PD-sets for (nonlinear) Hadamard Z_{4}-linear codes

R. D. Barrolleta ${ }^{1}$, M. Villanueva ${ }^{1}$
${ }^{1}$ Universitat Autònoma de Barcelona, Spain, \{rolanddavid.barrolleta, merce.villanueva\}@uab.cat This work was partially supported by the Spanish MEC under Grant TIN2013-40524-P, and by the Catalan AGAUR under Grant 2014SGR-691.

Any nonempty subset C of \mathbb{Z}_{2}^{n} is a binary code and a subgroup of \mathbb{Z}_{2}^{n} is called a binary linear code. Equivalently, any nonempty subset \mathscr{C} of \mathbb{Z}_{4}^{n} is a quaternary code and a subgroup of \mathbb{Z}_{4}^{n} is called a quaternary linear code. Quaternary codes can be seen as binary codes under the usual Gray map $\Phi: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{Z}_{2}^{2 n}$ defined as $\Phi\left(\left(y_{1}, \ldots, y_{n}\right)\right)=\left(\phi\left(y_{1}\right), \ldots, \phi\left(y_{n}\right)\right)$, where $\phi(0)=(0,0), \phi(1)=(0,1), \phi(2)=$ $(1,1), \phi(3)=(1,0)$, for all $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}_{4}^{n}$. If \mathscr{C} is a quaternary linear code, the binary code $C=\Phi(\mathscr{C})$ is said to be a \mathbb{Z}_{4}-linear code.

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathscr{C} is a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$. We consider the extension of the Gray map $\Phi: \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \rightarrow \mathbb{Z}_{2}^{\alpha+2 \beta}$ defined as $\Phi(x, y)=\left(x, \phi\left(y_{1}\right), \ldots, \phi\left(y_{\beta}\right)\right)$, for all $x \in \mathbb{Z}_{2}^{\alpha}$ and $y=\left(y_{1}, \ldots, y_{\beta}\right) \in \mathbb{Z}_{4}^{\beta}$. This generalization allows us to consider $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes also as binary codes. If \mathscr{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code, the binary code $C=\Phi(\mathscr{C})$ is said to be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code. Moreover, since the code \mathscr{C} is isomorphic to an abelian group $\mathbb{Z}_{2}^{\gamma} \times \mathbb{Z}_{4}^{\delta}$, we say that \mathscr{C} (or equivalently the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code $C=\Phi(\mathscr{C})$) is of type $(\alpha, \beta ; \gamma, \delta)$ [3]. Note that $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes can be seen as a generalization of binary (when $\beta=0$) and quaternary (when $\alpha=0$) linear codes. The permutation automorphism group of \mathscr{C} and $C=\Phi(\mathscr{C})$, denoted by $\operatorname{PAut}(\mathscr{C})$ and $\operatorname{PAut}(C)$, respectively, is the group generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length n has $2 n$ codewords and minimum distance $n / 2$. The $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes such that, under the Gray map, give a binary Hadamard code are called $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard codes and the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes are called Hadamard $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes, or just Hadamard \mathbb{Z}_{4} linear codes when $\alpha=0$. The permutation automorphism group of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard codes with $\alpha=0$ was characterized in [9] and the permutation automorphism group of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes was studied in [6].

Let C be a binary code of length n. For a vector $v \in \mathbb{Z}_{2}^{n}$ and a set $I \subseteq\{1, \ldots, n\}$, we denote by v_{I} the restriction of v to the coordinates in I and by C_{I} the set $\left\{v_{I}\right.$: $v \in C\}$. Suppose that $|C|=2^{k}$. A set $I \subseteq\{1, \ldots, n\}$ of k coordinate positions is an information set for C if $\left|C_{I}\right|=2^{k}$. If such I exists, C is said to be a systematic code.

Permutation decoding is a technique, introduced by MacWilliams [8], which involves finding a subset S of the permutation automorphism group PAut (C) of a code C in order to assist in decoding. Let C be a systematic t-error-correcting code
with information set I. A subset $S \subseteq \operatorname{PAut}(C)$ is an s - $P D$-set for the code C if every s-set of coordinate positions is moved out of the information set I by at least one element of the set S, where $1 \leq s \leq t$. If $s=t, S$ is said to be a $P D$-set.

