A new approach to the key equation and to the Berlekamp-Massey algorithm

M. Bras-Amorós ${ }^{1}$, M. E. O'Sullivan ${ }^{2}$, M. Pujol ${ }^{1}$
${ }^{1}$ Universitat Rovira i Virgili, Tarragona, Catalonia, Spain, \{maria.bras,marta.pujol\}@urv.cat
${ }^{2}$ San Diego State University, California, USA, mosulliv@sciences.sdsu.edu

The two primary decoding algorithms for Reed-Solomon codes are the BerlekampMassey algorithm [5] and the Sugiyama et al. adaptation of the Euclidean algorithm [7], both designed to solve Berlekamp's key equation [1]. Their connections are analyzed in $[2,4,6]$. We present a new version of the key equation for errors and erasures, more natural somehow, and a way to use the Euclidean algorithm to solve it. A straightforward reorganization of the algorithm yields the BerlekampMassey algorithm.

Settings on Reed-Solomon codes Let \mathbb{F} be a finite field of size q and let α be a primitive element in \mathbb{F}. Let $n=q-1$. We identify the vector $u=\left(u_{0}, \ldots, u_{n-1}\right)$ with the polynomial $u(x)=u_{0}+\cdots+u_{n-1} x^{n-1}$ and denote $u(a)$ the evaluation of $u(x)$ at a. Classically the (primal) Reed-Solomon code $C^{*}(k)$ of dimension k is defined as the cyclic code with generator polynomial $(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{n-k}\right)$, The dual Reed-Solomon code $C(k)$ of dimension k is the cyclic code with generator polynomial $\left(x-\alpha^{n-(k+1)}\right)\left(x-\alpha^{n-(k+2)}\right) \cdots(x-\alpha)(x-1)$.

Both codes have minimum distance $d=n-k+1$. Furthermore, $C(k)^{\perp}=$ $C^{*}(n-k)$. There is a natural bijection from \mathbb{F}^{n} to itself which we denote by $c \mapsto c^{*}$. It takes $C(k)$ to $C^{*}(k)$. The codeword c^{*} can be defined either as $i G^{*}(k) \in C^{*}(k)$ where i is the information vector of dimension k such that $c=i G(k) \in C(k)$ or componentwise as $c^{*}=\left(c_{0}, \alpha^{-1} c_{1}, \alpha^{-2} c_{2}, \ldots, \alpha c_{n-1}\right)$ where $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$. Then, $\left(c_{0}^{*}, \alpha c_{1}^{*}, \alpha^{2} c_{2}^{*}, \ldots, \alpha^{n-1} c_{n-1}^{*}\right)$. In particular, $c\left(\alpha^{i}\right)=c^{*}\left(\alpha^{i+1}\right)$.

A decoding algorithm for a primal Reed-Solomon code may be used to decode a dual Reed-Solomon code by first applying the bijection $*$ to the received vector u. If u differs from a codeword $c \in C(k)$ by an error vector e of weight t, then u^{*} differs from the codeword $c^{*} \in C^{*}(k)$ by the error vector e^{*} of weight t. If the primal Reed-Solomon decoding algorithm can decode u^{*} to obtain c^{*} and e^{*} then, transforming by the inverse of $*$ we may obtain c and e. Conversely, a decoding algorithm for a dual Reed-Solomon code may be used to decode a primal ReedSolomon code by applying the inverse of $*$, decoding, and then applying $*$.

Decoding for errors and erasures Suppose that $c \in C(k)$ is transmitted and that errors occurred at t different positions and that other s positions were erased, with
$2 t+s<d$. Suppose that u is the received word once the erased positions are put to 0 and that $e=u-c$. Define the erasure locator polynomial as $\Lambda_{r}=\prod_{i: c_{i} \text { was erased }}(x-$ $\left.\alpha^{i}\right)$ and the error locator polynomial as $\Lambda_{e}=\prod_{i: e_{i} \neq 0, c_{i n o t} \text { erased }}\left(x-\alpha^{i}\right)$. We will use Λ for the product $\Lambda_{r} \Lambda_{e}$. Notice that Λ_{r} is known from the received word, while Λ_{e} is not. Define the error evaluator as $\Omega=\sum_{\substack{i \cdot e_{i} \neq 0 \\ \text { or } c_{i} \text { erased }}} e_{i} \prod_{j: e_{j} \neq 0 \text { or } c_{\text {j erased }}\left(x-\alpha^{i}\right) \text {. The error }}^{\text {and } j \neq i}<1$ positions can be identified by $\Lambda_{e}\left(\alpha^{i}\right)=0$ and the error values, as well as the erased values, can be derived from an analogue of the Forney formula [3], $e_{i}=\frac{\Omega\left(\alpha^{i}\right)}{\Lambda^{\prime}\left(\alpha^{i}\right)}$.

