A new approach to the key equation and to the
Berlekamp-Massey algorithm

M. Bras-Amorés!, M. E. O’Sullivan?, M. Pujol1

U Universitat Rovira i Virgili, Tarragona, Catalonia, Spain, {maria.bras,marta.pujol} @urv.cat
2 San Diego State University, California, USA, mosulliv@sciences.sdsu.edu

The two primary decoding algorithms for Reed-Solomon codes are the Berlekamp-
Massey algorithm [5] and the Sugiyama et al. adaptation of the Euclidean algo-
rithm [7], both designed to solve Berlekamp’s key equation [1]. Their connections
are analyzed in [2, 4, 6]. We present a new version of the key equation for errors
and erasures, more natural somehow, and a way to use the Euclidean algorithm to
solve it. A straightforward reorganization of the algorithm yields the Berlekamp-
Massey algorithm.

Settings on Reed-Solomon codes Let [F be a finite field of size ¢ and let & be a
primitive element in F. Let n = g — 1. We identify the vector u = (uo, . .., u,—1) with
the polynomial u(x) = ug+ --- +u,_1x"~' and denote u(a) the evaluation of u(x)
at a. Classically the (primal) Reed-Solomon code C* (k) of dimension k is defined
as the cyclic code with generator polynomial (x — o) (x — a?)--- (x — &%), The
dual Reed-Solomon code C(k) of dimension k is the cyclic code with generator
polynomial (x — o~ *+1)) (x — e~ *+2)) ... (x —) (x — 1).

Both codes have minimum distance d = n — k + 1. Furthermore, C(k)* =
C*(n—k). There is a natural bijection from F” to itself which we denote by ¢ — ¢*.
It takes C(k) to C*(k). The codeword ¢* can be defined either as iG*(k) € C*(k)
where i is the information vector of dimension k such that ¢ = iG(k) € C(k) or
componentwise as c¢* = (co, @ 'c1, 0 %cy,...,ac,_1) Where ¢ = (co,c1,...,Cn1).
Then, (c§, ac, a?cs,...,o" ¢). In particular, c(a') = ¢* (/).

A decoding algorithm for a primal Reed-Solomon code may be used to decode
a dual Reed-Solomon code by first applying the bijection * to the received vector
u. If u differs from a codeword ¢ € C(k) by an error vector e of weight 7, then
u* differs from the codeword ¢* € C*(k) by the error vector ¢* of weight ¢. If the
primal Reed-Solomon decoding algorithm can decode u* to obtain ¢* and e¢* then,
transforming by the inverse of * we may obtain ¢ and e. Conversely, a decoding
algorithm for a dual Reed-Solomon code may be used to decode a primal Reed-
Solomon code by applying the inverse of *, decoding, and then applying .

Decoding for errors and erasures Suppose that ¢ € C(k) is transmitted and that
errors occurred at ¢ different positions and that other s positions were erased, with

2t +s < d. Suppose that u is the received word once the erased positions are put to
0 and that e = u — c. Define the erasure locator polynomial as Ay = [T;.c;was erasea (X —
o) and the error locator polynomial as Ae = [Ti:¢,-£0.cino emsea(X — ') We will use A
for the product A,A.. Notice that A, is known from the received word, while A, is
not. Define the error evaluator as Q =Y. ;.o,20 €[] jie;00r¢; erasea, (X — a'). The error

' or C; erased and]#l
positions can be identified by A, (') = 0 and the error values, as well as the erased
values, can be derived from an analogue of the Forney formula [3], e; = %.

The syndrome polynomial is defined as S = e(0" 1) +e(0"~ 2)x+- - +e(a)x" 2+
e(1)x"=!. It can be proved that Q(x" — 1) = AS.The general term of Sis (o' ~#)x,
but from a received word we only know e(1) = u(1),...,e(o" ¥ 1) = u(a™*1).
Define § = e(a" % 1)x* +e(o"*=2)x**1 ... 4 ¢(1)x*~!. The polynomial Q(x" —

1) —AS = A(S—S) has degree at most t +s+k— 1 < &5 +s+n—d =n— =,
Next theorem provides an alternative key equation for dual Reed-Solomon codes.

Theorem 1. If s erasures and at most L%J errors occurred, then A, and

Q are the unique polynomials [and @ satisfying the following properties. 1.
deg(fAS—@(x"—1)) <n-— %; 2. deg(f) < %; 3. f,o are coprime; 4. f
is monic

Suppose first that only erasures occurred. Then A = A,, A, = 1, and Q can be
directly derived from this inequality. Indeed, Q is the sum of monomials in A,.§
with degrees at least n — 45, divided by X

Suppose that a combination of errors and erasures occured. The extended Eu-
clidean algorithm applied to A,.S and —(x" — 1) computes not only ged(A,S,x" —1)
but also two polynomials A (x) and 77 (x) such that AA,S— 1 (x" — 1) = gcd(A,S,x" —
1). At each intermediate step a new remainder r; is computed, with decreased de-
gree, together with two intermediate polynomials A;(x) and 1;(x) such that L;A,.S —
N;(x" — 1) = r;. Truncating this algorithm at a proper point we can get a pair of
polynomials A; and 71; such that A;A,S — 1n;(x" — 1) has degree as small as desired
(in particular, smaller than n — %). Algorithm 1 is the truncated Euclidean algo-
rithm. It satisfies that, for all i > 0, deg(r;) < deg(r;—1) and deg(f;) > deg(fi—1).

