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The Z2Z4-additive codes has been introduced in [?] and intensively studied
during last years. Recently, Z2Z4-additive cyclic codes has been defined in [?] and
identified as Z4[x]-modules of a certain ring. The duality of Z2Z4-additive cyclic
codes has been studied in [?].

In recent times, Z2Z4-additive codes were generalized to ZprZps-additives codes
in [?]. They determine, in particular, the standard forms of generator and parity-
check matrices and present some bounds on the minimum distance.

Let Zpr and Zps be the rings of integers modulo pr and ps, respectively, with
p prime and r ≤ s. Since the residue field of Zpr and Zps is Zp, then an element b
of Zpr could be written uniquely as b = b0 + pb1 + p2b2 + · · ·+ pr−1br−1, and any
element a ∈ Zps as a = a0 + pa1 + p2a2 + · · ·+ ps−1as−1, where bi,a j ∈ Zp.

Then we can consider the surjective ring homomorphism π : Zps � Zpr , where
π(a) = a mod pr.

Note that π(pi) = 0 if i≥ r. Let a∈Zps and b∈Zpr . We define a multiplication
∗ as follows: a∗b = π(a)b. Then, Zpr is a Zps-module with external multiplication
given by π . Since Zpr is commutative, then ∗ has the commutative property. Then,
we can generalize this multiplication over the ring Zα

pr ×Zβ

ps as follows. Let a be an

element of Zps and u = (u | u′) = (u0,u1, . . . ,uα−1 | u′0,u′1, . . . ,u′β−1) ∈ Zα
pr ×Zβ

ps .
Then, a ∗ u = (π(a)u0,π(a)u1, . . . ,π(a)uα−1 | au′0,au′1, . . . ,au′

β−1). With this ex-

ternal operation the ring Zα
pr ×Zβ

ps is also a Zps-module.

Definition 1. A ZprZps-additive code C is a Zps-submodule of Zα
pr ×Zβ

ps .

The structure of the generator matrices in standard form and the type of ZprZps-
additives codes are defined and determinated in [?].

Let Cα be the canonical projection of C on the first α coordinates and Cβ on
the last β coordinates. The canonical projection is a linear map. Then, Cα and Cβ

are Zpr and Zps linear codes of length α and β , respectively. A code C is called
separable if C is the direct product of Cα and Cβ , i.e., C = Cα ×Cβ .
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Since r ≤ s, we consider the inclusion map

ι : Zpr ↪→ Zps

b 7→ b
.

Let u,v ∈ Zα
pr ×Zβ

ps , then the inner product is defined [?] as

u ·v = ps−r
α−1

∑
i=0

ι(uivi)+
β−1

∑
j=0

u′jv
′
j ∈ Zps ,

and the dual code of a ZprZps-additive code C in Zα
pr ×Zβ

ps is defined in a natural
way as

C⊥ = {v ∈ Zα
pr ×Zβ

ps |u ·v = 0,∀u ∈ C }.

Let C be a separable code, then C⊥ is also separable and C⊥ = C⊥α ×C⊥
β

.

ZprZps-additive cyclic codes

Definition 2. Let C ⊆ Zα
pr ×Zβ

ps be a ZprZps-additive code. The code C is called
cyclic if

(u0,u1, . . . ,uα−2,uα−1 | u′0,u′1, . . . ,u′β−2,u
′
β−1) ∈ C

implies
(uα−1,u0,u1, . . . ,uα−2 | u′β−1,u

′
0,u
′
1, . . . ,u

′
β−2) ∈ C .