The syndrome polynomial is defined as $S=e\left(\alpha^{n-1}\right)+e\left(\alpha^{n-2}\right) x+\cdots+e(\alpha) x^{n-2}+$ $e(1) x^{n-1}$. It can be proved that $\Omega\left(x^{n}-1\right)=\Lambda S$. The general term of S is $e\left(\alpha^{n-1-i}\right) x^{i}$, but from a received word we only know $e(1)=u(1), \ldots, e\left(\alpha^{n-k-1}\right)=u\left(\alpha^{n-k-1}\right)$. Define $\bar{S}=e\left(\alpha^{n-k-1}\right) x^{k}+e\left(\alpha^{n-k-2}\right) x^{k+1}+\cdots+e(1) x^{n-1}$. The polynomial $\Omega\left(x^{n}-\right.$ 1) $-\Lambda \bar{S}=\Lambda(S-\bar{S})$ has degree at most $t+s+k-1<\frac{d-s}{2}+s+n-d=n-\frac{d-s}{2}$. Next theorem provides an alternative key equation for dual Reed-Solomon codes.
Theorem 1. If s erasures and at most $\left\lfloor\frac{d-s-1}{2}\right\rfloor$ errors occurred, then Λ_{e} and Ω are the unique polynomials f and φ satisfying the following properties. 1 . $\operatorname{deg}\left(f \Lambda_{r} \bar{S}-\varphi\left(x^{n}-1\right)\right)<n-\frac{d-s}{2} ; 2$. $\operatorname{deg}(f) \leq \frac{d-s}{2} ; 3$. f, φ are coprime; 4. f is monic

Suppose first that only erasures occurred. Then $\Lambda=\Lambda_{r}, \Lambda_{e}=1$, and Ω can be directly derived from this inequality. Indeed, Ω is the sum of monomials in $\Lambda_{r} \bar{S}$ with degrees at least $n-\frac{d-s}{2}$, divided by $x^{n-\frac{d-s}{2}}$.

Suppose that a combination of errors and erasures occured. The extended Euclidean algorithm applied to $\Lambda_{r} \bar{S}$ and $-\left(x^{n}-1\right)$ computes not only $\operatorname{gcd}\left(\Lambda_{r} \bar{S}, x^{n}-1\right)$ but also two polynomials $\lambda(x)$ and $\eta(x)$ such that $\lambda \Lambda_{r} \bar{S}-\eta\left(x^{n}-1\right)=\operatorname{gcd}\left(\Lambda_{r} \bar{S}, x^{n}-\right.$ 1). At each intermediate step a new remainder r_{i} is computed, with decreased degree, together with two intermediate polynomials $\lambda_{i}(x)$ and $\eta_{i}(x)$ such that $\lambda_{i} \Lambda_{r} \bar{S}-$ $\eta_{i}\left(x^{n}-1\right)=r_{i}$. Truncating this algorithm at a proper point we can get a pair of polynomials λ_{i} and η_{i} such that $\lambda_{i} \Lambda_{r} \bar{S}-\eta_{i}\left(x^{n}-1\right)$ has degree as small as desired (in particular, smaller than $n-\frac{d-s}{2}$). Algorithm 1 is the truncated Euclidean algorithm. It satisfies that, for all $i \geq 0, \operatorname{deg}\left(r_{i}\right) \leq \operatorname{deg}\left(r_{i-1}\right)$ and $\operatorname{deg}\left(f_{i}\right) \geq \operatorname{deg}\left(f_{i-1}\right)$.

Algorithm 1

Initialize:

$$
\left(\begin{array}{lll}
r_{-1} & f_{-1} & \varphi_{-1} \\
r_{-2} & f_{-2} & \varphi_{-2}
\end{array}\right)=\left(\begin{array}{ccc}
-\left(x^{n}-1\right) & 0 & 1 \\
\Lambda_{r} \bar{S} & 1 & 0
\end{array}\right)
$$

while $\operatorname{deg}\left(r_{i}\right) \geq n-\frac{d-s}{2}$:

$$
\begin{aligned}
& q_{i}=\operatorname{Quotient}\left(r_{i-2}, r_{i-1}\right) \\
& \left(\begin{array}{ccc}
r_{i} & f_{i} & \varphi_{i} \\
r_{i-1} & f_{i-1} & \varphi_{i-1}
\end{array}\right)=\left(\begin{array}{ccc}
-q_{i} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
r_{i-1} & f_{i-1} & \varphi_{i-1} \\
r_{i-2} & f_{i-2} & \varphi_{i-2}
\end{array}\right)
\end{aligned}
$$

end while

Return $f_{i} / \mathbf{L C}\left(f_{i}\right), \varphi_{i} / \mathbf{L C}\left(f_{i}\right)$
Theorem 2. If a codeword $c \in C(k)$ is transmitted and s erasures and t errors occur with $2 t+s<d$ then the algorithm outputs Λ_{e} and Ω.

