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Let R a be finite chain ring of nilpotency index s, S the Galois extension of R
of rank m, and G the group of ring automorphisms of S fixing R. We will denote
by L (S`) (resp. L (R`)) the set of S-linear codes (resp. R-linear codes) of length
`. There are two classical constructions that allow us to build an element of L (R`)
from an element B of L (S`). One is the restriction code of B which is defined
as ResR(B) := B ∩ R`. The second one is based on the fact that the trace map
TrS

R
= ∑

σ∈G
σ is a linear form, therefore it follows that

TrS
R
(B) :=

{
(TrS

R
(c1), · · · ,TrSR(c`)) |(c1, · · · ,c`) ∈B

}
, (1)

is an R-linear code. The relation between the trace code and the restriction code
will be given by a generalization of the celebrated result due to Delsarte [?]

TrS
R
(B⊥ϕ ′ ) = ResR(B)⊥ϕ , (2)

where ⊥ϕ and ⊥ϕ ′ denote the duality operators associated to the nondegenerate
bilinear forms ϕ : R`×R`→ R and ϕ ′ : S`×S`→ S respectively defined as follows.
Let be a and b in S`, their Euclidian inner product is defined as (a,b)E = a1b1 +
a2b2 + · · ·+ a`b`, and if m is even their Hermitian inner product is defined as
(a,b)H = (σ

m
2 (a),b)E. Note that (−,−)E is a nondegenerate symmetry bilinear

form.
For all a in S` and b in R`, TrS

R
((a,b)E)=

(
TrS

R
(a),b

)
E
, and if m is even, TrS

R
((a,b)H)=

TrS
R
((a,b)E) , since TrS

R

(
σ

m
2 (a)

)
= TrS

R
(a). Throughout the paper ϕ = (−,−)E and

if m is even ϕ ′ = (−,−)H, otherwise ϕ ′ = (−,−)E. It is clear that

ϕ(b,TrS
R
(a)) = ϕ(TrS

R
(a),b) = TrS

R
(ϕ ′(a,b)), for all a ∈ S` and b ∈ R`. (3)

A finite commutative ring R with identity is called a finite chain ring if its ideals
are linearly ordered by inclusion R form a chain R) Rθ ) · · ·) Rθ s−1 ) Rθ s = {0}.
The set Γ(R) = Γ(R)∗ ∪ {0} is a complete set of representatives of R modulo θ

and each element a of R can be expressed uniquely as a θ -adic decomposition
a = γ0(a)+ γ1(a)θ + · · ·+ γs−1(a)θ s−1. Therefore we have a valuation function of
R, defined by ϑR(a) := min{t ∈ {0,1, · · · ,s}|γt(a) 6= 0} and a degree function of
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R, defined by deg
R
(a) := max{t ∈ {0,1, · · · ,s}|γt(a) 6= 0}, for each a in R. We will

assume that ϑR(0) = s and deg
R
(0) =−∞.

An R-linear code of length ` is a R-submodule of R`, and the elements of B
are called codewords. From now on we will assume that all codes are of length `
unless stated otherwise.

Let R and S be two finite chain rings with residue fields Fq and Fqm respectively.
We say that S is an extension of R and we denote it by S|R if R ⊆ S and 1R = 1S.
AutR(S) will denote the group of automorphisms of S which fix the elements of R.

Note that the map σ : a 7→
s−1
∑

t=0
γt(a)qθ t for all a ∈ S, is in AutR(S) and throughout

of this paper G will be the subgroup of AutR(S) generated by σ . For each subgroup
H of G one can define the fixed ring of H in S as

FixS(H) :=
{

a ∈ S
∣∣∣∣ρ(a) = a, for all ρ ∈ H

}
.

Definition 1 The ring S is a Galois extension of R with Galois group G if

1. FixS(G) = R and

2. there are elements α0,α1, · · · ,αm−1;α∗0 ,α
∗
1 , · · · ,α∗m−1 in S such that

m−1

∑
t=0

σ
i(αt)σ

j(α∗t ) = δi, j,

for all i, j = 0,1, · · · , |G|−1(where δi, j = 1S if i = j, and 0S otherwise).

Let A be a matrix in Sk×` and A[i :] the i-th row of A; A[: j] the j-th column of
A; A[i; j] the (i, j)-entry of A.

1. The valuation function of A is the mapping ϑA : {1, · · · ,k} → {0,1, · · · ,s},
defined by

ϑA(i) := ϑS(A[i :]) := min{ϑS(A[i; j]) |1≤ j ≤ `}.

2. The pivot of a nonzero row A[i :] of A, is the first entry among all the entries
least with valuation in that row. By convention, the pivot of the zero row is
its first entry.

3. The pivot function of A is the mapping ρ : {1, · · · ,k} → {1, · · · , `}, defined
by

ρ(i) := min

{
j ∈ {1; · · · ;`}|ϑS(A[i; j]) = ϑi

}
.
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Note that the pivot of the row A[i :] is the element A[i,ρ(i)]. Let ρ be a ring
automorphism of S, it is clear that the pivot function and valuation function of the
matrices A and (ρ(A[i; j]))1≤i≤k

1≤ j≤`
provide the same values.