In [4], it is shown how to find s-PD-sets of size $s+1$ that satisfy the GordonSchönheim bound for partial permutation decoding for the binary simplex code S_{m} of length $2^{m}-1$, for all $m \geq 4$ and $1<s \leq\left\lfloor\frac{2^{m}-m-1}{m}\right\rfloor$. In [1], similar results are establish for the binary linear Hadamard code H_{m} (extended code of S_{m}) of length 2^{m}, for all $m \geq 4$ and $1<s \leq\left\lfloor\frac{2^{m}-m-1}{1+m}\right\rfloor$, following the techniques described in [4].

The paper is organized as follows. In Section 1, we show that the GordonSchönheim bound can be adapted to systematic codes, not necessarily linear. Moreover, we apply the bound of the minimum size of s-PD-sets for binary Hadamard codes obtained in [1] to Hadamard $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes, which are systematic [2] but not linear in general. In Section 2, we provide a criterion to obtain s-PD-sets of size $s+1$ for \mathbb{Z}_{4}-linear codes. Finally, in Section 3, we recall a recursive construction to obtain all $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes with $\alpha=0[7]$ and we give a recursive method to obtain s-PD-sets for the corresponding Hadamard \mathbb{Z}_{4}-linear codes.

1 Minimum size of s-PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes based on the length, dimension and minimum distance of such codes that can be adapted for systematic codes (not necessarily linear) easily:
Proposition 1. Let C be a systematic t-error correcting code of length n, size $|C|=$ 2^{k} and minimum distance d. Let $r=n-k$ be the redundancy of C. If S is a $P D$-set for C, then

$$
\begin{equation*}
|S| \geq\left\lceil\frac{n}{r}\left\lceil\frac{n-1}{r-1}\left\lceil\cdots\left\lceil\frac{n-t+1}{r-t+1}\right\rceil \cdots\right\rceil\right\rceil\right\rceil \tag{1}
\end{equation*}
$$

The above inequality (1) is often called the Gordon-Schönheim bound. This result is quoted and proved for linear codes in [5]. We can follow the same proof since the linearity of the code C is only used to guarantee that C is systematic. In [2], it is shown that $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes are systematic. Moreover, a systematic encoding is given for these codes.

The Gordon-Schönheim bound can be adapted to s-PD-sets for all s up to the error correcting capability of the code. Note that the error-correcting capability of any Hadamard $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of length $n=2^{m}$ is $t_{m}=\lfloor(d-1) / 2\rfloor=2^{m-2}-1$. Therefore, the right side of the bound given by (1), for Hadamard $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes of length 2^{m} and for all $1 \leq s \leq t_{m}$, becomes

$$
\begin{equation*}
g_{m}(s)=\left\lceil\frac{2^{m}}{2^{m}-m-1}\left\lceil\frac{2^{m}-1}{2^{m}-m-2}\left\lceil\cdots\left\lceil\frac{2^{m}-s+1}{2^{m}-m-s}\right\rceil\right\rceil \ldots\right\rceil\right\rceil \tag{2}
\end{equation*}
$$

For any $m \geq 4$ and $1 \leq s \leq t_{m}$, we have that $g_{m}(s) \geq s+1$. The smaller the size of the PD-set is, the more efficient permutation decoding becomes. Because of this, we will focus on the case when $g_{m}(s)=s+1$.

$2 s$-PD-sets of size $s+1$ for \mathbb{Z}_{4}-linear codes

Let \mathscr{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(0, \beta ; \gamma, \delta)$ and let $C=\Phi(\mathscr{C})$ be the corresponding \mathbb{Z}_{4}-linear code. Let $\Phi: \operatorname{PAut}(\mathscr{C}) \rightarrow \operatorname{PAut}(C)$ be the map defined as

$$
\Phi(\tau)(i)= \begin{cases}2 \tau(i / 2), & \text { if } i \text { is even } \\ 2 \tau\left(\frac{i+1}{2}\right)-1 & \text { if } i \text { is odd }\end{cases}
$$

for all $\tau \in \operatorname{Sym}(\beta)$ and $i \in\{1, \ldots, 2 \beta\}$. The map Φ is a group monomorphism. Given a subset \mathscr{S} of $\operatorname{PAut}(\mathscr{C}) \subseteq \operatorname{Sym}(\beta)$, we define the set $S=\Phi(\mathscr{S})=\{\Phi(\tau)$: $\tau \in \mathscr{S}\}$, which is a subset of $\operatorname{PAut}(C) \subseteq \operatorname{Sym}(2 \beta)$.

