PD-sets for (nonlinear) Hadamard Z₄-linear codes

<u>R. D. Barrolleta¹</u>, M. Villanueva¹

¹ Universitat Autònoma de Barcelona, Spain, {rolanddavid.barrolleta, merce.villanueva}@uab.cat This work was partially supported by the Spanish MEC under Grant TIN2013-40524-P, and by the Catalan AGAUR under Grant 2014SGR-691.

Any nonempty subset *C* of \mathbb{Z}_2^n is a binary code and a subgroup of \mathbb{Z}_2^n is called a *binary linear code*. Equivalently, any nonempty subset \mathscr{C} of \mathbb{Z}_4^n is a quaternary code and a subgroup of \mathbb{Z}_4^n is called a *quaternary linear code*. Quaternary codes can be seen as binary codes under the usual Gray map $\Phi : \mathbb{Z}_4^n \to \mathbb{Z}_2^{2n}$ defined as $\Phi((y_1, \dots, y_n)) = (\phi(y_1), \dots, \phi(y_n))$, where $\phi(0) = (0,0)$, $\phi(1) = (0,1)$, $\phi(2) =$ (1,1), $\phi(3) = (1,0)$, for all $y = (y_1, \dots, y_n) \in \mathbb{Z}_4^n$. If \mathscr{C} is a quaternary linear code, the binary code $C = \Phi(\mathscr{C})$ is said to be a \mathbb{Z}_4 -*linear code*.

A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathscr{C} is a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. We consider the extension of the Gray map $\Phi : \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \to \mathbb{Z}_2^{\alpha+2\beta}$ defined as $\Phi(x,y) = (x,\phi(y_1),\ldots,\phi(y_{\beta}))$, for all $x \in \mathbb{Z}_2^{\alpha}$ and $y = (y_1,\ldots,y_{\beta}) \in \mathbb{Z}_4^{\beta}$. This generalization allows us to consider $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes also as binary codes. If \mathscr{C} is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, the binary code $C = \Phi(\mathscr{C})$ is said to be a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code. Moreover, since the code \mathscr{C} is isomorphic to an abelian group $\mathbb{Z}_2^{\gamma} \times \mathbb{Z}_4^{\delta}$, we say that \mathscr{C} (or equivalently the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -linear code $C = \Phi(\mathscr{C})$) is of type $(\alpha, \beta; \gamma, \delta)$ [3]. Note that $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes can be seen as a generalization of binary (when $\beta = 0$) and quaternary (when $\alpha = 0$) linear codes. The *permutation automorphism group* of \mathscr{C} and $C = \Phi(\mathscr{C})$, denoted by PAut(\mathscr{C}) and PAut(C), respectively, is the group generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length *n* has 2n codewords and minimum distance n/2. The $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes such that, under the Gray map, give a binary Hadamard code are called $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard codes and the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes are called Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, or just Hadamard \mathbb{Z}_4 -linear codes when $\alpha = 0$. The permutation automorphism group of $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard codes with $\alpha = 0$ was characterized in [9] and the permutation automorphism group of $\mathbb{Z}_2\mathbb{Z}_4$ -linear Hadamard codes was studied in [6].

Let *C* be a binary code of length *n*. For a vector $v \in \mathbb{Z}_2^n$ and a set $I \subseteq \{1, ..., n\}$, we denote by v_I the restriction of *v* to the coordinates in *I* and by C_I the set $\{v_I : v \in C\}$. Suppose that $|C| = 2^k$. A set $I \subseteq \{1, ..., n\}$ of *k* coordinate positions is an *information set* for *C* if $|C_I| = 2^k$. If such *I* exists, *C* is said to be a *systematic code*.

Permutation decoding is a technique, introduced by MacWilliams [8], which involves finding a subset *S* of the permutation automorphism group PAut(C) of a code *C* in order to assist in decoding. Let *C* be a systematic *t*-error-correcting code

with information set *I*. A subset $S \subseteq PAut(C)$ is an *s*-*PD*-set for the code *C* if every *s*-set of coordinate positions is moved out of the information set *I* by at least one element of the set *S*, where $1 \le s \le t$. If s = t, *S* is said to be a *PD*-set.

In [4], it is shown how to find *s*-PD-sets of size s + 1 that satisfy the Gordon-Schönheim bound for partial permutation decoding for the binary simplex code S_m of length $2^m - 1$, for all $m \ge 4$ and $1 < s \le \lfloor \frac{2^m - m - 1}{m} \rfloor$. In [1], similar results are establish for the binary linear Hadamard code H_m (extended code of S_m) of length 2^m , for all $m \ge 4$ and $1 < s \le \lfloor \frac{2^m - m - 1}{1 + m} \rfloor$, following the techniques described in [4]. The paper is organized as follows. In Section 1, we show that the Gordon-

The paper is organized as follows. In Section 1, we show that the Gordon-Schönheim bound can be adapted to systematic codes, not necessarily linear. Moreover, we apply the bound of the minimum size of *s*-PD-sets for binary Hadamard codes obtained in [1] to Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, which are systematic [2] but not linear in general. In Section 2, we provide a criterion to obtain *s*-PD-sets of size s + 1 for \mathbb{Z}_4 -linear codes. Finally, in Section 3, we recall a recursive construction to obtain all $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes with $\alpha = 0$ [7] and we give a recursive method to obtain *s*-PD-sets for the corresponding Hadamard \mathbb{Z}_4 -linear codes.

