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Any nonempty subset C of Z3 is a binary code and a subgroup of ZJ is called
a binary linear code. Equivalently, any nonempty subset 4" of Zj is a quaternary
code and a subgroup of Zj is called a quaternary linear code. Quaternary codes
can be seen as binary codes under the usual Gray map & : Zj; — Z%" defined as
D((y1,---,9n) = (@(¥1),---,9(yn)), where 9(0) = (0,0), ¢(1) = (0,1), 9(2) =
(1,1), 9(3) = (1,0), for all y = (y1,...,y,) € Zj. If € is a quaternary linear code,
the binary code C = ®(%) is said to be a Z4-linear code.

A ZyZ4-additive code € is a subgroup of Z$ x Zf. We consider the extension
of the Gray map & : Z§ x ZE — Z;Hzﬁ defined as ®(x,y) = (x,¢(y1),---,0(yp)),

forall x € Z§ and y = (y1,...,yp) € ZE . This generalization allows us to consider
7 Z.4-additive codes also as binary codes. If € is a Z,Z4-additive code, the binary
code C = ®(%) is said to be a Z,Z4-linear code. Moreover, since the code ¢
is isomorphic to an abelian group Z’z/ X Zf, we say that € (or equivalently the
corresponding Z,Z4-linear code C = ®(%)) is of type (a,B;7,0) [3]. Note that
Z,7.4-additive codes can be seen as a generalization of binary (when B = 0) and
quaternary (when a = 0) linear codes. The permutation automorphism group of
% and C = ®(¥), denoted by PAut(%) and PAut(C), respectively, is the group
generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length n has 2n codewords and minimum dis-
tance n/2. The Z,Z4-additive codes such that, under the Gray map, give a binary
Hadamard code are called Z,Z4-additive Hadamard codes and the corresponding
ZZ4-linear codes are called Hadamard 7.y Z.4-linear codes, or just Hadamard Z.4-
linear codes when o = 0. The permutation automorphism group of Z,Z4-additive
Hadamard codes with o¢ = 0 was characterized in [9] and the permutation auto-
morphism group of Z,Z4-linear Hadamard codes was studied in [6].

Let C be a binary code of length n. For a vector v e Zj andaset C {1,...,n},
we denote by v; the restriction of v to the coordinates in I and by C; the set {v; :
v € C}. Suppose that |C| = 2%. A setI C {l,...,n} of k coordinate positions is an
information set for C if |Cy| = 2. If such I exists, C is said to be a systematic code.

Permutation decoding is a technique, introduced by MacWilliams [8], which
involves finding a subset S of the permutation automorphism group PAut(C) of a
code C in order to assist in decoding. Let C be a systematic ¢-error-correcting code



with information set /. A subset S C PAut(C) is an s-PD-set for the code C if every
s-set of coordinate positions is moved out of the information set / by at least one
element of the set S, where 1 <s <t. If s =¢, S is said to be a PD-set.

In [4], it is shown how to find s-PD-sets of size s+ 1 that satisfy the Gordon-
Schonheim bound for partial permutation decoding for the binary simplex code S,,
of length 2" — 1, forallm >4 and 1 < s < [%J In [1], similar results are
establish for the binary linear Hadamard code H,, (extended code of S,,;) of length
2™ forallm>4and1 <s< Lsz +"Zn71 J , following the techniques described in [4].

The paper is organized as follows. In Section 1, we show that the Gordon-
Schonheim bound can be adapted to systematic codes, not necessarily linear. More-
over, we apply the bound of the minimum size of s-PD-sets for binary Hadamard
codes obtained in [1] to Hadamard Z,Z4-linear codes, which are systematic [2] but
not linear in general. In Section 2, we provide a criterion to obtain s-PD-sets of size
s+ 1 for Zs-linear codes. Finally, in Section 3, we recall a recursive construction
to obtain all Z,Z4-additive codes with o = 0 [7] and we give a recursive method to
obtain s-PD-sets for the corresponding Hadamard Z4-linear codes.