A set $\mathscr{I}=\left\{i_{1}, \ldots, i_{\gamma+\delta}\right\} \subseteq\{1, \ldots, \beta\}$ of $\gamma+\delta$ coordinate positions is said to be a quaternary information set for the code \mathscr{C} if the set $\Phi(\mathscr{I})$, defined as $\Phi(\mathscr{I})=\left\{2 i_{1}-1,2 i_{1}, \ldots, 2 i_{\delta}-1,2 i_{\delta}, 2 i_{\delta+1}-1, \ldots, 2 i_{\delta+\gamma}-1\right\}$, is an information set for $C=\Phi(\mathscr{C})$ for some ordering of elements of \mathscr{I}.

Let S be an s-PD-set of size $s+1$. The set S is a nested s-PD-set if there is an ordering of the elements of $S, S=\left\{\sigma_{1}, \ldots, \sigma_{s+1}\right\}$, such that $S_{i}=\left\{\sigma_{1}, \ldots, \sigma_{i+1}\right\} \subseteq S$ is an i-PD-set of size $i+1$, for all $i \in\{1, \ldots, s\}$.

Proposition 2. Let \mathscr{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(0, \beta ; \gamma, \boldsymbol{\delta})$ with quaternary information set \mathscr{I} and let s be a positive integer. If $\tau \in \operatorname{PAut}(\mathscr{C})$ has at least $\gamma+\delta$ disjoint cycles of length $s+1$ such that there is exactly one quaternary information position per cycle of length $s+1$, then $S=\left\{\Phi\left(\tau^{i}\right)\right\}_{i=1}^{s+1}$ is an s-PD-set of size $s+$ 1 for the \mathbb{Z}_{4}-linear code $C=\Phi(\mathscr{C})$ with information set $\Phi(\mathscr{I})$. Moreover, any ordering of the elements of S gives a nested $r-P D$-set for any $r \in\{1, \ldots, s\}$.

Example 3. Let $\mathscr{C}_{0,3}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard code of type $(0,16 ; 0,3)$ with generator matrix

$$
\mathscr{G}_{0,3}=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3
\end{array}\right)
$$

Let $\tau=(1,16,11,6)(2,7,12,13)(3,14,9,8)(4,5,10,15) \in \operatorname{PAut}\left(\mathscr{C}_{0,3}\right) \subseteq \operatorname{Sym}(16)$ [9]. It is straightforward to check that $\mathscr{I}=\{1,2,5\}$ is a quaternary information set for $\mathscr{C}_{0,3}$. Note that each information position in \mathscr{I} is in a different cycle of τ. Let $\sigma=\Phi(\tau) \in \operatorname{PAut}\left(C_{0,3}\right) \subseteq \operatorname{Sym}(32)$, where $C_{0,3}=\Phi\left(\mathscr{C}_{0,3}\right)$. Thus, by Proposition

2, $S=\left\{\sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}\right\}$ is a 3-PD-set of size 4 for $C_{0,3}$ with information set $I=$ $\{1,2,3,4,9,10\}$. Note that $C_{0,3}$ is the smallest Hadamard \mathbb{Z}_{4}-linear code that is a binary nonlinear code.

