On $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes

J. Borges ${ }^{1}$, C. Fernández-Córdoba ${ }^{1}$, R. Ten-Valls ${ }^{1}$
${ }^{1}$ Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, Spain, \{joaquim.borges, cristina.fernandez, roger.ten\}@uab.cat
This work has been partially supported by the Spanish MEC grant TIN2013-40524-P and by the Catalan AGAUR grant 2014SGR-691.

The $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes has been introduced in [?] and intensively studied during last years. Recently, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes has been defined in [?] and identified as $\mathbb{Z}_{4}[x]$-modules of a certain ring. The duality of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes has been studied in [?].

In recent times, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes were generalized to $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additives codes in [?]. They determine, in particular, the standard forms of generator and paritycheck matrices and present some bounds on the minimum distance.

Let $\mathbb{Z}_{p^{r}}$ and $\mathbb{Z}_{p^{s}}$ be the rings of integers modulo p^{r} and p^{s}, respectively, with p prime and $r \leq s$. Since the residue field of $\mathbb{Z}_{p^{r}}$ and $\mathbb{Z}_{p^{s}}$ is \mathbb{Z}_{p}, then an element b of $\mathbb{Z}_{p^{r}}$ could be written uniquely as $b=b_{0}+p b_{1}+p^{2} b_{2}+\cdots+p^{r-1} b_{r-1}$, and any element $a \in \mathbb{Z}_{p^{s}}$ as $a=a_{0}+p a_{1}+p^{2} a_{2}+\cdots+p^{s-1} a_{s-1}$, where $b_{i}, a_{j} \in \mathbb{Z}_{p}$.

Then we can consider the surjective ring homomorphism $\pi: \mathbb{Z}_{p^{s}} \rightarrow \mathbb{Z}_{p^{r}}$, where $\pi(a)=a \bmod p^{r}$.

Note that $\pi\left(p^{i}\right)=0$ if $i \geq r$. Let $a \in \mathbb{Z}_{p^{s}}$ and $b \in \mathbb{Z}_{p^{r}}$. We define a multiplication $*$ as follows: $a * b=\pi(a) b$. Then, $\mathbb{Z}_{p^{r}}$ is a $\mathbb{Z}_{p^{s}}$-module with external multiplication given by π. Since $\mathbb{Z}_{p^{r}}$ is commutative, then $*$ has the commutative property. Then, we can generalize this multiplication over the ring $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ as follows. Let a be an element of $\mathbb{Z}_{p^{s}}$ and $\mathbf{u}=\left(u \mid u^{\prime}\right)=\left(u_{0}, u_{1}, \ldots, u_{\alpha-1} \mid u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{\beta-1}^{\prime}\right) \in \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$. Then, $a * \mathbf{u}=\left(\pi(a) u_{0}, \pi(a) u_{1}, \ldots, \pi(a) u_{\alpha-1} \mid a u_{0}^{\prime}, a u_{1}^{\prime}, \ldots, a u_{\beta-1}^{\prime}\right)$. With this external operation the ring $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ is also a $\mathbb{Z}_{p^{s}}$-module.

Definition 1. $A \mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive code \mathscr{C} is a $\mathbb{Z}_{p^{s}}$ submodule of $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$.
The structure of the generator matrices in standard form and the type of $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ additives codes are defined and determinated in [?].

Let \mathscr{C}_{α} be the canonical projection of \mathscr{C} on the first α coordinates and \mathscr{C}_{β} on the last β coordinates. The canonical projection is a linear map. Then, \mathscr{C}_{α} and \mathscr{C}_{β} are $\mathbb{Z}_{p^{r}}$ and $\mathbb{Z}_{p^{s}}$ linear codes of length α and β, respectively. A code \mathscr{C} is called separable if \mathscr{C} is the direct product of \mathscr{C}_{α} and \mathscr{C}_{β}, i.e., $\mathscr{C}=\mathscr{C}_{\alpha} \times \mathscr{C}_{\beta}$.