1 Minimum size of s-PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes
based on the length, dimension and minimum distance of such codes that can be
adapted for systematic codes (not necessarily linear) easily:

Proposition 1. Ler C be a systematic t-error correcting code of length n, size |C| =
2% and minimum distance d. Let r = n — k be the redundancy of C. If S is a PD-set

for C, then
nlin—1 n—t+1
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The above inequality (1) is often called the Gordon-Schonheim bound. This
result is quoted and proved for linear codes in [5]. We can follow the same proof
since the linearity of the code C is only used to guarantee that C is systematic.
In [2], it is shown that Z;Z4-linear codes are systematic. Moreover, a systematic
encoding is given for these codes.

The Gordon-Schonheim bound can be adapted to s-PD-sets for all s up to the
error correcting capability of the code. Note that the error-correcting capability of
any Hadamard Z,7Z4-linear code of length n = 2" is t,, = | (d — 1)/2| =2""2 1.
Therefore, the right side of the bound given by (1), for Hadamard Z,7Z4-linear
codes of length 2 and for all 1 < s <¢,,, becomes
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For any m >4 and 1 < s <1, we have that g, (s) > s+ 1. The smaller the size of
the PD-set is, the more efficient permutation decoding becomes. Because of this,
we will focus on the case when g, (s) = s+ 1.

2 s-PD-sets of size s + 1 for Z4-linear codes

Let ¢ be a Z,Z4-additive code of type (0,f3;7,06) and let C = ®(%’) be the corre-
sponding Zs-linear code. Let ® : PAut(%") — PAut(C) be the map defined as

N[ 21(if2), if i is even,
cln(r)(l)—{ 20(H) —1 ifiis odd,

for all T € Sym(fB) and i € {1,...,2B}. The map P is a group monomorphism.
Given a subset .7 of PAut(%’) C Sym(f), we define the set S = ®(.) = {P(7) :
T € .7}, which is a subset of PAut(C) C Sym(2f3).

A set ¥ = {i1,...,iy;5} € {1,...,B} of y+ & coordinate positions is said
to be a quaternary information set for the code ¢ if the set ®(.#), defined as
() = {2i1 — 1,2iy,...,2is — 1,2i5,2i5) — 1,...,2i5,,— 1}, is an information
set for C = ®(%) for some ordering of elements of .#.

Let S be an s-PD-set of size s+ 1. The set S is a nested s-PD-set if there is an
ordering of the elements of S, S = {0},..., 01}, such that S; ={oy,...,014+1} C S
is an i-PD-set of size i + 1, for all i € {1,...,s}.

Proposition 2. Let € be a ZyZ4-additive code of type (0,B;7,0) with quaternary
information set .% and let s be a positive integer. If T € PAut(¢’) has at least y+ 6
disjoint cycles of length s+ 1 such that there is exactly one quaternary information
position per cycle of length s+ 1, then S = {®(7') l‘i]] is an s-PD-set of size s+
1 for the Za-linear code C = ®(€') with information set (7). Moreover, any
ordering of the elements of S gives a nested r-PD-set for any r € {1,...,s}.

Example 3. Let 6 3 be the Z,Z4-additive Hadamard code of type (0,16;0,3) with
generator matrix

111
GDa=(0 1 2
00 0

S W =

1 1 11
012 3
1 1 11

NN O =

1
1
2

(NI NS

11111
30123
2 3333

Let t=(1,16,11,6)(2,7,12,13)(3,14,9,8)(4,5,10,15) € PAut(%p3) C Sym(16)
[9]. It is straightforward to check that .% = {1,2,5} is a quaternary information
set for 60 3. Note that each information position in .7 is in a different cycle of T. Let
o = (1) € PAut(Cyp3) C Sym(32), where Cy3 = ®(%603). Thus, by Proposition



2, S ={0,0%0%, 0%} is a 3-PD-set of size 4 for Cy3 with information set I =
{1,2,3,4,9,10}. Note that Cy 3 is the smallest Hadamard Zs-linear code that is a
binary nonlinear code.

