On $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes

J. Borges¹, C. Fernández-Córdoba¹, R. Ten-Valls¹

¹ Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, Spain, {joaquim.borges, cristina.fernandez, roger.ten}@uab.cat This work has been partially supported by the Spanish MEC grant TIN2013-40524-P and by the Catalan AGAUR grant 2014SGR-691.

The $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes has been introduced in [?] and intensively studied during last years. Recently, $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes has been defined in [?] and identified as $\mathbb{Z}_4[x]$ -modules of a certain ring. The duality of $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes has been studied in [?].

In recent times, $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes were generalized to $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additives codes in [?]. They determine, in particular, the standard forms of generator and parity-check matrices and present some bounds on the minimum distance.

Let \mathbb{Z}_{p^r} and \mathbb{Z}_{p^s} be the rings of integers modulo p^r and p^s , respectively, with p prime and $r \leq s$. Since the residue field of \mathbb{Z}_{p^r} and \mathbb{Z}_{p^s} is \mathbb{Z}_p , then an element b of \mathbb{Z}_{p^r} could be written uniquely as $b = b_0 + pb_1 + p^2b_2 + \cdots + p^{r-1}b_{r-1}$, and any element $a \in \mathbb{Z}_{p^s}$ as $a = a_0 + pa_1 + p^2a_2 + \cdots + p^{s-1}a_{s-1}$, where $b_i, a_j \in \mathbb{Z}_p$.

Then we can consider the surjective ring homomorphism $\pi : \mathbb{Z}_{p^s} \twoheadrightarrow \mathbb{Z}_{p^r}$, where $\pi(a) = a \mod p^r$.

Note that $\pi(p^i) = 0$ if $i \ge r$. Let $a \in \mathbb{Z}_{p^s}$ and $b \in \mathbb{Z}_{p^r}$. We define a multiplication * as follows: $a * b = \pi(a)b$. Then, \mathbb{Z}_{p^r} is a \mathbb{Z}_{p^s} -module with external multiplication given by π . Since \mathbb{Z}_{p^r} is commutative, then * has the commutative property. Then, we can generalize this multiplication over the ring $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ as follows. Let a be an element of \mathbb{Z}_{p^s} and $\mathbf{u} = (u \mid u') = (u_0, u_1, \dots, u_{\alpha-1} \mid u'_0, u'_1, \dots, u'_{\beta-1}) \in \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$. Then, $a * \mathbf{u} = (\pi(a)u_0, \pi(a)u_1, \dots, \pi(a)u_{\alpha-1} \mid au'_0, au'_1, \dots, au'_{\beta-1})$. With this external operation the ring $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ is also a \mathbb{Z}_{p^s} -module.

Definition 1. A $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive code \mathscr{C} is a \mathbb{Z}_{p^s} -submodule of $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$.

The structure of the generator matrices in standard form and the type of $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additives codes are defined and determinated in [?].

Let \mathscr{C}_{α} be the canonical projection of \mathscr{C} on the first α coordinates and \mathscr{C}_{β} on the last β coordinates. The canonical projection is a linear map. Then, \mathscr{C}_{α} and \mathscr{C}_{β} are \mathbb{Z}_{p^r} and \mathbb{Z}_{p^s} linear codes of length α and β , respectively. A code \mathscr{C} is called *separable* if \mathscr{C} is the direct product of \mathscr{C}_{α} and \mathscr{C}_{β} , i.e., $\mathscr{C} = \mathscr{C}_{\alpha} \times \mathscr{C}_{\beta}$. Since $r \leq s$, we consider the inclusion map

$$\iota: \mathbb{Z}_{p^r} \hookrightarrow \mathbb{Z}_{p^s} \ b \mapsto b$$

Let $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{p^r}^{lpha} imes \mathbb{Z}_{p^s}^{eta}$, then the inner product is defined [?] as

