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Any nonempty subset C of Zn
2 is a binary code and a subgroup of Zn

2 is called
a binary linear code. Equivalently, any nonempty subset C of Zn

4 is a quaternary
code and a subgroup of Zn

4 is called a quaternary linear code. Quaternary codes
can be seen as binary codes under the usual Gray map Φ : Zn

4 → Z2n
2 defined as

Φ((y1, . . . ,yn)) = (φ(y1), . . . ,φ(yn)), where φ(0) = (0,0), φ(1) = (0,1), φ(2) =
(1,1), φ(3) = (1,0), for all y = (y1, . . . ,yn) ∈ Zn

4. If C is a quaternary linear code,
the binary code C = Φ(C ) is said to be a Z4-linear code.

A Z2Z4-additive code C is a subgroup of Zα
2 ×Zβ

4 . We consider the extension
of the Gray map Φ : Zα

2 ×Zβ

4 → Zα+2β

2 defined as Φ(x,y) = (x,φ(y1), . . . ,φ(yβ )),

for all x ∈ Zα
2 and y = (y1, . . . ,yβ ) ∈ Zβ

4 . This generalization allows us to consider
Z2Z4-additive codes also as binary codes. If C is a Z2Z4-additive code, the binary
code C = Φ(C ) is said to be a Z2Z4-linear code. Moreover, since the code C
is isomorphic to an abelian group Zγ

2 ×Zδ
4 , we say that C (or equivalently the

corresponding Z2Z4-linear code C = Φ(C )) is of type (α,β ;γ,δ ) [3]. Note that
Z2Z4-additive codes can be seen as a generalization of binary (when β = 0) and
quaternary (when α = 0) linear codes. The permutation automorphism group of
C and C = Φ(C ), denoted by PAut(C ) and PAut(C), respectively, is the group
generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length n has 2n codewords and minimum dis-
tance n/2. The Z2Z4-additive codes such that, under the Gray map, give a binary
Hadamard code are called Z2Z4-additive Hadamard codes and the corresponding
Z2Z4-linear codes are called Hadamard Z2Z4-linear codes, or just Hadamard Z4-
linear codes when α = 0. The permutation automorphism group of Z2Z4-additive
Hadamard codes with α = 0 was characterized in [9] and the permutation auto-
morphism group of Z2Z4-linear Hadamard codes was studied in [6].

Let C be a binary code of length n. For a vector v ∈ Zn
2 and a set I ⊆ {1, . . . ,n},

we denote by vI the restriction of v to the coordinates in I and by CI the set {vI :
v ∈C}. Suppose that |C|= 2k. A set I ⊆ {1, . . . ,n} of k coordinate positions is an
information set for C if |CI|= 2k. If such I exists, C is said to be a systematic code.

Permutation decoding is a technique, introduced by MacWilliams [8], which
involves finding a subset S of the permutation automorphism group PAut(C) of a
code C in order to assist in decoding. Let C be a systematic t-error-correcting code
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with information set I. A subset S⊆ PAut(C) is an s-PD-set for the code C if every
s-set of coordinate positions is moved out of the information set I by at least one
element of the set S, where 1≤ s≤ t. If s = t, S is said to be a PD-set.

In [4], it is shown how to find s-PD-sets of size s+ 1 that satisfy the Gordon-
Schönheim bound for partial permutation decoding for the binary simplex code Sm

of length 2m− 1, for all m ≥ 4 and 1 < s ≤
⌊2m−m−1

m

⌋
. In [1], similar results are

establish for the binary linear Hadamard code Hm (extended code of Sm) of length
2m , for all m≥ 4 and 1 < s≤

⌊2m−m−1
1+m

⌋
, following the techniques described in [4].

The paper is organized as follows. In Section 1, we show that the Gordon-
Schönheim bound can be adapted to systematic codes, not necessarily linear. More-
over, we apply the bound of the minimum size of s-PD-sets for binary Hadamard
codes obtained in [1] to Hadamard Z2Z4-linear codes, which are systematic [2] but
not linear in general. In Section 2, we provide a criterion to obtain s-PD-sets of size
s+ 1 for Z4-linear codes. Finally, in Section 3, we recall a recursive construction
to obtain all Z2Z4-additive codes with α = 0 [7] and we give a recursive method to
obtain s-PD-sets for the corresponding Hadamard Z4-linear codes.

1 Minimum size of s-PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes
based on the length, dimension and minimum distance of such codes that can be
adapted for systematic codes (not necessarily linear) easily:

Proposition 1. Let C be a systematic t-error correcting code of length n, size |C|=
2k and minimum distance d. Let r = n− k be the redundancy of C. If S is a PD-set
for C, then

|S| ≥
⌈

n
r

⌈
n−1
r−1

⌈
. . .