1 Minimum size of *s*-PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes based on the length, dimension and minimum distance of such codes that can be adapted for systematic codes (not necessarily linear) easily:

Proposition 1. Let C be a systematic t-error correcting code of length n, size $|C| = 2^k$ and minimum distance d. Let r = n - k be the redundancy of C. If S is a PD-set for C, then

$$|S| \ge \left\lceil \frac{n}{r} \left\lceil \frac{n-1}{r-1} \left\lceil \dots \left\lceil \frac{n-t+1}{r-t+1} \right\rceil \dots \right\rceil \right\rceil \right\rceil.$$
(1)

The above inequality (1) is often called the *Gordon-Schönheim bound*. This result is quoted and proved for linear codes in [5]. We can follow the same proof since the linearity of the code *C* is only used to guarantee that *C* is systematic. In [2], it is shown that $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes are systematic. Moreover, a systematic encoding is given for these codes.

The Gordon-Schönheim bound can be adapted to *s*-PD-sets for all *s* up to the error correcting capability of the code. Note that the error-correcting capability of any Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear code of length $n = 2^m$ is $t_m = \lfloor (d-1)/2 \rfloor = 2^{m-2} - 1$. Therefore, the right side of the bound given by (1), for Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes of length 2^m and for all $1 \le s \le t_m$, becomes

$$g_m(s) = \left\lceil \frac{2^m}{2^m - m - 1} \left\lceil \frac{2^m - 1}{2^m - m - 2} \left\lceil \dots \left\lceil \frac{2^m - s + 1}{2^m - m - s} \right\rceil \right\rceil \dots \right\rceil \right\rceil.$$
 (2)

For any $m \ge 4$ and $1 \le s \le t_m$, we have that $g_m(s) \ge s + 1$. The smaller the size of the PD-set is, the more efficient permutation decoding becomes. Because of this, we will focus on the case when $g_m(s) = s + 1$.

2 *s*-**PD**-sets of size s + 1 for \mathbb{Z}_4 -linear codes

Let \mathscr{C} be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(0,\beta;\gamma,\delta)$ and let $C = \Phi(\mathscr{C})$ be the corresponding \mathbb{Z}_4 -linear code. Let $\Phi : \text{PAut}(\mathscr{C}) \to \text{PAut}(C)$ be the map defined as

$$\Phi(\tau)(i) = \begin{cases} 2\tau(i/2), & \text{if } i \text{ is even,} \\ 2\tau(\frac{i+1}{2}) - 1 & \text{if } i \text{ is odd,} \end{cases}$$

for all $\tau \in \text{Sym}(\beta)$ and $i \in \{1, ..., 2\beta\}$. The map Φ is a group monomorphism. Given a subset \mathscr{S} of $\text{PAut}(\mathscr{C}) \subseteq \text{Sym}(\beta)$, we define the set $S = \Phi(\mathscr{S}) = \{\Phi(\tau) : \tau \in \mathscr{S}\}$, which is a subset of $\text{PAut}(C) \subseteq \text{Sym}(2\beta)$.

A set $\mathscr{I} = \{i_1, \ldots, i_{\gamma+\delta}\} \subseteq \{1, \ldots, \beta\}$ of $\gamma + \delta$ coordinate positions is said to be a *quaternary information set* for the code \mathscr{C} if the set $\Phi(\mathscr{I})$, defined as $\Phi(\mathscr{I}) = \{2i_1 - 1, 2i_1, \ldots, 2i_{\delta} - 1, 2i_{\delta}, 2i_{\delta+1} - 1, \ldots, 2i_{\delta+\gamma} - 1\}$, is an information set for $C = \Phi(\mathscr{C})$ for some ordering of elements of \mathscr{I} .

Let *S* be an *s*-PD-set of size s + 1. The set *S* is a *nested s*-PD-set if there is an ordering of the elements of *S*, $S = {\sigma_1, ..., \sigma_{s+1}}$, such that $S_i = {\sigma_1, ..., \sigma_{i+1}} \subseteq S$ is an *i*-PD-set of size i + 1, for all $i \in {1, ..., s}$.