For all $i \geq-1$ consider the matrices $\left(\begin{array}{ccc}\stackrel{\circ}{R}_{i} & \stackrel{\circ}{F}_{i} & \stackrel{\circ}{\Phi}_{i} \\ \stackrel{\tilde{R}_{i}}{i} & \stackrel{\rightharpoonup}{F}_{i} & \stackrel{\circ}{\Phi}_{i}\end{array}\right)=\left(\begin{array}{cc}1 / \operatorname{LC}\left(r_{i}\right) & 0 \\ 0 & -\operatorname{LC}\left(r_{i}\right)\end{array}\right)\left(\begin{array}{ccc}r_{i} & f_{i} & \varphi_{i} \\ r_{i-1} & f_{i-1} & \varphi_{i-1}\end{array}\right)$
Notice that $\stackrel{\circ}{R}_{i}$ is monic. The update step in the algorithm can be replaced by
where Q_{i} is the quotient of $\stackrel{\tilde{R}}{i-1}$ by $\stackrel{\circ}{R}_{i-1}$. Moreover, if $Q_{i}=Q_{i}^{(0)}+Q_{i}^{(1)} x+\cdots+$ $Q_{i}^{\left(l_{i}\right)} x^{l_{i}}$, then $\left(\begin{array}{cc}-Q_{i} & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}1 & -Q_{i}^{(0)} \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & -Q_{i}^{(1)} x \\ 0 & 1\end{array}\right) \ldots\left(\begin{array}{ll}1 & -Q_{i}^{(l)} x^{l} \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and the update step becomes

It can be easily shown that $\mathrm{LC}\left(\stackrel{\tilde{\tilde{R}}}{i-1}-Q_{i} \stackrel{\circ}{R}_{i-1}\right)$ as well as all the $Q_{i}^{(j)}$,s, are the LC of the left-most, top-most element in the previous product of all the previous matrices. This is because $\stackrel{\circ}{R}_{i}$ is monic. If we define μ to be the (changing) LC of the left-most, top-most element in the product of all the previous matrices, then $\left(\begin{array}{ccc}\stackrel{\circ}{R}_{i} & \stackrel{\circ}{F_{i}} & \stackrel{\circ}{i}_{i} \\ \stackrel{\tilde{R}}{i} & \tilde{\tilde{\Phi}}_{i} & \tilde{\Phi}_{i}\end{array}\right)$ equals