⌈
n− t +1
r− t +1

⌉
. . .

⌉⌉⌉
. (1)

The above inequality (1) is often called the Gordon-Schönheim bound. This
result is quoted and proved for linear codes in [5]. We can follow the same proof
since the linearity of the code C is only used to guarantee that C is systematic.
In [2], it is shown that Z2Z4-linear codes are systematic. Moreover, a systematic
encoding is given for these codes.

The Gordon-Schönheim bound can be adapted to s-PD-sets for all s up to the
error correcting capability of the code. Note that the error-correcting capability of
any Hadamard Z2Z4-linear code of length n = 2m is tm = b(d−1)/2c= 2m−2−1.
Therefore, the right side of the bound given by (1), for Hadamard Z2Z4-linear
codes of length 2m and for all 1≤ s≤ tm, becomes

gm(s) =
⌈

2m

2m−m−1

⌈
2m−1

2m−m−2

⌈
. . .

⌈
2m− s+1
2m−m− s

⌉⌉
. . .

⌉⌉
. (2)
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For any m≥ 4 and 1≤ s≤ tm, we have that gm(s)≥ s+1. The smaller the size of
the PD-set is, the more efficient permutation decoding becomes. Because of this,
we will focus on the case when gm(s) = s+1.

2 s-PD-sets of size s+1 for Z4-linear codes

Let C be a Z2Z4-additive code of type (0,β ;γ,δ ) and let C = Φ(C ) be the corre-
sponding Z4-linear code. Let Φ : PAut(C )→ PAut(C) be the map defined as

Φ(τ)(i) =
{

2τ(i/2), if i is even,
2τ( i+1

2 )−1 if i is odd,

for all τ ∈ Sym(β ) and i ∈ {1, . . . ,2β}. The map Φ is a group monomorphism.
Given a subset S of PAut(C )⊆ Sym(β ), we define the set S = Φ(S ) = {Φ(τ) :
τ ∈S }, which is a subset of PAut(C)⊆ Sym(2β ).

A set I = {i1, . . . , iγ+δ} ⊆ {1, . . . ,β} of γ + δ coordinate positions is said
to be a quaternary information set for the code C if the set Φ(I ), defined as
Φ(I ) = {2i1−1,2i1, . . . ,2iδ −1,2iδ ,2iδ+1−1, . . . ,2iδ+γ −1}, is an information
set for C = Φ(C ) for some ordering of elements of I .

Let S be an s-PD-set of size s+1. The set S is a nested s-PD-set if there is an
ordering of the elements of S, S = {σ1, . . . ,σs+1}, such that Si = {σ1, . . . ,σi+1}⊆ S
is an i-PD-set of size i+1, for all i ∈ {1, . . . ,s}.

Proposition 2. Let C be a Z2Z4-additive code of type (0,β ;γ,δ ) with quaternary
information set I and let s be a positive integer. If τ ∈ PAut(C ) has at least γ +δ

disjoint cycles of length s+1 such that there is exactly one quaternary information
position per cycle of length s+ 1, then S = {Φ(τ i)}s+1

i=1 is an s-PD-set of size s+
1 for the Z4-linear code C = Φ(C ) with information set Φ(I ). Moreover, any
ordering of the elements of S gives a nested r-PD-set for any r ∈ {1, . . . ,s}.

Example 3. Let C0,3 be the Z2Z4-additive Hadamard code of type (0,16;0,3) with
generator matrix

G0,3 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

 .

Let τ = (1,16,11,6)(2,7,12,13)(3,14,9,8)(4,5,10,15) ∈ PAut(C0,3)⊆ Sym(16)
[9]. It is straightforward to check that I = {1,2,5} is a quaternary information
set for C0,3. Note that each information position in I is in a different cycle of τ . Let
σ = Φ(τ) ∈ PAut(C0,3) ⊆ Sym(32), where C0,3 = Φ(C0,3). Thus, by Proposition
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2, S = {σ ,σ2,σ3,σ4} is a 3-PD-set of size 4 for C0,3 with information set I =
{1,2,3,4,9,10}. Note that C0,3 is the smallest Hadamard Z4-linear code that is a
binary nonlinear code.