Since $r \leq s$, we consider the inclusion map

$$
\begin{array}{rlll}
l: \mathbb{Z}_{p^{r}} & \hookrightarrow & \mathbb{Z}_{p^{s}} \\
b & \mapsto &
\end{array}
$$

Let $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$, then the inner product is defined [?] as

$$
\mathbf{u} \cdot \mathbf{v}=p^{s-r} \sum_{i=0}^{\alpha-1} \imath\left(u_{i} v_{i}\right)+\sum_{j=0}^{\beta-1} u_{j}^{\prime} v_{j}^{\prime} \in \mathbb{Z}_{p^{s}},
$$

and the dual code of a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive code \mathscr{C} in $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ is defined in a natural way as

$$
\mathscr{C}^{\perp}=\left\{\mathbf{v} \in \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta} \mid \mathbf{u} \cdot \mathbf{v}=0, \forall \mathbf{u} \in \mathscr{C}\right\} .
$$

Let \mathscr{C} be a separable code, then \mathscr{C}^{\perp} is also separable and $\mathscr{C}^{\perp}=\mathscr{C}_{\alpha}^{\perp} \times \mathscr{C}_{\beta}^{\perp}$.

$\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s} \text {-additive cyclic codes }}$

Definition 2. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive code. The code \mathscr{C} is called cyclic if

$$
\left(u_{0}, u_{1}, \ldots, u_{\alpha-2}, u_{\alpha-1} \mid u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{\beta-2}^{\prime}, u_{\beta-1}^{\prime}\right) \in \mathscr{C}
$$

implies

$$
\left(u_{\alpha-1}, u_{0}, u_{1}, \ldots, u_{\alpha-2} \mid u_{\beta-1}^{\prime}, u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{\beta-2}^{\prime}\right) \in \mathscr{C} .
$$

Let $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{\alpha-1} \mid u_{0}^{\prime}, \ldots, u_{\beta-1}^{\prime}\right)$ be a codeword in \mathscr{C} and let i be an integer. Then we denote by $\mathbf{u}^{(i)}=\left(u_{0+i}, u_{1+i}, \ldots, u_{\alpha-1+i} \mid u_{0+i}^{\prime}, \ldots, u_{\beta-1+i}^{\prime}\right)$ the i th shift of \mathbf{u}, where the subscripts are read modulo α and β, respectively.

Note that \mathscr{C}_{α} and \mathscr{C}_{β} are $\mathbb{Z}_{p^{r}}$ and $\mathbb{Z}_{p^{s}}$ cyclic codes of length α and β.
In the particular case that $r=s$, the simultaneous shift of two sets of coordinates that leave invariant the code $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{r}}^{\beta}$ is known in the literature as double cyclic code over $\mathbb{Z}_{p^{r}}$, see [?], [?]. The term double cyclic is given in order to distinguish the cyclic code $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{r}}^{\beta}$ to the cyclic code $\mathscr{C}^{\prime} \subseteq \mathbb{Z}_{p^{r}}^{\alpha+\beta}$.

Denote by $\mathscr{R}_{r, s}^{\alpha, \beta}$ the ring $\mathbb{Z}_{p^{r}}[x] /\left(x^{\alpha}-1\right) \times \mathbb{Z}_{p^{s}}[x] /\left(x^{\beta}-1\right)$. There is a bijective map between $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ and $\mathscr{R}_{r, s}^{\alpha, \beta}$ given by:

$$
\left(u_{0}, u_{1}, \ldots, u_{\alpha-1} \mid u_{0}^{\prime}, \ldots, u_{\beta-1}^{\prime}\right) \mapsto\left(u_{0}+u_{1} x+\cdots+u_{\alpha-1} x^{\alpha-1} \mid u_{0}^{\prime}+\cdots+u_{\beta-1}^{\prime} x^{\beta-1}\right) .
$$

We denote the image of the vector \mathbf{u} by $\mathbf{u}(x)$. Note that we can extend the maps l and π to the polynomial rings $\mathbb{Z}_{p^{r}}[x]$ and $\mathbb{Z}_{p^{s}}[x]$ applying this map to each of the coefficients of a given polynomial.

