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The Z,7Z4-additive codes has been introduced in [?] and intensively studied
during last years. Recently, Z,7Z4-additive cyclic codes has been defined in [?] and
identified as Z4[x]-modules of a certain ring. The duality of Z,Z4-additive cyclic
codes has been studied in [?].

In recent times, Z,Z4-additive codes were generalized to Z - Z,s-additives codes
in [?]. They determine, in particular, the standard forms of generator and parity-
check matrices and present some bounds on the minimum distance.

Let Z,r and Z,s be the rings of integers modulo p" and p®, respectively, with
p prime and r < s. Since the residue field of Z, and Zs is Z,, then an element b
of Z,r could be written uniquely as b = by + pb; + p?by+---+p"'b,_y, and any
element a € Z,s as a = ap + pa; +pPay+---+p*la,_1, where bi,a; € Z,.

Then we can consider the surjective ring homomorphism 7 : Z s — Z,r, where
m(a) =a mod p".

Note that 7(p’) =0if i > r. Leta € Z,» and b € Z,r. We define a multiplication
* as follows: a*b = m(a)b. Then, Z,r is a Z,-module with external multiplication
given by 7. Since Z,- is commutative, then * has the commutative property. Then,
we can generalize this multiplication over the ring Zg‘r X Zﬁs as follows. Let a be an

element of Z,s and w = (u | u') = (ug,uy,...,ug—1 | ”67”,17“-’“2371) €Zy xZﬁ.;.

Then, axu = (w(a)uo, w(a)us,...,w(a)ug—1 | auy,au,...,aug ;). With this ex-

ternal operation the ring Zf,‘r X Zﬁr is also a Z,s-module.

Definition 1. A Z,Z,-additive code € is a Zps-submodule of 7.y, x Zﬁs.

The structure of the generator matrices in standard form and the type of ZZ ,s-
additives codes are defined and determinated in [?].

Let ¢ be the canonical projection of ¢’ on the first & coordinates and %5 on
the last B coordinates. The canonical projection is a linear map. Then, %5 and 6
are Z, and Z,s linear codes of length & and 3, respectively. A code € is called
separable if € is the direct product of €y and 63, i.e., € = € X €p.



Since r < s, we consider the inclusion map

V! Ly — Ly
b — b

Letu,v e Z[‘f, X ng, then the inner product is defined [?] as
a—1 p-1
u-v=p"" Z t(uvy) + Z UV € Lps,
i=0 j=0

and the dual code of a Z,Zs-additive code ¢’ in Zg‘r X Zﬁx is defined in a natural
way as
¢+ ={ve Ly x ng|u~v =0,Yue@}.

Let % be a separable code, then € is also separable and €+ = €5 x ‘ﬁﬁ
Ly Zps-additive cyclic codes

Definition 2. Let € C Zf,‘r X lei- be a Ly Zys-additive code. The code € is called
cyclic if

(to,uyy .. Ug—2,Ug—1 | ué,u’l,...,ulﬁ_z,u}j_l) €t
implies
(U1, g, ULy - - - U2 | u;;_l,u{),u’],...,uk_z) €.
Let u = (ug,u1,...,ug—1 | ”6""7”2371) be a codeword in € and let i be an
integer. Then we denote by u') = (ugj,u1 44, ... tg— 14 | Ui ”M;S—H—i) the ith

shift of u, where the subscripts are read modulo « and f3, respectively.

Note that ¢ and 63 are Z, and Zs cyclic codes of length o and f3.

In the particular case that r = s, the simultaneous shift of two sets of coordinates
that leave invariant the code ¥ C Zgr X Zg,- is known in the literature as double
cyclic code over Z,r, see [?], [?]. The term double cyclic is given in order to
distinguish the cyclic code ¢’ C Z7, x Zgr to the cyclic code ¢’ C ng P

Denote by Zr. “F the ring Zp[x]/(x* —1) X Zps[x]/(xP —1). There is a bijective
map between Zj, x lejs and %y, - given by:

(uo,ui, ..., ug—1 |u6,...,ub71) > (g +urx+ -4 g x*! \u6+--~+ub71xﬁ71).

We denote the image of the vector u by u(x). Note that we can extend the maps
t and 7 to the polynomial rings Z,- x| and Zs[x] applying this map to each of the
coefficients of a given polynomial.



Definition 3. Define the operation  : Z s [x] X %y, b %gs’ﬁ as
A(x)# (u(x) [ (x)) = ((A(x))u(x) | A (x)u (x)),
where A(x) € Zys[x] and (u(x) | u'(x)) € %ﬁf;ﬁ.

The ring %, P with the external operation * is a Zps[x]-module. Let u(x) =
(u(x) | u/(x)) be an element of %ﬁ‘;ﬁ . Note that if we operate u(x) by x we get

xxu(x) = x* (u(x) | ' (x))
= (uox 4+ ug—2x* " Fug_1x* | upx+ ~--+u%72xﬁ’1 +ubflxﬁ)

= (g1 Fuox+ -+ ug_x%"| uk_l + upx + - --+u23_2xﬁ_1).

Hence, x *u(x) is the image of the vector ul!). Thus, the operation of u(x) by x in
%gs’ﬁ corresponds to a shift of u. In general, x' s u(x) = u®) (x) for all .