Proposition 2. Let \mathscr{C} be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(0,\beta;\gamma,\delta)$ with quaternary information set \mathscr{I} and let s be a positive integer. If $\tau \in \text{PAut}(\mathscr{C})$ has at least $\gamma + \delta$ disjoint cycles of length s + 1 such that there is exactly one quaternary information position per cycle of length s + 1, then $S = \{\Phi(\tau^i)\}_{i=1}^{s+1}$ is an s-PD-set of size s + 1 for the \mathbb{Z}_4 -linear code $C = \Phi(\mathscr{C})$ with information set $\Phi(\mathscr{I})$. Moreover, any ordering of the elements of S gives a nested r-PD-set for any $r \in \{1, \ldots, s\}$.

Example 3. Let $C_{0,3}$ be the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code of type (0, 16; 0, 3) with generator matrix

Let $\tau = (1, 16, 11, 6)(2, 7, 12, 13)(3, 14, 9, 8)(4, 5, 10, 15) \in PAut(\mathscr{C}_{0,3}) \subseteq Sym(16)$ [9]. It is straightforward to check that $\mathscr{I} = \{1, 2, 5\}$ is a quaternary information set for $\mathscr{C}_{0,3}$. Note that each information position in \mathscr{I} is in a different cycle of τ . Let $\sigma = \Phi(\tau) \in PAut(C_{0,3}) \subseteq Sym(32)$, where $C_{0,3} = \Phi(\mathscr{C}_{0,3})$. Thus, by Proposition 2, $S = \{\sigma, \sigma^2, \sigma^3, \sigma^4\}$ is a 3-PD-set of size 4 for $C_{0,3}$ with information set $I = \{1, 2, 3, 4, 9, 10\}$. Note that $C_{0,3}$ is the smallest Hadamard \mathbb{Z}_4 -linear code that is a binary nonlinear code.

3 *s*-PD-sets for Hadamard \mathbb{Z}_4 -linear codes

Let **0**, **1**, **2** and **3** be the repetition of symbol 0, 1, 2 and 3, respectively. Let $\mathscr{G}_{\gamma,\delta}$ be a generator matrix of the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code $\mathscr{C}_{\gamma,\delta}$ of length $\beta = 2^{m-1}$ and type $(0,\beta;\gamma,\delta)$, where $m = \gamma + 2\delta - 1$. A generator matrix for the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code $\mathscr{C}_{\gamma+1,\delta}$ of length $\beta' = 2\beta = 2^m$ and type $(0,\beta';\gamma+1,\delta)$ can be constructed as follows [7]:

$$\mathscr{G}_{\gamma+1,\delta} = \begin{pmatrix} \mathbf{0} & \mathbf{2} \\ \mathscr{G}_{\gamma,\delta} & \mathscr{G}_{\gamma,\delta} \end{pmatrix}.$$
(3)

Equivalently, a generator matrix for the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code $\mathscr{C}_{\gamma,\delta+1}$ of length $\beta'' = 4\beta = 2^{m+1}$ and type $(0,\beta'';\gamma,\delta+1)$ can be constructed as [7]:

$$\mathscr{G}_{\gamma,\delta+1} = \begin{pmatrix} \mathscr{G}_{\gamma,\delta} & \mathscr{G}_{\gamma,\delta} & \mathscr{G}_{\gamma,\delta} \\ \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \end{pmatrix}.$$
(4)

Note that a generator matrix for every code $\mathscr{C}_{\gamma,\delta}$ can be obtained by applying (3) and (4) recursively over the generator matrix $\mathscr{G}_{0,1} = (1)$ of the code $\mathscr{C}_{0,1}$. From now on, we assume that $\mathscr{C}_{\gamma,\delta}$ is obtained by using these constructions.

Proposition 4. Let $C_{\gamma,\delta}$ be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code of type $(0,\beta;\gamma,\delta)$ with quaternary information set \mathscr{I} . The set $\mathscr{I} \cup \{\beta + 1\}$ is a suitable quaternary information set for both codes $C_{\gamma+1,\delta}$ and $C_{\gamma,\delta+1}$ obtained from $C_{\gamma,\delta}$ by applying constructions (3) and (4), respectively.

Despite the fact that the quaternary information set is the same for $\mathscr{C}_{\gamma+1,\delta}$ and $\mathscr{C}_{\gamma,\delta+1}$, the information set for the corresponding binary codes $C_{\gamma+1,\delta}$ and $C_{\gamma,\delta+1}$ are $I' = \Phi(\mathscr{I}) \cup \{2\beta + 1\}$ and $I'' = \Phi(\mathscr{I}) \cup \{2\beta + 1, 2\beta + 2\}$, respectively.