Definition 3. Define the operation $*: \mathbb{Z}_{p^{s}}[x] \times \mathscr{R}_{r, s}^{\alpha, \beta} \rightarrow \mathscr{R}_{r, s}^{\alpha, \beta}$ as

$$
\lambda(x) *\left(u(x) \mid u^{\prime}(x)\right)=\left(\pi(\lambda(x)) u(x) \mid \lambda(x) u^{\prime}(x)\right),
$$

where $\lambda(x) \in \mathbb{Z}_{p^{s}}[x]$ and $\left(u(x) \mid u^{\prime}(x)\right) \in \mathscr{R}_{r, s}^{\alpha, \beta}$.
The ring $\mathscr{R}_{r, s}^{\alpha, \beta}$ with the external operation $*$ is a $\mathbb{Z}_{p^{s}}[x]$-module. Let $\mathbf{u}(x)=$ $\left(u(x) \mid u^{\prime}(x)\right)$ be an element of $\mathscr{R}_{r, s}^{\alpha, \beta}$. Note that if we operate $\mathbf{u}(x)$ by x we get

$$
\begin{aligned}
x * \mathbf{u}(x) & =x *\left(u(x) \mid u^{\prime}(x)\right) \\
& =\left(u_{0} x+\cdots+u_{\alpha-2} x^{\alpha-1}+u_{\alpha-1} x^{\alpha} \mid u_{0}^{\prime} x+\cdots+u_{\beta-2}^{\prime} x^{\beta-1}+u_{\beta-1}^{\prime} x^{\beta}\right) \\
& =\left(u_{\alpha-1}+u_{0} x+\cdots+u_{\alpha-2} x^{\alpha-1} \mid u_{\beta-1}^{\prime}+u_{0}^{\prime} x+\cdots+u_{\beta-2}^{\prime} x^{\beta-1}\right) .
\end{aligned}
$$

Hence, $x * \mathbf{u}(x)$ is the image of the vector $\mathbf{u}^{(1)}$. Thus, the operation of $\mathbf{u}(x)$ by x in $\mathscr{R}_{r, s}^{\alpha, \beta}$ corresponds to a shift of \mathbf{u}. In general, $x^{i} * \mathbf{u}(x)=\mathbf{u}^{(i)}(x)$ for all i.

Now, we study submodules of $\mathscr{R}_{r, s}^{\alpha, \beta}$. We describe the generators of such submodules and state some properties. From now on, $\langle S\rangle$ will denote the $\mathbb{Z}_{p^{s}}[x]-$ submodule generated by a subset S of $\mathscr{R}_{r, s}^{\alpha, \beta}$.

For the rest of the discussion we will consider that α and β are coprime integers with p. From this assumption we know that $\mathbb{Z}_{p^{r}}[x] /\left(x^{\alpha}-1\right)$ and $\mathbb{Z}_{p^{r}}[x] /\left(x^{\beta}-1\right)$ are principal ideal rings, see [?],[?].

Theorem 4. The $\mathbb{Z}_{p^{s}}[x]$-module $\mathscr{R}_{r, s}^{\alpha, \beta}$ is noetherian, and every submodule \mathscr{C} of $\mathscr{R}_{r, s}^{\alpha, \beta}$ can be written as

$$
\mathscr{C}=\langle(b(x) \mid 0),(\ell(x) \mid a(x))\rangle,
$$

where $b(x), a(x)$ are generator polynomials in $\mathbb{Z}_{p^{r}}[x] /\left(x^{\alpha}-1\right)$ and $\mathbb{Z}_{p^{r}}[x] /\left(x^{\beta}-1\right)$ resp., and $\ell(x) \in \mathbb{Z}_{p^{r}}[x] /\left(x^{\alpha}-1\right)$.

From the previous results, it is clear that we can identify codes in $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{r}}^{\beta}$ that are cyclic as submodules of $\mathscr{R}_{r, s}^{\alpha, \beta}$. So, any submodule of $\mathscr{R}_{r, s}^{\alpha, \beta}$ is a cyclic code. From now on, we will denote by \mathscr{C} indistinctly both the code and the corresponding submodule.
Proposition 5. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic code. Then, there exist polynomials $\ell(x)$ and $b_{0}(x)\left|b_{1}(x)\right| \ldots\left|b_{r-1}(x)\right|\left(x^{\alpha}-1\right)$ over $\mathbb{Z}_{p^{r}}[x]$, and polynomials $a_{0}(x)\left|a_{1}(x)\right| \cdots\left|a_{s-1}(x)\right|\left(x^{\beta}-1\right)$ over $\mathbb{Z}_{p^{s}}[x]$ such that
$\mathscr{C}=\left\langle\left(b_{0}(x)+p b_{1}(x)+\cdots+p^{r-1} b_{r-1}(x) \mid 0\right),\left(\ell(x) \mid a_{0}(x)+p a_{1}(x)+\cdots+p^{s-1} a_{s-1}(x)\right)\right\rangle$.

