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Hadamard matrices with a subjacent algebraic structure have been deeply stud-
ied as well as the links with other topics in algebraic combinatorics [1]. An im-
portant and pioneering paper about this subject is [5], where it is introduced the
concept of Hadamard group. In addition, we find beautiful equivalences between
Hadamard groups, 2-cocyclic matrices and relative difference sets [4], [7]. From
the side of coding theory, it is desirable that the algebraic structures we are dealing
with preserves the Hamming distance. This is the case of the propelinear codes and
specially those which are translation invariant which has been characterized as the
image, by a suitable Gray map, of a subgroup of a direct product of Z2, Z4 and Q8
(see [8] and references there).

As for the 2-cocyclic matrices and relative difference sets it was shown in [10]
that the concept of Hadamard group is equivalent to Hadamard full propelinear
codes (HFP for short). This new equivalence provides a good place to study the
rank and the dimension of the kernel of the Hadamard codes we construct. These
are important steps trying to solve several conjectures involving Hadamard matri-
ces. In [6] it was introduced a special Hadamard group, called type Q and it was
conjectured that Hadamard matrices of this type exists for all possible lengths.

In this paper we are studying Hadamard codes of type CnQ8, which are full
propelinear and the subjacent group structure is isomorphic to a direct sum of the
cyclic group Cn and the quaternion group Q8. The main results we present are
about the links with the Hadamard codes of type Q and the construction of Kro-
necker sums allowing to duplicate or quadruplicate the length of the code. With the
current results we conjecture that it is not possible to go deeper with the Kronecker
construction than duplicate or quadruplicate the initial HFP-code, otherwise we
contradicts the Ryse conjecture [11] about circulant Hadamard matrices.

1 Introduction

We denote by Zq, the ring of integers modulo q and by Fq a finite field with q ele-
ments. The Hamming distance between two vectors x,y ∈ F2, denoted by dH(x,y),
is the number of coordinates in which they differ, and wtH(x) is the Hamming
weight. We write d for the minimum distance of a code which is equal to its mini-
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mum weight when C is linear. A [n,k,d]-code C over Fq is a k-dimensional vector
subspace of Fn

q with minimum distance d. Any subset C of Fn
2 is called a binary

code. If the code is not linear we say that a (n,M,d)-code has length n, cardinal M
and minimum Hamming distance d. For a vector v in Fn

q, the support of v, denoted
by Supp(v), is defined as the set of its nonzero positions. The rank of a binary code
C is the dimension of the linear span of C. The kernel of a binary code is the set of
words which keeps the code invariant by translation, K(C) : {z ∈ Zn

2 : z+C =C}.
Assuming that the zero vector is in C, the kernel is a linear subspace and we denote
by k its dimension.

An Hadamard matrix of order 4n is a matrix of size 4n× 4n with entries ±1,
such that HHT = 4nI. Any two rows (columns) of an Hadamard matrix agree in
precisely 2n components. Two Hadamard matrices are equivalent if one can be
obtained from the other by permuting rows and/or columns and multiplying rows
and/or columns by−1. With the last operations we can change the first row and col-
umn of H into +1’s and we obtain an equivalent Hadamard matrix which is called
normalized. If +1’s are replaced by 0’s and −1’s by 1’s, the initial Hadamard
matrix is changed into an (binary) Hadamard matrix and, from now on, we will
refer to it when we deal with Hadamard matrices. The binary code consisting of
the rows of an (binary) Hadamard matrix and their complements is called an (bi-
nary) Hadamard code CH , which is of length 4n, with 8n codewords, and minimum
distance 2n.

In Section 1 we introduce some basics about the subject. In Section 2, we define
the concept of Hadamard full propelinear code and we describe the motivation
to work using Cn×Q8 group structures. In Section 3, we focus our attention to
the case of n odd, we compute the rank and the dimension of the kernel and we
provide an example of this kind of codes. In Section 4, we use the Kronecker sum
construction to duplicate and quadruplicate the length of the initial HFP-code of
type CnQ8, with n odd, obtaining new HFP-codes of type C2nQ8 and C4nQ8.

2 Hadamard full propelinear codes

Let Sn denote the symmetric group of permutations of the set {1,2, . . . ,n}. For
any π ∈ Sn and v ∈ Fn

2 , we denote by (vπ−1(1),vπ−1(2), . . . ,vπ−1(n)) the image of the
vector v = (v1,v2, . . . ,vn) by the permutation π .

Definition 1. [2] A binary code C of length n has a propelinear structure if for
each codeword x ∈C there exists πx ∈ Sn satisfying the following conditions:

For all x,y ∈C, x+πx(y) ∈C and πxπy = πz, where z = x+πx(y).

For all x ∈ C and for all y ∈ Zn
2 , denote by ∗ the binary operation such that

x ∗ y = x+ πx(y). Then, (C,∗) is a group, which is not abelian in general. The
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vector 0 is always a codeword and π0 is the identity permutation. Hence, 0 is the
identity element in C and x−1 = πx−1(x), for all x ∈C, [2]. We call C an Hadamard
propelinear code if it has a propelinear structure and it is an Hadamard code.