Now, we study submodules of %ﬁ‘ S’B . We describe the generators of such sub-
modules and state some properties. From now on, (S) will denote the Z,s[x]-
submodule generated by a subset S of %2‘ S’B .

For the rest of the discussion we will consider that ¢« and 8 are coprime integers
with p. From this assumption we know that Z, [x]/(x* — 1) and Zs[x]/(xP — 1)
are principal ideal rings, see [?],[?].

Theorem 4. The Z,s[x]-module Ky, ;ﬁ is noetherian, and every submodule € of
%y, “P can be written as

¢ =((b(x)]0),(£(x) | a(x))),

where b(x),a(x) are generator polynomials in Zy[x]/(x* — 1) and Zps[x] / (xP — 1)
resp., and {(x) € Zy[x]/(x* —1).

From the previous results, it is clear that we can identify codes in Zj, x ng that

are cyclic as submodules of %;f‘ s’ﬁ . So, any submodule of %’f‘sﬁ is a cyclic code.
From now on, we will denote by ¢ indistinctly both the code and the corresponding
submodule.

Proposition 5. Let € C Z; X ng be a 7, Lys-additive cyclic code. Then, there
exist polynomials ¢(x) and by(x)|b1(x)]|...|by—1(x)|(x* — 1) over Z,r[x], and poly-
nomials ao(x)|ay (x)| -+~ |as_1(x)|(xF — 1) over Z s [x] such that

% = ((bo(x)+pbi (x)+---+p b 1(x) |0), (£(x) | ao(x) + par (x) + -+ p* a1 (x))).



Let b(x) = bo(x) + pbi (x)+- -+ p b1 (x) and a(x) = ap(x) + pay (x) +- - -+
p*las_1(x), for polynomials b;(x) and a;(x) as in Proposition ??. Then, for the
rest of the discussion, we assume that a cyclic code ¢ over Zg‘r X ng is generated
by ((b(x) | 0),(¢(x) | a(x))). Since by(x) is a factor of x* — 1 and fori=1...r—1
the polynomial b;(x) is a factor of b;_1 (x), we will denote by (x) = ’ZZ(; and b;(x) =

bi_1(x)
bi(x)
forj=1...s—1.

fori=1...r— 1. In the same way, we define do(x) = ’;ﬁ&%, aj(x) = 245+

Proposition 6. Let € C Zg‘r X ng be a 7, Lps-additive cyclic code. Then,

[T a: () (e(x) | a(x) € {(b(x) | 0)).

t=0

Theorem 7. Let € C Z, X ng be a 7L Lys-additive cyclic code. Define

= deg(b;(x))~1
B, = [x‘(ll by(x))(b(x) | 0)] )
1= i=0
for0< j<r—1, and
e deg((x))—1
A= [xm 4, ()(E(x) | a<x>>] ,
=0 i=0

for0 <k <s—1. Then,
r—1 s—1
S - U Bpj UAP'
j=0 =0
forms a minimal generating set for € as a Zps-module. Moreover,

€| = pz,:(% (r—i) deg(bi(x))+ L} g (s—j) dega;(x)

Let ¢ be a cyclic code and € the dual code of %. Taking a vector v of
%+, u-v=0 forall uin %. Since u belongs to €', we know that u=Y is also a
codeword. So, u=D .y =u-v() =0 for all u from %, therefore vl is in ¢+ and
€ is also a cyclic code over Zg, X ng. Consequently, we obtain the following
proposition.

Proposition 8. Let ¢ C Z; x ng be a Ly Zys-additive cyclic code. Then the dual

code of € is also a cyclic code in Zg‘r X ng.



Proposition 9. Let € C Zgr X ng be a 7, Zps-additive cyclic code. Then,
|| = pri-ti deg(bi(x))+ X}y jdeg(d;(x))

The reciprocal polynomial of a polynomial p(x) is x9€P™) p(x~1) and is de-
noted by p*(x). We denote the polynomial Z;”:_Ol x by 6,,(x), and the least common
multiple of @ and f3 by m.

Definition 10. Ler u(x) = (u(x) | u/(x)) and v(x) = (v(x) | V(x)) be elements in
,@gx’ﬁ. We define the map o : %g;ﬁ X %’gs’ﬁ — Zps[x]/(x™ — 1), such that

o(u(x), ¥(x)) =p* "1 (u(x)v* (x)) Om (x)x™ o)y
+ u'(x)v'*(x) 9% (xs)xm_l_deg(‘/(x)) mod (xm o 1)'

The map o is linear in each of its arguments; i.e., if we fix the first entry of the
map invariant, while letting the second entry vary, then the result is a linear map.
Similarly, when fixing the second entry invariant. Then, the map o is a bilinear
map between Z s [x]-modules.

From now on, we denote o(u(x),v(x)) by u(x) o v(x). Note that u(x) o v(x)
belongs to Zps[x]/(x™ —1).

Theorem 11. Let u and v be vectors in Zg‘, X ng with associated polynomials
u(x) = (u(x) | /(x)) and v(x) = (v(x) | V(x)), respectively. Then, v is orthogonal
to u and all its shifts if and only if

u(x)ov(x) =0 mod (x™—1).
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