Let $b(x)=b_{0}(x)+p b_{1}(x)+\cdots+p^{r-1} b_{r-1}(x)$ and $a(x)=a_{0}(x)+p a_{1}(x)+\cdots+$ $p^{s-1} a_{s-1}(x)$, for polynomials $b_{i}(x)$ and $a_{j}(x)$ as in Proposition ??. Then, for the rest of the discussion, we assume that a cyclic code \mathscr{C} over $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ is generated by $\langle(b(x) \mid 0),(\ell(x) \mid a(x))\rangle$. Since $b_{0}(x)$ is a factor of $x^{\alpha}-1$ and for $i=1 \ldots r-1$ the polynomial $b_{i}(x)$ is a factor of $b_{i-1}(x)$, we will denote $\hat{b}_{0}(x)=\frac{x^{\alpha}-1}{b_{0}(x)}$ and $\hat{b}_{i}(x)=$ $\frac{b_{i-1}(x)}{b_{i}(x)}$ for $i=1 \ldots r-1$. In the same way, we define $\hat{a}_{0}(x)=\frac{x^{\beta}-1}{a_{0}(x)}, \hat{a}_{j}(x)=\frac{a_{j-1}(x)}{a_{j}(x)}$ for $j=1 \ldots s-1$.

Proposition 6. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ additive cyclic code. Then,

$$
\prod_{t=0}^{s-1} \hat{a}_{t}(x) *(\ell(x) \mid a(x)) \in\langle(b(x) \mid 0)\rangle
$$

Theorem 7. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic code. Define

$$
B_{p^{j}}=\left[x^{i}\left(\prod_{t=0}^{j-1} \hat{b}_{t}(x)\right)(b(x) \mid 0)\right]_{i=0}^{\operatorname{deg}\left(\hat{b}_{j}(x)\right)-1}
$$

for $0 \leq j \leq r-1$, and

$$
A_{p^{k}}=\left[x^{i}\left(\prod_{t=0}^{k-1} \hat{a}_{t}(x)\right)(\ell(x) \mid a(x))\right]_{i=0}^{\operatorname{deg}\left(\hat{a}_{k}(x)\right)-1}
$$

for $0 \leq k \leq s-1$. Then,

$$
S=\bigcup_{j=0}^{r-1} B_{p^{j}} \bigcup_{t=0}^{s-1} A_{p^{t}}
$$

forms a minimal generating set for \mathscr{C} as a $\mathbb{Z}_{p^{s} \text {-module. Moreover, }}$

$$
|\mathscr{C}|=p^{\sum_{i=0}^{r-1}(r-i) \operatorname{deg}\left(\hat{b}_{i}(x)\right)+\sum_{j=0}^{s-1}(s-j) \operatorname{deg} \hat{a}_{j}(x)} .
$$

Let \mathscr{C} be a cyclic code and $\mathscr{C} \perp$ the dual code of \mathscr{C}. Taking a vector \mathbf{v} of $\mathscr{C}^{\perp}, \mathbf{u} \cdot \mathbf{v}=0$ for all \mathbf{u} in \mathscr{C}. Since \mathbf{u} belongs to \mathscr{C}, we know that $\mathbf{u}^{(-1)}$ is also a codeword. So, $\mathbf{u}^{(-1)} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{v}^{(1)}=0$ for all \mathbf{u} from \mathscr{C}, therefore $\mathbf{v}^{(1)}$ is in \mathscr{C}^{\perp} and \mathscr{C}^{\perp} is also a cyclic code over $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$. Consequently, we obtain the following proposition.

Proposition 8. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic code. Then the dual code of \mathscr{C} is also a cyclic code in $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$.