Algorithm 1

Initialize:
(L1 o190):(—("=1) 0 1)
r-2 foa 9 ArS o
while deg(r;) > n— %

qi = Quotient(r;_»,r;_;)

(o fi e):(—qz' 1><ri—] fie1 (Pi—]>
ricl fi-r o @ic1 I 0 ria fia @2

end while
Return f;/LC(f;), ¢:/LC(f;)

Theorem 2. If a codeword ¢ € C(k) is transmitted and s erasures and t errors
occur with 2t + s < d then the algorithm outputs A, and Q.

For all i > —1 consider the matrices (R Fi i) = (1/LC(r1) 0) (

Iéi Fl &)i 0 —LC(V,‘)

Notice that 1% is monic. The update step in the algorithm can be replaced by

o o ° —1l v
< iS,' ISI ?i > = LC(I%H—Q/']%H) " (h) < v-
R F & 0 ~LC(Ri-1 — QiR;_1) PO

where Q; is the quotient of R;_; by 12’,-_1. Moreover, if Q; = QQO) + Q(

1

(1) 4, -0 1\ _ (1 0"\ (1 -0 1 -0 (o 1)
Qix,then<1 0)<01 01 SN - Lo and

the update step becomes

o
e e

1 - (0 1) IE’H 121'71 ‘?H
L0 1 10 Ry Foy &y)’
It can be easily shown that LC(R; | — Qili’i_l) as well as all the ng)’s, are the
LC of the left-most, top-most element in the previous product of all the previous

matrices. This is because 131- is monic. If we define u to be the (changing) LC of
the left-most, top-most element in the product of all the previous matrices, then

R F @
2 S equals
R F P

0 1 —u 1 —ux 1 0 1 Ry Fiy
1 0 1 0 1 L0 1 10 Ry F

M, My

N
(=R

7N
OoE|=

o Myt M, My

i

Fi

1 —u 1 —ux 1 —pxb-! 1 —pxb 0 1
0 1 0 1 o1 0 1 1 0

-1

. o 0
& >: T O O (1 -0) < 1 —oWx >
d; 0 —LC(Ri—1 — QiRi—1) o1 01

I8)

fi
fic1

i

Qi1

Let us define now,
(1{71 F, ®_) B (0 1) R, F, i’*l
Ry F, 9 10 R, F, &
. ; B o R, F &,
(R; i) = MM Mo (Ry Fy @

One can prove that now R; and F; are monic for all i < m. Algorithm 2 computes

R; F

. P; .) _d-s
the matrices B OE @) until deg(R;) < n— 5*.

=
s e
B B

Algorithm 2

Initialize:
Ry F, &_, _ AS 1 0
R,y F{ &,) \x"—-1 0 -1

while deg(R;) > n— 45:

n=LC(R;) .
p = deg(R;) —deg(R;)
if p > 0 then

Rar Far @i _ (1w (K B 9
Riy1 Fpr @i 0 1 R F @
else

(Ri+1 Finy ¢'i+1>

Riy1 Fipr Pigg

Il
I/~
—_ O
~
=
S

=
~——
I/~
¥
>l
BB
~_

end if

end while

Return F;, ®;

After each step corresponding to p < 0 the new p is exactly the previous one
with opposite sign and so is . This is because the polynomials R; are monic. So,
we can join each step corresponding to p < 0 with the next one and get that, in this
case(lfm Fiti (?iJrl):(l pr><0 _ﬂ)(]Si}fic?i)

"\ Riy1 Fipr P 0 1 1/p 0 R F P

This modification does not alter the output F;, ®;. Furthermore, the only reason
to keep the polynomials R; (and R;) is that we need to compute their leading coef-
ficients (the y;’s). One can show that LC(R;) = LC(F;A,S), and so these leading
coefficients may be obtained without reference to the polynomials R;. This allows
us to compute the F;, ®; iteratively and dispense with the polynomials R;.

Algorithm 2 can be transformed in a way such that the remainders are not kept
but their degrees. We use d;, d; which satisfy at each step d; > deg(R;), d; = deg(R;).

Algorithm 3

Initialize:

while d; > n— 43
i = Coefficient(F;A,S, d;)
p=di—d;

if p > 0 or u =0 then

(Fjﬂ Dy):(1 —pxP)(Ifz ?z)
Firr ®ig 0 1 Fo P
dip1 =di—1
div1=d
else
(Ifi+1 iy):<x7” —u)(Ifz C?z)
Firr Pip I/p 0 F @
dit 1 =d—1
dit1 =d;
end if
end while
Return F;, d;

Algorithm 3 is exactly the Berlekamp-Massey algorithm that solves the linear
recurrence th:O Aje(at/=1) =0 for all i > 0. This recurrence is derived from

A%] being a polynomial and thus having no terms of negative order in its expres-
X

sion as a Laurent series in 1/x, and from the equality an_ ;= }c (e(l) + %a) + e(xizz)

References

[1] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill Book Co., New York, 1968.

[2] Jean-Louis Dornstetter. On the equivalence between Berlekamp’s and Euclid’s algorithms.
IEEE Trans. Inform. Theory, 33(3):428-431, 1987.

[3] G.D. Forney, Jr. On decoding BCH codes. IEEE Trans. Inform. Theory, IT-11:549-557, 1965.

[4] Agnes E. Heydtmann and Jgrn M. Jensen. On the equivalence of the Berlekamp-Massey and
the Euclidean algorithms for decoding. IEEE Trans. Inform. Theory, 46(7):2614-2624, 2000.

[5] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Information The-
ory, IT-15:122-127, 1969.

[6] T.D. Mateer. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms for
algebraic decoding. In 12th Canadian Workshop on Inf. Theory (CWIT) pp. 139-142, 2011.

[7]1 Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa. A method
for solving key equation for decoding Goppa codes. Information and Control, 27:87-99, 1975.