$$\mathbf{u} \cdot \mathbf{v} = p^{s-r} \sum_{i=0}^{\alpha-1} \iota(u_i v_i) + \sum_{j=0}^{\beta-1} u'_j v'_j \in \mathbb{Z}_{p^s},$$

and the dual code of a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive code \mathscr{C} in $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ is defined in a natural way as

$$\mathscr{C}^{\perp} = \{\mathbf{v} \in \mathbb{Z}_{p^r}^{\boldsymbol{\alpha}} \times \mathbb{Z}_{p^s}^{\boldsymbol{\beta}} | \mathbf{u} \cdot \mathbf{v} = 0, \forall \mathbf{u} \in \mathscr{C}\}$$

Let \mathscr{C} be a separable code, then \mathscr{C}^{\perp} is also separable and $\mathscr{C}^{\perp} = \mathscr{C}_{\alpha}^{\perp} \times \mathscr{C}_{\beta}^{\perp}$.

$\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic codes

Definition 2. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive code. The code \mathscr{C} is called cyclic *if*

$$(u_0, u_1, \dots, u_{\alpha-2}, u_{\alpha-1} \mid u'_0, u'_1, \dots, u'_{\beta-2}, u'_{\beta-1}) \in \mathscr{C}$$

implies

$$(u_{\alpha-1},u_0,u_1,\ldots,u_{\alpha-2} \mid u'_{\beta-1},u'_0,u'_1,\ldots,u'_{\beta-2}) \in \mathscr{C}.$$

Let $\mathbf{u} = (u_0, u_1, \dots, u_{\alpha-1} \mid u'_0, \dots, u'_{\beta-1})$ be a codeword in \mathscr{C} and let *i* be an integer. Then we denote by $\mathbf{u}^{(i)} = (u_{0+i}, u_{1+i}, \dots, u_{\alpha-1+i} \mid u'_{0+i}, \dots, u'_{\beta-1+i})$ the *i*th shift of \mathbf{u} , where the subscripts are read modulo α and β , respectively.

Note that \mathscr{C}_{α} and \mathscr{C}_{β} are \mathbb{Z}_{p^r} and \mathbb{Z}_{p^s} cyclic codes of length α and β .

In the particular case that r = s, the simultaneous shift of two sets of coordinates that leave invariant the code $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^r}^{\beta}$ is known in the literature as *double cyclic code* over \mathbb{Z}_{p^r} , see [?], [?]. The term *double cyclic* is given in order to distinguish the cyclic code $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^r}^{\beta}$ to the cyclic code $\mathscr{C}' \subseteq \mathbb{Z}_{p^r}^{\alpha+\beta}$.

Denote by $\mathscr{R}_{r,s}^{\alpha,\beta}$ the ring $\mathbb{Z}_{p^r}[x]/(x^{\alpha}-1) \times \mathbb{Z}_{p^s}[x]/(x^{\beta}-1)$. There is a bijective map between $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ and $\mathscr{R}_{r,s}^{\alpha,\beta}$ given by:

$$(u_0, u_1, \dots, u_{\alpha-1} \mid u'_0, \dots, u'_{\beta-1}) \mapsto (u_0 + u_1 x + \dots + u_{\alpha-1} x^{\alpha-1} \mid u'_0 + \dots + u'_{\beta-1} x^{\beta-1}).$$

We denote the image of the vector **u** by $\mathbf{u}(x)$. Note that we can extend the maps ι and π to the polynomial rings $\mathbb{Z}_{p^r}[x]$ and $\mathbb{Z}_{p^s}[x]$ applying this map to each of the coefficients of a given polynomial.

Definition 3. Define the operation $* : \mathbb{Z}_{p^s}[x] \times \mathscr{R}_{r,s}^{\alpha,\beta} \to \mathscr{R}_{r,s}^{\alpha,\beta}$ as

$$\lambda(x) * (u(x) \mid u'(x)) = (\pi(\lambda(x))u(x) \mid \lambda(x)u'(x)),$$

where $\lambda(x) \in \mathbb{Z}_{p^s}[x]$ and $(u(x) \mid u'(x)) \in \mathscr{R}_{r,s}^{\alpha,\beta}$.

