
Is it hard to retrieve an error-correcting pair?

Irene Márquez-Corbella and Ruud Pellikaan

Dept. of Mathematics, Statistics and O. Research, University of La Laguna, Spain.
irene.marquez.corbella@ull.es
Dept. of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands. g.r.pellikaan@tue.nl

Code-based cryptography is an interesting alternative to classic number-theory
Public-Key Cryptosystems (PKC) since it is conjectured to be secure against quan-
tum computer attacks. Many families of codes have been proposed for these cryp-
tosystems. One of the main requirements is having high performance t-bounded
decoding algorithms which is achieved in the case the code has a t-error-correcting
pair (ECP). The class of codes with a t-ECP is proposed for the McEliece cryp-
tosystem. The hardness of retrieving the t-ECP for a given code is considered.
To this end we have to solve a large system of bilinear equations. Two possible
induction procedures are considered, one for sub/super ECP’s and one by punctur-
ing/shortening. In both procedures in every step only a few bilinear equations need
to be solved.

1 Notation and Prerrequisites

By Fq, where q is a prime power, we denote a finite field with q elements. An [n,k]
linear code C over Fq is a k-dimensional subspace of Fn

q. We will denote the length
of C by n(C ), its dimension by k(C ) and its minimum distance, d(C ).

Given two elements a and b on Fn
q, the star multiplication is defined by coor-

dinatewise multiplication, that is, a∗b = (a1b1, . . . ,anbn). Then, A∗B is the code
in Fn

q generated by {a∗b | a ∈ A and b ∈ B}.
The standard inner multiplication of a and b on Fn

q is defined by a · b =

∑
n
i=1 aibi. Now A⊥ B if and only if a ·b = 0 for all a ∈ A and b ∈ B.

Definition 1 Let C be an Fq-linear code of length n. The pair (A,B) of Fqm-linear
codes of length n is called a t-error correcting pair (ECP) for C if the following
properties holds:

E.1 (A∗B)⊥C,

E.2 k(A)> t,

E.3 d(B⊥)> t,

E.4 d(A)+d(C)> n.

Broadly speaking: given a positive integer t, a t-ECP for a linear code C ⊆ Fn
q

is a pair of linear codes (A,B) satisfying that A ∗ B ⊆ C⊥ together with several
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inequalities relating t and the dimensions and (dual) minimum distances of A, B and
C. Furthermore note that if the fourth property (E.4) is replaced by the statements
presented below then, again (A,B) is a t-ECP for C and the minimum distance of
such linear code is at least 2t +1.

E.5 d(A⊥)> 1 or equivalently A is a non-degenerated code,

E.5 d(A)+2t > n.

Error-correcting pairs (ECP) were introduced and studied in [4, 7, 8], as a general
algebraic method of decoding linear codes. It was shown that an [n,n−2t,2t +2]
code has a t-error correcting pair if and only if it is a Generalized Reed-Solomon
code [6]. The concept of an ECP is instrumental in the polynomial attack of the
McEliece cryptosystem that uses algebraic geometry codes [2].

2 The McEliece PKC system using ECP’s

The class of codes with a t-ECP is proposed for the McEliece cryptosystem [5].
The hardness of retrieving the t-ECP for a given code is considered. To this end
we have to solve a large system of bilinear equations [3, 1]. Two possible in-
duction procedures are considered, one for sub/super ECP’s and one by punctur-
ing/shortening. In both procedures in every step only a few bilinear equations need
to be solved.

Let P(n, t,q) be the collection of pairs (A,B) such that there exist a positive
integer m and a pair (A,B) of Fqm-linear codes of length n that satisfy the conditions
E.2, E.3, E.5 and E.6.

Let C be the Fq-linear code of length n that is the subfield subcode that has the
elements of A∗B as parity checks

C = Fn
q∩ (A∗B)⊥

Then the minimum distance of C is at least 2t +1 and (A,B) is a t-ECP for C
Let F (n, t,q) be the collection of Fq-linear codes of length n and minimum

distance d ≥ 2t +1.
Consider the following map

ϕ(n,t,q) : P(n, t,q) −→ F (n, t,q)
(A,B) 7−→ C

The question is whether this map is a one-way function.
We treat the entries of the generator matrices of the the pair of codes (A,B)

as variables Xi j and Yi j. The condition (A ∗B) ⊥ C becomes a system of bilinear
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equations. We will apply the F5-method to find Gröbner basis for a solution [3,
1]. The puncturing and shortening procedure that was used in [6] will reduce the
number of variables.
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