Let u = (u0,u1, . . . ,uα−1 | u′0, . . . ,u′β−1) be a codeword in C and let i be an

integer. Then we denote by u(i) = (u0+i,u1+i, . . . ,uα−1+i | u′0+i, . . . ,u
′
β−1+i) the ith

shift of u, where the subscripts are read modulo α and β , respectively.
Note that Cα and Cβ are Zpr and Zps cyclic codes of length α and β .
In the particular case that r = s, the simultaneous shift of two sets of coordinates

that leave invariant the code C ⊆ Zα
pr ×Zβ

pr is known in the literature as double
cyclic code over Zpr , see [?], [?]. The term double cyclic is given in order to
distinguish the cyclic code C ⊆ Zα

pr ×Zβ

pr to the cyclic code C ′ ⊆ Zα+β

pr .

Denote by Rα,β
r,s the ring Zpr [x]/(xα−1)×Zps [x]/(xβ −1). There is a bijective

map between Zα
pr ×Zβ

ps and Rα,β
r,s given by:

(u0,u1, . . . ,uα−1 | u′0, . . . ,u′β−1) 7→ (u0 +u1x+ · · ·+uα−1xα−1 | u′0 + · · ·+u′
β−1xβ−1).

We denote the image of the vector u by u(x). Note that we can extend the maps
ι and π to the polynomial rings Zpr [x] and Zps [x] applying this map to each of the
coefficients of a given polynomial.
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Definition 3. Define the operation ∗ : Zps [x]×Rα,β
r,s →Rα,β

r,s as

λ (x)∗ (u(x) | u′(x)) = (π(λ (x))u(x) | λ (x)u′(x)),

where λ (x) ∈ Zps [x] and (u(x) | u′(x)) ∈Rα,β
r,s .

The ring Rα,β
r,s with the external operation ∗ is a Zps [x]-module. Let u(x) =

(u(x) | u′(x)) be an element of Rα,β
r,s . Note that if we operate u(x) by x we get

x∗u(x) = x∗ (u(x) | u′(x))
= (u0x+ · · ·+uα−2xα−1 +uα−1xα | u′0x+ · · ·+u′

β−2xβ−1 +u′
β−1xβ )

= (uα−1 +u0x+ · · ·+uα−2xα−1 | u′
β−1 +u′0x+ · · ·+u′

β−2xβ−1).

Hence, x∗u(x) is the image of the vector u(1). Thus, the operation of u(x) by x in
Rα,β

r,s corresponds to a shift of u. In general, xi ∗u(x) = u(i)(x) for all i.
Now, we study submodules of Rα,β

r,s . We describe the generators of such sub-
modules and state some properties. From now on, 〈S〉 will denote the Zps [x]-
submodule generated by a subset S of Rα,β

r,s .
For the rest of the discussion we will consider that α and β are coprime integers

with p. From this assumption we know that Zpr [x]/(xα − 1) and Zps [x]/(xβ − 1)
are principal ideal rings, see [?],[?].

Theorem 4. The Zps [x]-module Rα,β
r,s is noetherian, and every submodule C of

Rα,β
r,s can be written as

C = 〈(b(x) | 0),(`(x) | a(x))〉,

where b(x),a(x) are generator polynomials in Zpr [x]/(xα−1) and Zps [x]/(xβ −1)
resp., and `(x) ∈ Zpr [x]/(xα −1).

From the previous results, it is clear that we can identify codes in Zα
pr ×Zβ

ps that

are cyclic as submodules of Rα,β
r,s . So, any submodule of Rα,β

r,s is a cyclic code.
From now on, we will denote by C indistinctly both the code and the corresponding
submodule.

Proposition 5. Let C ⊆ Zα
pr ×Zβ

ps be a ZprZps-additive cyclic code. Then, there
exist polynomials `(x) and b0(x)|b1(x)| . . . |br−1(x)|(xα −1) over Zpr [x], and poly-
nomials a0(x)|a1(x)| · · · |as−1(x)|(xβ −1) over Zps [x] such that