The ring $\mathscr{R}_{r,s}^{\alpha,\beta}$ with the external operation * is a $\mathbb{Z}_{p^s}[x]$ -module. Let $\mathbf{u}(x) = (u(x) \mid u'(x))$ be an element of $\mathscr{R}_{r,s}^{\alpha,\beta}$. Note that if we operate $\mathbf{u}(x)$ by x we get

$$\begin{aligned} x * \mathbf{u}(x) &= x * (u(x) \mid u'(x)) \\ &= (u_0 x + \dots + u_{\alpha-2} x^{\alpha-1} + u_{\alpha-1} x^{\alpha} \mid u'_0 x + \dots + u'_{\beta-2} x^{\beta-1} + u'_{\beta-1} x^{\beta}) \\ &= (u_{\alpha-1} + u_0 x + \dots + u_{\alpha-2} x^{\alpha-1} \mid u'_{\beta-1} + u'_0 x + \dots + u'_{\beta-2} x^{\beta-1}). \end{aligned}$$

Hence, $x * \mathbf{u}(x)$ is the image of the vector $\mathbf{u}^{(1)}$. Thus, the operation of $\mathbf{u}(x)$ by x in $\mathscr{R}_{r,s}^{\alpha,\beta}$ corresponds to a shift of \mathbf{u} . In general, $x^i * \mathbf{u}(x) = \mathbf{u}^{(i)}(x)$ for all *i*.

Now, we study submodules of $\mathscr{R}_{r,s}^{\alpha,\beta}$. We describe the generators of such submodules and state some properties. From now on, $\langle S \rangle$ will denote the $\mathbb{Z}_{p^s}[x]$ -submodule generated by a subset *S* of $\mathscr{R}_{r,s}^{\alpha,\beta}$.

For the rest of the discussion we will consider that α and β are coprime integers with *p*. From this assumption we know that $\mathbb{Z}_{p^r}[x]/(x^{\alpha}-1)$ and $\mathbb{Z}_{p^s}[x]/(x^{\beta}-1)$ are principal ideal rings, see [?],[?].

Theorem 4. The $\mathbb{Z}_{p^s}[x]$ -module $\mathscr{R}_{r,s}^{\alpha,\beta}$ is noetherian, and every submodule \mathscr{C} of $\mathscr{R}_{r,s}^{\alpha,\beta}$ can be written as

$$\mathscr{C} = \langle (b(x) \mid 0), (\ell(x) \mid a(x)) \rangle,$$

where b(x), a(x) are generator polynomials in $\mathbb{Z}_{p^r}[x]/(x^{\alpha}-1)$ and $\mathbb{Z}_{p^s}[x]/(x^{\beta}-1)$ resp., and $\ell(x) \in \mathbb{Z}_{p^r}[x]/(x^{\alpha}-1)$.

From the previous results, it is clear that we can identify codes in $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ that are cyclic as submodules of $\mathscr{R}_{r,s}^{\alpha,\beta}$. So, any submodule of $\mathscr{R}_{r,s}^{\alpha,\beta}$ is a cyclic code. From now on, we will denote by \mathscr{C} indistinctly both the code and the corresponding submodule.