$3 s$-PD-sets for Hadamard \mathbb{Z}_{4}-linear codes

Let $\mathbf{0}, \mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ be the repetition of symbol $0,1,2$ and 3 , respectively. Let $\mathscr{C}_{\gamma, \delta}$ be a generator matrix of the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard code $\mathscr{C}_{\gamma, \delta}$ of length $\beta=2^{m-1}$ and type $(0, \beta ; \gamma, \delta)$, where $m=\gamma+2 \delta-1$. A generator matrix for the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard code $\mathscr{C}_{\gamma+1, \delta}$ of length $\beta^{\prime}=2 \beta=2^{m}$ and type $\left(0, \beta^{\prime} ; \gamma+1, \delta\right)$ can be constructed as follows [7]:

$$
\mathscr{G}_{\gamma+1, \delta}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{2} \tag{3}\\
\mathscr{G}_{\gamma, \delta} & \mathscr{G}_{\gamma, \delta}
\end{array}\right) .
$$

Equivalently, a generator matrix for the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard code $\mathscr{C}_{\gamma, \delta+1}$ of length $\beta^{\prime \prime}=4 \beta=2^{m+1}$ and type $\left(0, \beta^{\prime \prime} ; \gamma, \delta+1\right)$ can be constructed as [7]:

$$
\mathscr{G}_{\gamma, \delta+1}=\left(\begin{array}{cccc}
\mathscr{G}_{\gamma, \delta} & \mathscr{G}_{\gamma, \delta} & \mathscr{G}_{\gamma, \delta} & \mathscr{G}_{\gamma, \delta} \tag{4}\\
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3}
\end{array}\right) .
$$

Note that a generator matrix for every code $\mathscr{C}_{\gamma, \delta}$ can be obtained by applying (3) and (4) recursively over the generator matrix $\mathscr{G}_{0,1}=(1)$ of the code $\mathscr{C}_{0,1}$. From now on, we assume that $\mathscr{C}_{\gamma, \delta}$ is obtained by using these constructions.

Proposition 4. Let $\mathscr{C}_{\gamma, \delta}$ be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard code of type $(0, \beta ; \gamma, \boldsymbol{\delta})$ with quaternary information set \mathscr{I}. The set $\mathscr{I} \cup\{\beta+1\}$ is a suitable quaternary information set for both codes $\mathscr{C}_{\gamma+1, \delta}$ and $\mathscr{C}_{\gamma, \delta+1}$ obtained from $\mathscr{C}_{\gamma, \delta}$ by applying constructions (3) and (4), respectively.

Despite the fact that the quaternary information set is the same for $\mathscr{C}_{\gamma+1, \delta}$ and $\mathscr{C}_{\gamma, \delta+1}$, the information set for the corresponding binary codes $C_{\gamma+1, \delta}$ and $C_{\gamma, \delta+1}$ are $I^{\prime}=\Phi(\mathscr{I}) \cup\{2 \beta+1\}$ and $I^{\prime \prime}=\Phi(\mathscr{I}) \cup\{2 \beta+1,2 \beta+2\}$, respectively.

Given two permutations $\sigma_{1} \in \operatorname{Sym}\left(n_{1}\right)$ and $\sigma_{2} \in \operatorname{Sym}\left(n_{2}\right)$, we define the permutation $\left(\sigma_{1} \mid \sigma_{2}\right) \in \operatorname{Sym}\left(n_{1}+n_{2}\right)$, where σ_{1} acts on the coordinates $\left\{1, \ldots, n_{1}\right\}$ and σ_{2} acts on the coordinates $\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}$. Given $\sigma_{i} \in \operatorname{Sym}\left(n_{i}\right), i \in\{1, \ldots, 4\}$, we define the permutation $\left(\sigma_{1}\left|\sigma_{2}\right| \sigma_{3} \mid \sigma_{4}\right)$ in the same way.

Proposition 5. Let S be an s-PD-set of size l for the Hadamard \mathbb{Z}_{4}-linear code $C_{\gamma, \delta}$ of binary length $n=2 \beta$ and type $(0, \beta ; \gamma, \delta)$ with respect to an information set I. Then the set $(S \mid S)=\{(\sigma \mid \sigma): \sigma \in S\}$ is an s-PD-set of size l with respect to the information set $I^{\prime}=I \cup\{n+1\}$ for the Hadamard \mathbb{Z}_{4}-linear code $C_{\gamma+1, \delta}$ of binary length $2 n$ and type $(0,2 \beta ; \gamma+1, \delta)$ constructed from (3) and the Gray map.