Given two permutations $\sigma_1 \in \text{Sym}(n_1)$ and $\sigma_2 \in \text{Sym}(n_2)$, we define the permutation $(\sigma_1 | \sigma_2) \in \text{Sym}(n_1 + n_2)$, where σ_1 acts on the coordinates $\{1, \ldots, n_1\}$ and σ_2 acts on the coordinates $\{n_1 + 1, \ldots, n_1 + n_2\}$. Given $\sigma_i \in \text{Sym}(n_i)$, $i \in \{1, \ldots, 4\}$, we define the permutation $(\sigma_1 | \sigma_2 | \sigma_3 | \sigma_4)$ in the same way.

Proposition 5. Let *S* be an *s*-*PD*-set of size *l* for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta}$ of binary length $n = 2\beta$ and type $(0,\beta;\gamma,\delta)$ with respect to an information set *I*. Then the set $(S|S) = \{(\sigma|\sigma) : \sigma \in S\}$ is an *s*-*PD*-set of size *l* with respect to the information set $I' = I \cup \{n+1\}$ for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma+1,\delta}$ of binary length 2n and type $(0,2\beta;\gamma+1,\delta)$ constructed from (3) and the Gray map.

Example 6. Let *S* be the 3-PD-set of size 4 for $C_{0,3}$ of binary length 32 with respect to the information set $I = \{1, 2, 3, 4, 9, 10\}$, given in Example 3. By Propositions 4 and 5, the set (S|S) is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_4 -linear code $C_{1,3}$ of binary length 64 with respect to the information set $I' = \{1, 2, 3, 4, 9, 10, 33\}$.

Proposition 5 can not be generalized directly for Hadamard \mathbb{Z}_4 -linear codes $C_{\gamma,\delta+1}$ constructed from (4). Note that if *S* is an *s*-PD-set for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta}$, then the set $(S|S|S) = \{(\sigma|\sigma|\sigma|\sigma) : \sigma \in S\}$ is not in general an *s*-PD-set for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta+1}$.

Proposition 7. Let $\mathscr{S} \subseteq \text{PAut}(\mathscr{C}_{\gamma,\delta})$ such that $\Phi(\mathscr{S})$ is an s-PD-set of size l for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta}$ of binary length $n = 2\beta$ and type $(0,\beta;\gamma,\delta)$ with respect to an information set I. Then the set $\Phi((\mathscr{S}|\mathscr{S}|\mathscr{S}|\mathscr{S})) = \{\Phi((\tau|\tau|\tau|\tau)) : \tau \in \mathscr{S}\}$ is an s-PD-set of size l with respect to the information set $I'' = I \cup \{n + 1, n + 2\}$ for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta+1}$ of binary length 4n and type $(0,4\beta;\gamma,\delta+1)$ constructed from (4) and the Gray map.

Example 8. Let $\mathscr{S} = \{\tau, \tau^2, \tau^3, \tau^4\}$, where τ is defined as in Example 3. By Proposition 7, the set $\Phi((\mathscr{S}|\mathscr{S}|\mathscr{S}|\mathscr{S}))$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_4 -linear code $C_{0,4}$ of binary length 128 with respect to the information set $I' = \{1, 2, 3, 4, 9, 10, 33, 34\}$.

Propositions 5 and 7 can be applied recursively to acquire *s*-PD-sets for the infinite family of Hadamard \mathbb{Z}_4 -linear codes obtained (by using constructions (3) and (4)) from a given Hadamard \mathbb{Z}_4 -linear code where we already have such set.

References

- [1] R. Barrolleta and M. Villanueva, "Partial permutation decoding for binary linear Hadamard codes," *Electronic Notes in Discrete Mathematics*, 46 (2014) 35-42.
- [2] J. J. Bernal, J. Borges, C. Fernández-Córboda, and M. Villanueva, "Permutation decoding of Z₂Z₄-linear codes," *Des. Codes and Cryptogr.*, DOI 10.1007/s10623-014-9946-4, 2014.
- [3] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Villanueva, "Z₂Z₄-linear codes: generator matrices and duality," *Des. Codes and Cryptogr.*, vol. 54: 167–179, 2010.
- [4] W. Fish, J. D. Key, and E. Mwambene, "Partial permutation decoding for simplex codes," Advances in Mathematics of Comunications, vol. 6(4): 505–516, 2012.
- [5] W. C. Huffman, Codes and groups, Handbook of coding theory, 1998.
- [6] D. S. Krotov and M. Villanueva "Classification of the Z₂Z₄-linear Hadamard codes and their automorphism groups," *IEEE Trans. Inf. Theory*, vol. 61(2): 887–894, 2015.
- [7] D. S. Krotov, "Z₄-linear Hadamard and extended perfect codes," *Electronic Notes in Discrete Mathematics*, vol. 6 (2001), 107-112.
- [8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 1977.
- [9] J. Pernas, J. Pujol and M. Villanueva. "Characterization of the automorphism group of quaternary linear Hadamard Codes," *Des. Codes Cryptogr.*, 70(1-2), 105–115, 2014.