Proposition 5. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic code. Then, there exist polynomials $\ell(x)$ and $b_0(x)|b_1(x)| \dots |b_{r-1}(x)|(x^{\alpha}-1)$ over $\mathbb{Z}_{p^r}[x]$, and polynomials $a_0(x)|a_1(x)| \dots |a_{s-1}(x)|(x^{\beta}-1)$ over $\mathbb{Z}_{p^s}[x]$ such that

$$\mathscr{C} = \langle (b_0(x) + pb_1(x) + \dots + p^{r-1}b_{r-1}(x) \mid 0), (\ell(x) \mid a_0(x) + pa_1(x) + \dots + p^{s-1}a_{s-1}(x)) \rangle$$

Let $b(x) = b_0(x) + pb_1(x) + \dots + p^{r-1}b_{r-1}(x)$ and $a(x) = a_0(x) + pa_1(x) + \dots + p^{s-1}a_{s-1}(x)$, for polynomials $b_i(x)$ and $a_j(x)$ as in Proposition **??**. Then, for the rest of the discussion, we assume that a cyclic code \mathscr{C} over $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ is generated by $\langle (b(x) \mid 0), (\ell(x) \mid a(x)) \rangle$. Since $b_0(x)$ is a factor of $x^{\alpha} - 1$ and for $i = 1 \dots r - 1$ the polynomial $b_i(x)$ is a factor of $b_{i-1}(x)$, we will denote $\hat{b}_0(x) = \frac{x^{\alpha}-1}{b_0(x)}$ and $\hat{b}_i(x) = \frac{b_{i-1}(x)}{b_i(x)}$ for $i = 1 \dots r - 1$. In the same way, we define $\hat{a}_0(x) = \frac{x^{\beta}-1}{a_0(x)}$, $\hat{a}_j(x) = \frac{a_{j-1}(x)}{a_j(x)}$ for $j = 1 \dots s - 1$.

Proposition 6. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic code. Then,

$$\prod_{t=0}^{s-1} \hat{a}_t(x) * (\ell(x) \mid a(x)) \in \langle (b(x) \mid 0) \rangle.$$

Theorem 7. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic code. Define

$$B_{p^{j}} = \left[x^{i} (\prod_{t=0}^{j-1} \hat{b}_{t}(x)) (b(x) \mid 0) \right]_{i=0}^{\deg(\hat{b}_{j}(x))-1},$$

for $0 \le j \le r - 1$ *, and*

$$A_{p^{k}} = \left[x^{i} (\prod_{t=0}^{k-1} \hat{a}_{t}(x)) (\ell(x) \mid a(x)) \right]_{i=0}^{\deg(\hat{a}_{k}(x))-1},$$

for $0 \le k \le s - 1$. Then,

$$S = \bigcup_{j=0}^{r-1} B_{p^j} \bigcup_{t=0}^{s-1} A_{p^t}$$

forms a minimal generating set for \mathscr{C} as a \mathbb{Z}_{p^s} -module. Moreover,

$$|\mathscr{C}| = p^{\sum_{i=0}^{r-1}(r-i)\deg(\hat{b}_i(x)) + \sum_{j=0}^{s-1}(s-j)\deg\hat{a}_j(x)}$$

Let \mathscr{C} be a cyclic code and \mathscr{C}^{\perp} the dual code of \mathscr{C} . Taking a vector \mathbf{v} of \mathscr{C}^{\perp} , $\mathbf{u} \cdot \mathbf{v} = 0$ for all \mathbf{u} in \mathscr{C} . Since \mathbf{u} belongs to \mathscr{C} , we know that $\mathbf{u}^{(-1)}$ is also a codeword. So, $\mathbf{u}^{(-1)} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v}^{(1)} = 0$ for all \mathbf{u} from \mathscr{C} , therefore $\mathbf{v}^{(1)}$ is in \mathscr{C}^{\perp} and \mathscr{C}^{\perp} is also a cyclic code over $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$. Consequently, we obtain the following proposition.

Proposition 8. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic code. Then the dual code of \mathscr{C} is also a cyclic code in $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$.