As an example, let Q8 be the group of quaternions which can be presented as
Q8 = {a,b : a4 = e; a2 = b2 = u,bab−1 = a−1}= {e,a,a2,a3,b,ab,a2b,a3b}. We
use the Gray map given by e→ (0,0,0,0), b→ (0,1,1,0), a→ (0,1,0,1), ab→
(1,1,0,0), a2→ (1,1,1,1), a2b→ (1,0,0,1), a3→ (1,0,1,0), a3b→ (0,0,1,1).
As a propelinear code, the associated permutations to the generator elements of
Q8 are: πa = (1,2)(3,4), πb = (1,3)(2,4). From now on, we use e for the binary
all-zero vector and u for the binary all-one vector.

Definition 2. An Hadamard full propelinear code is an Hadamard propelinear
code C such that for every a ∈ C, a = e, a = u, the permutation πa has not any
fixed coordinate and πe = πu = I. From now on, we denote by HFP-codes the
Hadamard full propelinear codes.

Ito proved in [6] that there is no Hadamard group realizing a dihedral group
neither a cyclic group C8n, and conjectured that for any length we can construct an
Hadamard group of type Q, so a dicyclic group or a CnoQ8. Ryser [11] conjectured
that there is no an Hadamard circulant matrix of length 8n, which corresponds to
a C4n×C2 propelinear structure. Along the non-abelian groups of order 8n, we
focused our interest in Hadamard codes realizing a Cn×Q8 group structure.

3 HFP-codes of type CnQ8, n odd

Hadamard codes C of type CnQ8 were partially studied by Baliga and Horadam in
[1]. In the current paper we study the minimum number of generators of C, we
compute the rank and the dimension of the kernel and, finally, we give an example
of such HFP-codes.

Definition 3. Let C be an HFP-code of length 4n. We say that C is a code of type
CnQ8 when C is the direct product Cn×Q8.

Lemma 4. Let C = 〈a,b,c〉 be an HFP-code of type CnQ8, with n odd Then C =
〈d,b〉, where d = ac. Further, knowing d we can define b, uniquely (up to comple-
mentary).

Proposition 5. Let C be an HFP-code of type CnQ8 and length 4n. Up to equiva-
lence, we can fix the value of permutations associated to the elements of C. Further,
the group generated by the associated permutations to each element of C is

Π =C/〈u〉=C2
2×Cn.
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Proposition 6. Let C be an HFP-code of type CnQ8 with n odd. Then, the rank of
C is r = 4n−1 and the dimension of the kernel is k = 1.

Now, we present an example of an HFP-code of type C3Q8.

Example 7. Let Q8 = 〈a,b |a4 = e,a2 = b2 = u,ab = ba−1〉 and C3 = 〈c | c3 = e〉.
We can take a,b,c ∈ Z12

2 with associated permutations as

a = (0,1,1,1,0,0,0,1,0,1,0,1), πa = (1,4)(2,5)(3,6)(7,10)(8,11)(9,12),
b = (0,1,1,1,0,1,1,0,0,0,1,0), πb = (1,7)(2,8)(3,9)(4,10)(5,11)(6,12),
c = (0,0,0,1,0,1,1,0,1,1,0,1), πc = (1,5,3)(2,6,4)(7,11,9)(8,12,10).

Then C = 〈a,b,c〉 is an HFP-code of type C3×Q8 and Π = 〈πa,πb,πc〉=C2
2×C3.

4 HFP-codes of type CnQ8, n even

A standard method to construct Hadamard matrices from other Hadamard matri-
ces is given by the the Kronecker product construction, [9]. Here, we adapt the
Kronecker product, that we call Kronecker sum construction, and starting from an
HFP-code of type CnQ8, n odd, we obtain HFP-codes of type C2nQ8 and C4nQ8.

Proposition 8. Let A = (ai j),B = (bi j) be Hadamard matrices corresponding to
HFP-codes of length m,n, respectively, then the code with corresponding matrix
given by (1) is an HFP-code.

A⊕B =


a11 +B a12 +B · · · a1m +B
a21 +B a22 +B · · · a2m +B

...
...

...
...

a2m,1 +B a2m,2 +B · · · a2m,m +B

 (1)

Let S =

(
0 0
0 1

)
be the Hadamard matrix of length 2, and CS the corresponding

Hadamard code, which is an HFP-code, CS = {(0,0),(0,1)),(1,0),(1,1)}, with
associated permutations π(0,0) = π(1,1) = I, π(1,0) = π(0,1) = (1,2). Consider also,
the propelinear Hadamard code CT of length 4 with associated matrix given by

T =


0 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1


and with associated permutations π0000 = I, π1001 = (1234), π0101 = (13)(24),

π0011 = (1432). Note that matrix T is equivalent to the unique circulant matrix of
order 4 and code CT is an HFP-code.
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Proposition 9. Let C be an HFP-code of type CnQ8 and length 4n, n odd. Let A be
the corresponding Hadamard matrix, so C =CA. Then,

i) We can define a propelinear structure in CS⊕A resulting in an HFP-code of type
C2nQ8. The values of the rank and dimension of the kernel for this code are 4n
and 2, respectively.

ii) CT⊕A is an HFP-code of type C4nQ8. The values of the rank and dimension of
the kernel for this code are 4n+1 and 3, respectively.

Note that we can not octuplicate C with the same technique as in Proposition 9.
To do that we need an Hadamard matrix like T , but of order eight. This goes against
the circulant Hadamard conjecture [11]. This consideration leads to consider the
existence of HFP-codes of type C2snQ8 as an open problem, for s≥ 3 and n odd.
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