3 s5-PD-sets for Hadamard Z,-linear codes

Let0,1,2 and 3 be the repetition of symbol 0, 1, 2 and 3, respectively. Let 4, s be a
generator matrix of the Z,Z4-additive Hadamard code %7, 5 of length § = 2m=1 and
type (0,8;7,06), where m = y+28 — 1. A generator matrix for the Z,Z4-additive
Hadamard code €, s of length B’ =28 = 2" and type (0,8’;7+ 1,0) can be
constructed as follows [7]:

0 2
gy—i-]ﬁ = < g%a gy,ﬁ ) (3)

Equivalently, a generator matrix for the Z,Z4-additive Hadamard code € 5.
of length " = 48 = 2! and type (0,”;7,5 + 1) can be constructed as [7]:
g?’
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Note that a generator matrix for every code 4, s can be obtained by applying
(3) and (4) recursively over the generator matrix % ; = (1) of the code %j ;. From
now on, we assume that ¢, 5 is obtained by using these constructions.

Proposition 4. Let €5 be a 7,74-additive Hadamard code of type (0,;7,0)
with quaternary information set .%. The set % U{B + 1} is a suitable quaternary
information set for both codes €y, 5 and €y s obtained from €y 5 by applying
constructions (3) and (4), respectively.

Despite the fact that the quaternary information set is the same for €. ; 5 and
©€y,5+1- the information set for the corresponding binary codes C, s and Cy 5.
are ' =®(F)U{2B+1} and I" = P(F)U{2B + 1,2 + 2}, respectively.

Given two permutations o} € Sym(n;) and 0> € Sym(ny), we define the per-
mutation (01|02) € Sym(n; +ny), where o7 acts on the coordinates {1,...,n; } and
0, acts on the coordinates {n; +1,...,n;+ny}. Given 0; € Sym(n;), i € {1,...,4},
we define the permutation (0;|02|03|04) in the same way.

Proposition 5. Let S be an s-PD-set of size [ for the Hadamard Z4-linear code
Cy s of binary length n =23 and type (0, B;,0) with respect to an information set
I. Then the set (S|S) = {(o|o) : 6 € S} is an s-PD-set of size | with respect to the
information set I' = IU{n+ 1} for the Hadamard Z4-linear code Cyy1,6 of binary
length 2n and type (0,2B;7+ 1,8) constructed from (3) and the Gray map.
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Example 6. Let S be the 3-PD-set of size 4 for Co 3 of binary length 32 with respect
to the information set I = {1,2,3,4,9,10}, given in Example 3. By Propositions 4
and 5, the set (S|S) is a 3-PD-set of size 4 for the Hadamard Zs-linear code C) 3 of
binary length 64 with respect to the information set I' = {1,2,3,4,9,10,33}.

Proposition 5 can not be generalized directly for Hadamard Z4-linear codes
Cy 541 constructed from (4). Note that if § is an s-PD-set for the Hadamard Z4-
linear code C, 5, then the set (S|S|S|S) = {(o|o|c|0) : 0 € S} is not in general an
s-PD-set for the Hadamard Z4-linear code Cy s ;.

Proposition 7. Let ¥ C PAut(%), 5) such that () is an s-PD-set of size [ for the
Hadamard Zy-linear code Cy 5 of binary length n = 23 and type (0,B;7,8) with
respect to an information set I. Then the set ®((.7|.7|.7|.7)) = {®((z|7|7|7)) :
T € S} is an s-PD-set of size | with respect to the information set I = ITU{n+
L,n+2} for the Hadamard Zs-linear code Cy 5. of binary length 4n and type
(0,4B;7,0 4+ 1) constructed from (4) and the Gray map.

Example 8. Let .7 = {1,7%,7%,1%}, where 7 is defined as in Example 3. By
Proposition 7, the set ®((.7|.7|.7|.%)) is a 3-PD-set of size 4 for the Hadamard
Zy-linear code Cy 4 of binary length 128 with respect to the information set I' =
{1,2,3,4,9,10,33,34}.

Propositions 5 and 7 can be applied recursively to acquire s-PD-sets for the
infinite family of Hadamard Z4-linear codes obtained (by using constructions (3)
and (4)) from a given Hadamard Z,-linear code where we already have such set.
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