Proposition 9. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ be a $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic code. Then,

$$
\left|\mathscr{C}^{\perp}\right|=p^{\sum_{i=1}^{r} i \operatorname{deg}\left(\hat{b}_{i}(x)\right)+\sum_{j=1}^{s} j \operatorname{deg}\left(\hat{a}_{j}(x)\right)} .
$$

The reciprocal polynomial of a polynomial $p(x)$ is $x^{\operatorname{deg}(p(x))} p\left(x^{-1}\right)$ and is denoted by $p^{*}(x)$. We denote the polynomial $\sum_{i=0}^{m-1} x^{i}$ by $\theta_{m}(x)$, and the least common multiple of α and β by \mathfrak{m}.

Definition 10. Let $\mathbf{u}(x)=\left(u(x) \mid u^{\prime}(x)\right)$ and $\mathbf{v}(x)=\left(v(x) \mid v^{\prime}(x)\right)$ be elements in $\mathscr{R}_{r, s}^{\alpha, \beta}$. We define the map $\circ: \mathscr{R}_{r, s}^{\alpha, \beta} \times \mathscr{R}_{r, s}^{\alpha, \beta} \longrightarrow \mathbb{Z}_{p^{s}}[x] /\left(x^{\mathfrak{m}}-1\right)$, such that

$$
\begin{aligned}
\circ(\mathbf{u}(x), \mathbf{v}(x))= & p^{s-r} l\left(u(x) v^{*}(x)\right) \theta_{\frac{\mathfrak{m}}{r}}\left(x^{r}\right) x^{\mathfrak{m}-1-\operatorname{deg}(v(x))}+ \\
& +u^{\prime}(x) v^{\prime *}(x) \theta_{\frac{\mathfrak{m}}{s}}^{s}\left(x^{s}\right) x^{\mathfrak{m}-1-\operatorname{deg}\left(v^{\prime}(x)\right)} \quad \bmod \left(x^{\mathfrak{m}}-1\right) .
\end{aligned}
$$

The map \circ is linear in each of its arguments; i.e., if we fix the first entry of the map invariant, while letting the second entry vary, then the result is a linear map. Similarly, when fixing the second entry invariant. Then, the map \circ is a bilinear map between $\mathbb{Z}_{p^{s}}[x]$-modules.

From now on, we denote $\circ(\mathbf{u}(x), \mathbf{v}(x))$ by $\mathbf{u}(x) \circ \mathbf{v}(x)$. Note that $\mathbf{u}(x) \circ \mathbf{v}(x)$ belongs to $\mathbb{Z}_{p^{s}}[x] /\left(x^{\mathfrak{m}}-1\right)$.

Theorem 11. Let \mathbf{u} and \mathbf{v} be vectors in $\mathbb{Z}_{p^{r}}^{\alpha} \times \mathbb{Z}_{p^{s}}^{\beta}$ with associated polynomials $\mathbf{u}(x)=\left(u(x) \mid u^{\prime}(x)\right)$ and $\mathbf{v}(x)=\left(v(x) \mid v^{\prime}(x)\right)$, respectively. Then, \mathbf{v} is orthogonal to \mathbf{u} and all its shifts if and only if

$$
\mathbf{u}(x) \circ \mathbf{v}(x)=0 \quad \bmod \left(x^{\mathfrak{m}}-1\right) .
$$

References

[1] T. Abualrub, I. Siap, N. Aydin. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes. IEEE Trans. Info. Theory, vol. 60, No. 3, pp. 1508-1514, 2014.
[2] I. Aydogdu, I. Siap. On $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$ additive codes. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2014.952728, 2014.
[3] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality. Designs, Codes and Cryptography, vol. 54, No. 2, pp. 167-179, 2010.
[4] J. Borges, C. Fernández-Córdoba, R. Ten-Valls. \mathbb{Z}_{2}-double cyclic codes. arXiv:1410.5604, 2014.
[5] J. Borges, C. Fernández-Córdoba, R. Ten-Valls. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes, generator polynomials and dual codes. arXiv:1406.4425, 2014.
[6] A.R. Calderbank, N.J.A. Sloane. Modular and p-adic cyclic codes. Designs, Codes and Cryptography, vol. 37, No. 6, pp. 21-35, 1995.
[7] H.Q. Dinh, S.R. López-Permouth Cyclic and negacyclic codes over finite chain rings. Lecture Notes in Computer Science, n. 5228, pp. 46-55, 2008.
[8] J. Gao, M. Shi, T. Wu and F. Fu. On double cyclic codes over \mathbb{Z}_{4}. arXiv: 1501.01360, 2015.