Example 6. Let S be the 3-PD-set of size 4 for $C_{0,3}$ of binary length 32 with respect to the information set $I=\{1,2,3,4,9,10\}$, given in Example 3. By Propositions 4 and 5, the set $(S \mid S)$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_{4}-linear code $C_{1,3}$ of binary length 64 with respect to the information set $I^{\prime}=\{1,2,3,4,9,10,33\}$.

Proposition 5 can not be generalized directly for Hadamard \mathbb{Z}_{4}-linear codes $C_{\gamma, \delta+1}$ constructed from (4). Note that if S is an s-PD-set for the Hadamard $\mathbb{Z}_{4}{ }^{-}$ linear code $C_{\gamma, \delta}$, then the set $(S|S| S \mid S)=\{(\sigma|\sigma| \sigma \mid \sigma): \sigma \in S\}$ is not in general an s-PD-set for the Hadamard \mathbb{Z}_{4}-linear code $C_{\gamma, \delta+1}$.

Proposition 7. Let $\mathscr{S} \subseteq \operatorname{PAut}\left(\mathscr{C}_{\gamma, \delta}\right)$ such that $\Phi(\mathscr{S})$ is an s-PD-set of size l for the Hadamard \mathbb{Z}_{4}-linear code $C_{\gamma, \delta}$ of binary length $n=2 \beta$ and type $(0, \beta ; \gamma, \delta)$ with respect to an information set I. Then the set $\Phi((\mathscr{S}|\mathscr{S}| \mathscr{S} \mid \mathscr{S}))=\{\Phi((\tau|\tau| \tau \mid \tau))$: $\tau \in \mathscr{S}\}$ is an s-PD-set of size l with respect to the information set $I^{\prime \prime}=I \cup\{n+$ $1, n+2\}$ for the Hadamard \mathbb{Z}_{4}-linear code $C_{\gamma, \delta+1}$ of binary length $4 n$ and type $(0,4 \beta ; \gamma, \delta+1)$ constructed from (4) and the Gray map.
Example 8. Let $\mathscr{S}=\left\{\tau, \tau^{2}, \tau^{3}, \tau^{4}\right\}$, where τ is defined as in Example 3. By Proposition 7, the set $\Phi((\mathscr{S}|\mathscr{S}| \mathscr{S} \mid \mathscr{S}))$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_{4}-linear code $C_{0,4}$ of binary length 128 with respect to the information set $I^{\prime}=$ $\{1,2,3,4,9,10,33,34\}$.

Propositions 5 and 7 can be applied recursively to acquire s-PD-sets for the infinite family of Hadamard \mathbb{Z}_{4}-linear codes obtained (by using constructions (3) and (4)) from a given Hadamard \mathbb{Z}_{4}-linear code where we already have such set.

References

[1] R. Barrolleta and M. Villanueva, "Partial permutation decoding for binary linear Hadamard codes," Electronic Notes in Discrete Mathematics, 46 (2014) 35-42.
[2] J. J. Bernal, J. Borges, C. Fernández-Córboda, and M. Villanueva, "Permutation decoding of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes," Des. Codes and Cryptogr., DOI 10.1007/s10623-014-9946-4, 2014.
[3] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Villanueva, " $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality," Des. Codes and Cryptogr., vol. 54: 167-179, 2010.
[4] W. Fish, J. D. Key, and E. Mwambene, "Partial permutation decoding for simplex codes," Advances in Mathematics of Comunications, vol. 6(4): 505-516, 2012.
[5] W. C. Huffman, Codes and groups, Handbook of coding theory, 1998.
[6] D. S. Krotov and M. Villanueva "Classification of the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes and their automorphism groups," IEEE Trans. Inf. Theory, vol. 61(2): 887-894, 2015.
[7] D. S. Krotov, " \mathbb{Z}_{4}-linear Hadamard and extended perfect codes," Electronic Notes in Discrete Mathematics, vol. 6 (2001), 107-112.
[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 1977.
[9] J. Pernas, J. Pujol and M. Villanueva. "Characterization of the automorphism group of quaternary linear Hadamard Codes," Des. Codes Cryptogr., 70(1-2), 105-115, 2014.