Definition 2 (Matrix in row standard form [?]) A matrix A∈ Sk×` is in row stan-
dard form if it satisfies the following conditions

1. The pivot function of A is injective and the valuation function of A is increas-
ing,

2. for all i ∈ {1, · · · ,k}, there is ϑi ∈ {0,1, · · · ,s−1} such that A[i;ρ(i)] = θ ϑi

and A[i :] ∈ (θ ϑiS)` and

3. for all pairs i, t ∈{1, · · · ,k} such that t 6= i, then either i> t and deg
R
(A[t;ρ(i)])<

ϑi or A[i;ρ(t)] = 0.

Let A ∈ Sk×` be a nonzero matrix, we say that a matrix B ∈ Sk×` is the row
standard form of A if B is in row standard form and B is row-equivalent to A. A
proof of the existence and unicity of the row standard form of a matrix can be
found in [?]. Since the set of all generator matrices of any S-linear code B is a
coset under row equivalence, it follows that B has a unique generator matrix in
row standard form that will be denoted by RSF(B). As usual we define the type of
a linear code as follows. Let B be an S-linear code of length `. Denoted by θ ϑi the
i-th pivot of RSF(B). The type B is the (s+ 1)-tuples (`;k0,k1, · · · ,ks−1) where
kt := |{ϑi |ϑi = t}|. Clearly the S-rank of B and the number of codewords of B,
are

rankS(B) =
s−1

∑
t=0

kt , and |B|= q
m
(

s−1
∑

t=0
kt(s−t)

)
.

Let S|R be a Galois extension of finite chain ring with Galois group G. The
Galois group G acts on L (S`) as follows; Let B in L (S`) and σ in G

σ(B) =

{
(σ(c0),σ(c1), · · · ,σ(c`−1))

∣∣∣∣(c0,c1, · · · ,c`−1) ∈B

}
. (4)

A linear code B over S is called Galois invariant if σ(B) = B for all σ ∈ G.

Theorem 3 Let B be an S-linear code and A ∈ Sk×` a generator matrix of B.
Then the following facts are equivalent.

1. B is Galois invariant.

2. RSF(B) in Rk×`.
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Corollary 1 Let B be a linear code over S, B is Galois invariant if and only if
RSF(B) = RSF(Res(B)).

Corollary 2 Let B be a linear code over S of the type (`;k0,k1, · · · ,ks−1). Then
the following conditions are equivalent.

1. B is Galois invariant,

2. ResR(B) is of type (`;k0,k1, · · · ,ks−1).

For all B1, B2 ∈L (S`), B1 ∨B2 = B1 +B2 is the smallest S-linear code con-
taining B1 and B2, note that

(
L (S`);∩,∨

)
is a lattice. Let E be a subset of S`,

we define the extension code of E to S, denoted Ext(E ), as the code form by all
S-linear combinations of elements in E .

Proposition 1 The operators

L (S`)
Tr

S

R
;ResR
�
Ext

L`(R) (5)

are lattice morphisms. Moreover,

Ext(C⊥) = Ext(C )⊥ and TrS
R
(Ext(C )) = ResR(Ext(C )) =C for all C ∈L`(R).

Definition 4 (Galois closure and Galois interior) Let B be a linear code over S.

1. The Galois closure of B, denoted by B̃, is the smallest linear code over S,
containing B, which is Galois invariant,

B̃ :=
⋂{

T ∈L (S`)

∣∣∣∣T ⊆B and T Galois invariant
}
.

2. The Galois interior of B, denoted
◦
B, is the greatest S-linear subcode of B,

which is Galois invariant,

◦
B :=

∨{
T ∈L (S`)

∣∣∣∣T ⊇B and T Galois invariant
}
.

A map JG : L (S`)→L (S`) is called a Galois operator if JG is an morphism of
lattices such that

1. JG(JG(B)) = JG(B) and
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2. for all B in L (S`) the code JG(B) is Galois invariant.

The Galois closure and Galois interior are indeed Galois operators and
◦̃
B =

◦
B,

◦
B̃ = B̃. From Definition 4, it follows that B is Galois invariant if and only if

B̃ =
◦
B.

Proposition 2 If B is a linear code over S then
◦(

B⊥
)
=
(
B̃
)⊥

.

Lemma 5 Let B be a linear code over S. Then
◦
B = Ext(ResR(B)) =

⋂
σ∈G

σ(B).

For any B in L
(
S
`
)
, we consider L (B) the lattice of S-linear subcode of B.

Let us define

Stab : L (B) → Sub(G)
T 7→ Stab(T ),

and
FixB : Sub(G) → L (B)

H 7→ ∩
σ∈H

σ(B),

where Stab(T ) =

{
σ ∈ G

∣∣∣∣σ(c) = c, for all c ∈T

}
.

Let H a subgroup of G, we say that B is H-invariant if FixB(H) = B. Note
that FixB(H) is an H-interior of B. From Lemma 5 it follows that

FixB(H) = Ext(ResT(B)),

where T= FixS(H). Moreover FixB(Stab(B)) = B and Stab(FixB(H)) = H.
Therefore we have a Galois correspondence on L (B) as follows.

Theorem 6 For each B in L
(
S
`
)
, the pair (Stab;FixB) is a Galois correspon-

dence between B and G.
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