3 s-PD-sets for Hadamard Z4-linear codes

Let 0,1,2 and 3 be the repetition of symbol 0, 1, 2 and 3, respectively. Let Gγ,δ be a
generator matrix of the Z2Z4-additive Hadamard code Cγ,δ of length β = 2m−1 and
type (0,β ;γ,δ ), where m = γ +2δ −1. A generator matrix for the Z2Z4-additive
Hadamard code Cγ+1,δ of length β ′ = 2β = 2m and type (0,β ′;γ + 1,δ ) can be
constructed as follows [7]:

Gγ+1,δ =

(
0 2

Gγ,δ Gγ,δ

)
. (3)

Equivalently, a generator matrix for the Z2Z4-additive Hadamard code Cγ,δ+1
of length β ′′ = 4β = 2m+1 and type (0,β ′′;γ,δ +1) can be constructed as [7]:

Gγ,δ+1 =

(
Gγ,δ Gγ,δ Gγ,δ Gγ,δ

0 1 2 3

)
. (4)

Note that a generator matrix for every code Cγ,δ can be obtained by applying
(3) and (4) recursively over the generator matrix G0,1 = (1) of the code C0,1. From
now on, we assume that Cγ,δ is obtained by using these constructions.

Proposition 4. Let Cγ,δ be a Z2Z4-additive Hadamard code of type (0,β ;γ,δ )
with quaternary information set I . The set I ∪{β +1} is a suitable quaternary
information set for both codes Cγ+1,δ and Cγ,δ+1 obtained from Cγ,δ by applying
constructions (3) and (4), respectively.

Despite the fact that the quaternary information set is the same for Cγ+1,δ and
Cγ,δ+1, the information set for the corresponding binary codes Cγ+1,δ and Cγ,δ+1
are I′ = Φ(I )∪{2β +1} and I′′ = Φ(I )∪{2β +1,2β +2}, respectively.

Given two permutations σ1 ∈ Sym(n1) and σ2 ∈ Sym(n2), we define the per-
mutation (σ1|σ2)∈ Sym(n1+n2), where σ1 acts on the coordinates {1, . . . ,n1} and
σ2 acts on the coordinates {n1+1, . . . ,n1+n2}. Given σi ∈ Sym(ni), i∈{1, . . . ,4},
we define the permutation (σ1|σ2|σ3|σ4) in the same way.

Proposition 5. Let S be an s-PD-set of size l for the Hadamard Z4-linear code
Cγ,δ of binary length n = 2β and type (0,β ;γ,δ ) with respect to an information set
I. Then the set (S|S) = {(σ |σ) : σ ∈ S} is an s-PD-set of size l with respect to the
information set I′ = I∪{n+1} for the Hadamard Z4-linear code Cγ+1,δ of binary
length 2n and type (0,2β ;γ +1,δ ) constructed from (3) and the Gray map.
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Example 6. Let S be the 3-PD-set of size 4 for C0,3 of binary length 32 with respect
to the information set I = {1,2,3,4,9,10}, given in Example 3. By Propositions 4
and 5, the set (S|S) is a 3-PD-set of size 4 for the Hadamard Z4-linear code C1,3 of
binary length 64 with respect to the information set I′ = {1,2,3,4,9,10,33}.

Proposition 5 can not be generalized directly for Hadamard Z4-linear codes
Cγ,δ+1 constructed from (4). Note that if S is an s-PD-set for the Hadamard Z4-
linear code Cγ,δ , then the set (S|S|S|S) = {(σ |σ |σ |σ) : σ ∈ S} is not in general an
s-PD-set for the Hadamard Z4-linear code Cγ,δ+1.

Proposition 7. Let S ⊆ PAut(Cγ,δ ) such that Φ(S ) is an s-PD-set of size l for the
Hadamard Z4-linear code Cγ,δ of binary length n = 2β and type (0,β ;γ,δ ) with
respect to an information set I. Then the set Φ((S |S |S |S )) = {Φ((τ|τ|τ|τ)) :
τ ∈S } is an s-PD-set of size l with respect to the information set I′′ = I ∪{n+
1,n+ 2} for the Hadamard Z4-linear code Cγ,δ+1 of binary length 4n and type
(0,4β ;γ,δ +1) constructed from (4) and the Gray map.

Example 8. Let S = {τ,τ2,τ3,τ4}, where τ is defined as in Example 3. By
Proposition 7, the set Φ((S |S |S |S )) is a 3-PD-set of size 4 for the Hadamard
Z4-linear code C0,4 of binary length 128 with respect to the information set I′ =
{1,2,3,4,9,10,33,34}.

Propositions 5 and 7 can be applied recursively to acquire s-PD-sets for the
infinite family of Hadamard Z4-linear codes obtained (by using constructions (3)
and (4)) from a given Hadamard Z4-linear code where we already have such set.
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