Proposition 9. Let $\mathscr{C} \subseteq \mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ be a $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive cyclic code. Then,

$$|\mathscr{C}^{\perp}| = p^{\sum_{i=1}^{r} i \operatorname{deg}(\hat{b}_i(x)) + \sum_{j=1}^{s} j \operatorname{deg}(\hat{a}_j(x))}$$

The *reciprocal polynomial* of a polynomial p(x) is $x^{\deg(p(x))}p(x^{-1})$ and is denoted by $p^*(x)$. We denote the polynomial $\sum_{i=0}^{m-1} x^i$ by $\theta_m(x)$, and the least common multiple of α and β by m.

Definition 10. Let $\mathbf{u}(x) = (u(x) \mid u'(x))$ and $\mathbf{v}(x) = (v(x) \mid v'(x))$ be elements in $\mathscr{R}_{r,s}^{\alpha,\beta}$. We define the map $\circ: \mathscr{R}_{r,s}^{\alpha,\beta} \times \mathscr{R}_{r,s}^{\alpha,\beta} \longrightarrow \mathbb{Z}_{p^s}[x]/(x^{\mathfrak{m}}-1)$, such that

$$\circ(\mathbf{u}(x),\mathbf{v}(x)) = p^{s-r}\iota(u(x)v^*(x))\theta_{\frac{m}{r}}(x^r)x^{\mathfrak{m}-1-\deg(v(x))} + u'(x)v'^*(x)\theta_{\frac{m}{r}}(x^s)x^{\mathfrak{m}-1-\deg(v'(x))} \mod (x^{\mathfrak{m}}-1).$$

The map \circ is linear in each of its arguments; i.e., if we fix the first entry of the map invariant, while letting the second entry vary, then the result is a linear map. Similarly, when fixing the second entry invariant. Then, the map \circ is a bilinear map between $\mathbb{Z}_{D^s}[x]$ -modules.

From now on, we denote $\circ(\mathbf{u}(x), \mathbf{v}(x))$ by $\mathbf{u}(x) \circ \mathbf{v}(x)$. Note that $\mathbf{u}(x) \circ \mathbf{v}(x)$ belongs to $\mathbb{Z}_{p^s}[x]/(x^m - 1)$.

Theorem 11. Let **u** and **v** be vectors in $\mathbb{Z}_{p^r}^{\alpha} \times \mathbb{Z}_{p^s}^{\beta}$ with associated polynomials $\mathbf{u}(x) = (u(x) \mid u'(x))$ and $\mathbf{v}(x) = (v(x) \mid v'(x))$, respectively. Then, **v** is orthogonal to **u** and all its shifts if and only if

$$\mathbf{u}(x) \circ \mathbf{v}(x) = 0 \mod (x^{\mathfrak{m}} - 1).$$

References

- T. Abualrub, I. Siap, N. Aydin. Z₂Z₄-additive cyclic codes. *IEEE Trans. Info. Theory*, vol. 60, No. 3, pp. 1508-1514, 2014.
- [2] I. Aydogdu, I. Siap. On $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$ -additive codes. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2014.952728, 2014.
- [3] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva. Z₂Z₄-linear codes: generator matrices and duality. *Designs, Codes and Cryptography*, vol. 54, No. 2, pp. 167-179, 2010.
- [4] J. Borges, C. Fernández-Córdoba, R. Ten-Valls. Z₂-double cyclic codes. arXiv:1410.5604, 2014.
- J. Borges, C. Fernández-Córdoba, R. Ten-Valls. Z₂Z₄-additive cyclic codes, generator polynomials and dual codes. arXiv:1406.4425, 2014.
- [6] A.R. Calderbank, N.J.A. Sloane. Modular and p-adic cyclic codes. Designs, Codes and Cryptography, vol. 37, No. 6, pp. 21-35, 1995.
- [7] H.Q. Dinh, S.R. López-Permouth Cyclic and negacyclic codes over finite chain rings. *Lecture Notes in Computer Science*, n. 5228, pp. 46-55, 2008.
- [8] J. Gao, M. Shi, T. Wu and F. Fu. On double cyclic codes over \mathbb{Z}_4 . arXiv: 1501.01360, 2015.