C = 〈(b0(x)+ pb1(x)+ · · ·+ pr−1br−1(x) | 0),(`(x) | a0(x)+ pa1(x)+ · · ·+ ps−1as−1(x))〉.
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Let b(x)= b0(x)+ pb1(x)+ · · ·+ pr−1br−1(x) and a(x)= a0(x)+ pa1(x)+ · · ·+
ps−1as−1(x), for polynomials bi(x) and a j(x) as in Proposition ??. Then, for the
rest of the discussion, we assume that a cyclic code C over Zα

pr ×Zβ

ps is generated
by 〈(b(x) | 0),(`(x) | a(x))〉. Since b0(x) is a factor of xα −1 and for i = 1 . . .r−1
the polynomial bi(x) is a factor of bi−1(x), we will denote b̂0(x) = xα−1

b0(x)
and b̂i(x) =

bi−1(x)
bi(x)

for i = 1 . . .r−1. In the same way, we define â0(x) = xβ−1
a0(x)

, â j(x) =
a j−1(x)
a j(x)

for j = 1 . . .s−1.

Proposition 6. Let C ⊆ Zα
pr ×Zβ

ps be a ZprZps-additive cyclic code. Then,

s−1

∏
t=0

ât(x)∗ (`(x) | a(x)) ∈ 〈(b(x) | 0)〉.

Theorem 7. Let C ⊆ Zα
pr ×Zβ

ps be a ZprZps-additive cyclic code. Define

Bp j =

[
xi(

j−1

∏
t=0

b̂t(x))(b(x) | 0)

]deg(b̂ j(x))−1

i=0

,

for 0≤ j ≤ r−1, and

Apk =

[
xi(

k−1

∏
t=0

ât(x))(`(x) | a(x))

]deg(âk(x))−1

i=0

,

for 0≤ k ≤ s−1. Then,

S =
r−1⋃
j=0

Bp j

s−1⋃
t=0

Apt

forms a minimal generating set for C as a Zps-module. Moreover,

|C |= p∑
r−1
i=0 (r−i)deg(b̂i(x))+∑

s−1
j=0(s− j)deg â j(x).

Let C be a cyclic code and C⊥ the dual code of C . Taking a vector v of
C⊥, u · v = 0 for all u in C . Since u belongs to C , we know that u(−1) is also a
codeword. So, u(−1) ·v = u ·v(1) = 0 for all u from C , therefore v(1) is in C⊥ and
C⊥ is also a cyclic code over Zα

pr ×Zβ

ps . Consequently, we obtain the following
proposition.

Proposition 8. Let C ⊆ Zα
pr ×Zβ

ps be a ZprZps-additive cyclic code. Then the dual

code of C is also a cyclic code in Zα
pr ×Zβ

ps .

4



Proposition 9. Let C ⊆ Zα
pr ×Zβ

ps be a ZprZps-additive cyclic code. Then,

|C⊥|= p∑
r
i=1 ideg(b̂i(x))+∑

s
j=1 j deg(â j(x)).

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x))p(x−1) and is de-
noted by p∗(x). We denote the polynomial ∑

m−1
i=0 xi by θm(x), and the least common

multiple of α and β by m.

Definition 10. Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements in
Rα,β

r,s . We define the map ◦ : Rα,β
r,s ×Rα,β

r,s −→ Zps [x]/(xm−1), such that

◦(u(x),v(x)) =ps−r
ι(u(x)v∗(x))θm

r
(xr)xm−1−deg(v(x))+

+u′(x)v′∗(x)θm
s
(xs)xm−1−deg(v′(x)) mod (xm−1).

The map ◦ is linear in each of its arguments; i.e., if we fix the first entry of the
map invariant, while letting the second entry vary, then the result is a linear map.
Similarly, when fixing the second entry invariant. Then, the map ◦ is a bilinear
map between Zps [x]-modules.

From now on, we denote ◦(u(x),v(x)) by u(x) ◦ v(x). Note that u(x) ◦ v(x)
belongs to Zps [x]/(xm−1).

Theorem 11. Let u and v be vectors in Zα
pr ×Zβ

ps with associated polynomials
u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, v is orthogonal
to u and all its shifts if and only if

u(x)◦v(x) = 0 mod (xm−1).
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