \in \mathscr{L}\left(\mathrm{~S}^{\ell}\right), \mathscr{B}_{1} \vee \mathscr{B}_{2}=\mathscr{B}_{1}+\mathscr{B}_{2}$ is the smallest S-linear code containing \mathscr{B}_{1} and \mathscr{B}_{2}, note that $\left(\mathscr{L}\left(\mathrm{S}^{\ell}\right) ; \cap, \vee\right)$ is a lattice. Let \mathscr{E} be a subset of S^{ℓ}, we define the extension code of \mathscr{E} to S , denoted $\operatorname{Ext}(\mathscr{E})$, as the code form by all S-linear combinations of elements in \mathscr{E}.

Proposition 1 The operators

$$
\begin{equation*}
\mathscr{L}\left(S^{\ell}\right) \underset{E x t}{\stackrel{T r_{j}^{s} ; R e s_{R}}{\rightleftarrows}} \mathscr{L}_{\ell}(R) \tag{5}
\end{equation*}
$$

are lattice morphisms. Moreover,
$\operatorname{Ext}\left(\mathscr{C}^{\perp}\right)=\operatorname{Ext}(\mathscr{C})^{\perp}$ and $\operatorname{Tr}_{R}^{S}(\operatorname{Ext}(\mathscr{C}))=\operatorname{Res}_{R}(\operatorname{Ext}(\mathscr{C}))=\mathscr{C}$ for all $\mathscr{C} \in \mathscr{L}_{\ell}(R)$.
Definition 4 (Galois closure and Galois interior) Let \mathscr{B} be a linear code over S.

1. The Galois closure of \mathscr{B}, denoted by $\widetilde{\mathscr{B}}$, is the smallest linear code over S, containing \mathscr{B}, which is Galois invariant,

$$
\widetilde{B}:=\bigcap\left\{\mathscr{T} \in \mathscr{L}\left(S^{\ell}\right) \mid \mathscr{T} \subseteq \mathscr{B} \text { and } \mathscr{T} \text { Galois invariant }\right\} .
$$

2. The Galois interior of \mathscr{B}, denoted $\stackrel{\circ}{\mathscr{B}}$, is the greatest S-linear subcode of \mathscr{B}, which is Galois invariant,

$$
\stackrel{\circ}{\mathscr{B}}:=\bigvee\left\{\mathscr{T} \in \mathscr{L}\left(S^{\ell}\right) \mid \mathscr{T} \supseteq \mathscr{B} \text { and } \mathscr{T} \text { Galois invariant }\right\} .
$$

A map $\mathrm{J}_{G}: \mathscr{L}\left(\mathrm{S}^{\ell}\right) \rightarrow \mathscr{L}\left(\mathrm{S}^{\ell}\right)$ is called a Galois operator if J_{G} is an morphism of lattices such that

1. $\mathrm{J}_{G}\left(\mathrm{~J}_{G}(\mathscr{B})\right)=\mathrm{J}_{G}(\mathscr{B})$ and
2. for all \mathscr{B} in $\mathscr{L}\left(\mathrm{S}^{\ell}\right)$ the code $\mathrm{J}_{G}(\mathscr{B})$ is Galois invariant.

The Galois closure and Galois interior are indeed Galois operators and $\stackrel{\stackrel{\circ}{\mathscr{B}}}{ }=\stackrel{\circ}{\mathscr{B}}$, $\stackrel{\circ}{\mathscr{B}}=\widetilde{\mathscr{B}}$. From Definition 4, it follows that \mathscr{B} is Galois invariant if and only if $\widetilde{\mathscr{B}}=\stackrel{\circ}{\mathscr{B}}$.

Proposition 2 If \mathscr{B} is a linear code over S then $\left(\stackrel{B}{B}^{\perp}\right)=(\widetilde{\mathscr{B}})^{\perp}$.
Lemma 5 Let \mathscr{B} be a linear code over S. Then $\stackrel{\circ}{\mathscr{B}}=\operatorname{Ext}\left(\operatorname{Res}_{R}(\mathscr{B})\right)=\bigcap_{\sigma \in G} \sigma(\mathscr{B})$.
For any \mathscr{B} in $\mathscr{L}\left(\mathrm{S}^{\ell}\right)$, we consider $\mathscr{L}(\mathscr{B})$ the lattice of S-linear subcode of \mathscr{B}. Let us define

$$
\begin{aligned}
\text { Stab: } \mathscr{L}(\mathscr{B}) & \rightarrow \operatorname{Sub}(G) \\
\mathscr{T} & \mapsto \\
& \mapsto \operatorname{Stab}(\mathscr{T}),
\end{aligned} \quad \text { and } \quad \operatorname{Fix}_{\mathscr{B}}: \begin{array}{clll}
\operatorname{Sub}(G) & \rightarrow & \mathscr{L}(\mathscr{B}) \\
& & & \mapsto \\
\cap_{\sigma \in H} \sigma(\mathscr{B}),
\end{array}
$$

where $\operatorname{Stab}(\mathscr{T})=\{\sigma \in G \mid \sigma(\mathbf{c})=\mathbf{c}$, for all $\mathbf{c} \in \mathscr{T}\}$.
Let H a subgroup of G, we say that \mathscr{B} is H-invariant if $\mathrm{Fix}_{\mathscr{B}}(H)=\mathscr{B}$. Note that $\mathrm{Fix}_{\mathscr{B}}(H)$ is an H-interior of \mathscr{B}. From Lemma 5 it follows that

$$
\operatorname{Fix}_{\mathscr{B}}(H)=\operatorname{Ext}\left(\operatorname{Res}_{\mathrm{T}}(\mathscr{B})\right),
$$

where $\mathrm{T}=\operatorname{Fix}_{\mathcal{S}}(H)$. Moreover $\operatorname{Fix}_{\mathscr{B}}(\operatorname{Stab}(\mathscr{B}))=\mathscr{B}$ and $\operatorname{Stab}\left(\operatorname{Fix}_{\mathscr{B}}(H)\right)=H$. Therefore we have a Galois correspondence on $\mathscr{L}(\mathscr{B})$ as follows.

Theorem 6 For each \mathscr{B} in $\mathscr{L}\left(S^{\ell}\right)$, the pair $\left(S t a b ; F i x_{\mathscr{B}}\right)$ is a Galois correspondence between \mathscr{B} and G.

References

[1] Bierbrauer J., The Theory of Cyclic Codes and a Generalization to Additive Codes. Des. Codes Cryptography 25(2): 189-206 (2002)
[2] Martinez-Moro E., Nicolas A.P.,Rua F.,On trace codes and Galois invariance over finite commutative chain rings, Finite Fields Appl. Vol. 22, pp. 114-121 (2013).
[3] McDonald B. R., Finite Rings with Identity, Marcel Dekker, New York (1974).
[4] Norton G.H., Salagean A., On the Structure of Linear and Cyclic Codes over a Finite Chain Ring, AAECC Vol. 10, pp. 489-506, (2000).