$$
\overbrace{\left(\begin{array}{ll}
1 & -\mu \\
0 & 1
\end{array}\right)}^{M_{\left(\begin{array}{ll}
1 & -\mu x \\
0 & 1
\end{array}\right)}^{M_{0}} \cdots \overbrace{\left(\begin{array}{cc}
1 & -\mu x^{l_{0}-1} \\
0 & 1
\end{array}\right)}^{M_{l_{0}-1}} \overbrace{\left(\begin{array}{ll}
1 & -\mu x^{l_{0}} \\
0 & 1
\end{array}\right)}^{M_{0}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
\stackrel{\circ}{R}_{-1} & \stackrel{\circ}{F}_{-1} & \stackrel{\circ}{\Phi}_{-1} \\
\stackrel{\circ}{R}_{-1} & \stackrel{\circ}{F}_{-1} & \stackrel{\circ}{\Phi}_{-1}
\end{array}\right)}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{1}{\mu} & 0 \\
0 & -\mu
\end{array}\right)\left(\begin{array}{ll}
1 & -\mu \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\mu x \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & -\mu x^{l_{i}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{lll}
\stackrel{\circ}{R}_{i-1} & \stackrel{\circ}{F}_{i-1} & \stackrel{\circ}{\Phi}_{i-1} \\
\stackrel{\tilde{R}}{i-1} & \stackrel{\check{F}}{i-1} & \check{\Phi}_{i-1}
\end{array}\right)= \\
& \left(\begin{array}{cc}
\frac{1}{\mu} & 0 \\
0 & -\mu
\end{array}\right) \overbrace{\left(\begin{array}{ll}
1 & -\mu \\
0 & 1
\end{array}\right)}^{M_{m}} \overbrace{\left(\begin{array}{ll}
1 & -\mu x \\
0 & 1
\end{array}\right)}^{M_{m-1}} \ldots\left(\begin{array}{ll}
1 & -\mu x^{l_{i}-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & -\mu x^{l_{i}} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & -\mu \\
1 / \mu & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\stackrel{\circ}{R}_{i} & \stackrel{\circ}{F}_{i} & \stackrel{\circ}{\Phi}_{i} \\
\tilde{\tilde{R}}_{i} & \stackrel{\tilde{F}}{i}^{\tilde{\Phi}_{i}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\operatorname{LC}\left(\stackrel{\circ}{R}_{i-1}-Q_{i} \stackrel{\circ}{R}_{i-1}\right)} & 0 \\
0 & -\operatorname{LC}\left(\stackrel{\circ}{\tilde{R}}_{i-1}-Q_{i} \stackrel{\circ}{R}_{i-1}\right)
\end{array}\right)\left(\begin{array}{ll}
1 & -Q_{i}^{(0)} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & -Q_{i}^{(1)} x \\
0 & 1
\end{array}\right) \ldots \\
& \ldots\left(\begin{array}{ll}
1 & -Q_{i}^{(l)} x^{l} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{lll}
\stackrel{\circ}{R}_{i-1} & \stackrel{\circ}{F}_{i-1} & \stackrel{\circ}{\Phi}_{i-1} \\
\stackrel{\tilde{R}}{i-1} & \stackrel{\check{F}}{i-1} & \stackrel{\tilde{\Phi}}{i-1}^{i n}
\end{array}\right),
\end{aligned}
$$

Let us define now,

$$
\begin{aligned}
\left(\begin{array}{ccc}
R_{-1} & F_{-1} & \Phi_{-1} \\
\tilde{R}_{-1} & \tilde{F}_{-1} & \tilde{\Phi}_{-1}
\end{array}\right) & =\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
\stackrel{\circ}{R}_{-1} & \stackrel{\circ}{F}_{-1} & \stackrel{\circ}{\Phi}_{-1} \\
\stackrel{\circ}{\tilde{R}_{-1}} & \stackrel{\circ}{\tilde{F}_{-1}} & \stackrel{\Phi}{\Phi}_{-1}
\end{array}\right)=\left(\begin{array}{ccc}
\Lambda_{\Lambda} \bar{S} & 1 & 0 \\
x^{n}-1 & 0 & -1
\end{array}\right) \\
\left(\begin{array}{ccc}
R_{i} & F_{i} & \Phi_{i} \\
\tilde{R}_{i} & \tilde{F}_{i} & \tilde{\Phi}_{i}
\end{array}\right) & =M_{i} \cdot M_{i-1} \cdots \cdots M_{0} \cdot\left(\begin{array}{ccc}
R_{-1} & F_{-1} & \Phi_{-1} \\
\tilde{R}_{-1} & \tilde{F}_{-1} & \tilde{\Phi}_{-1}
\end{array}\right)
\end{aligned}
$$

One can prove that now \tilde{R}_{i} and F_{i} are monic for all $i \leq m$. Algorithm 2 computes the matrices $\left(\begin{array}{ccc}R_{i} & F_{i} & \Phi_{i} \\ \tilde{R}_{i} & \tilde{F}_{i} & \tilde{\Phi}_{i}\end{array}\right)$ until $\operatorname{deg}\left(R_{i}\right)<n-\frac{d-s}{2}$.

Algorithm 2

Initialize:

$$
\left(\begin{array}{lll}
R_{-1} & F_{-1} & \Phi_{-1} \\
\tilde{R}_{-1} & \tilde{F}_{-1} & \tilde{\Phi}_{-1}
\end{array}\right)=\left(\begin{array}{lll}
\Lambda_{r} \bar{S} & 1 & 0 \\
x^{n}-1 & 0 & -1
\end{array}\right)
$$

while $\operatorname{deg}\left(R_{i}\right) \geq n-\frac{d-s}{2}$:

$$
\begin{aligned}
& \mu=\mathbf{L C}\left(R_{i}\right) \\
& p=\boldsymbol{\operatorname { d e g } (R _ { i }) - \boldsymbol { \operatorname { d e g } } (\tilde { R } _ { i })} \\
& \text { if } p \geq 0 \text { then } \\
& \qquad\left(\begin{array}{lll}
R_{i+1} & F_{i+1} & \Phi_{i+1} \\
\tilde{R}_{i+1} & \tilde{F}_{i+1} & \tilde{\Phi}_{i+1}
\end{array}\right)=\left(\begin{array}{cc}
1 & -\mu x^{p} \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
R_{i} & F_{i} & \Phi_{i} \\
\tilde{R}_{i} & \tilde{F}_{i} & \tilde{\Phi}_{i}
\end{array}\right) \\
& \text { else } \\
& \qquad\left(\begin{array}{lll}
R_{i+1} & F_{i+1} & \Phi_{i+1} \\
\tilde{R}_{i+1} & \tilde{F}_{i+1} & \tilde{\Phi}_{i+1}
\end{array}\right)=\left(\begin{array}{lll}
0 & -\mu \\
1 / \mu & 0
\end{array}\right)\left(\begin{array}{lll}
R_{i} & F_{i} & \Phi_{i} \\
\tilde{R}_{i} & \tilde{F}_{i} & \tilde{\Phi}_{i}
\end{array}\right)
\end{aligned}
$$

end while
Return F_{i}, Φ_{i}
After each step corresponding to $p<0$ the new p is exactly the previous one with opposite sign and so is μ. This is because the polynomials \tilde{R}_{i} are monic. So, we can join each step corresponding to $p<0$ with the next one and get that, in this case, $\left(\begin{array}{lll}R_{i+1} & F_{i+1} & \Phi_{i+1} \\ \tilde{R}_{i+1} & \tilde{F}_{i+1} & \tilde{\Phi}_{i+1}\end{array}\right)=\left(\begin{array}{ll}1 & \mu x^{-p} \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}0 & -\mu \\ 1 / \mu & 0\end{array}\right)\left(\begin{array}{lll}R_{i} & F_{i} & \Phi_{i} \\ \tilde{R}_{i} & \tilde{F}_{i} & \tilde{\Phi}_{i}\end{array}\right)$

This modification does not alter the output F_{i}, Φ_{i}. Furthermore, the only reason to keep the polynomials R_{i} (and \tilde{R}_{i}) is that we need to compute their leading coefficients (the μ_{i} 's). One can show that $\operatorname{LC}\left(R_{i}\right)=\operatorname{LC}\left(F_{i} \Lambda_{r} \bar{S}\right)$, and so these leading coefficients may be obtained without reference to the polynomials R_{i}. This allows us to compute the F_{i}, Φ_{i} iteratively and dispense with the polynomials R_{i}.

Algorithm 2 can be transformed in a way such that the remainders are not kept but their degrees. We use d_{i}, \tilde{d}_{i} which satisfy at each step $d_{i} \geq \operatorname{deg}\left(R_{i}\right), \tilde{d}_{i}=\operatorname{deg}\left(\tilde{R}_{i}\right)$.

Algorithm 3

Initialize:

$$
\begin{aligned}
& d_{-1}=s+\operatorname{deg}(\bar{S}) \\
& \tilde{d}_{-1}=n \\
& \left(\begin{array}{ll}
F_{-1} & \Phi_{-1} \\
\tilde{F}_{-1} & \tilde{\Phi}_{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

while $d_{i} \geq n-\frac{d-s}{2}$:

```
\(\mu=\operatorname{Coefficient}\left(F_{i} \Lambda_{r} \bar{S}, d_{i}\right)\)
\(p=d_{i}-\tilde{d}_{i}\)
if \(p \geq 0\) or \(\mu=0\) then
\(\left(\begin{array}{ll}F_{i+1} & \Phi_{i+1} \\ \tilde{F}_{i+1} & \tilde{\Phi}_{i+1}\end{array}\right)=\left(\begin{array}{ll}1 & -\mu x^{p} \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}F_{i} & \Phi_{i} \\ \tilde{F}_{i} & \tilde{\Phi}_{i}\end{array}\right)\)
\(d_{i+1}=d_{i}-1\)
\(\tilde{d}_{i+1}=\tilde{d}_{i}\)
else
\[
\begin{aligned}
& \left(\begin{array}{cc}
F_{i+1} & \Phi_{i+1} \\
\tilde{F}_{i+1} & \tilde{\Phi}_{i+1}
\end{array}\right)=\left(\begin{array}{cc}
x^{-p} & -\mu \\
1 / \mu & 0
\end{array}\right)\left(\begin{array}{cc}
F_{i} & \Phi_{i} \\
\tilde{F}_{i} & \tilde{\Phi}_{i}
\end{array}\right) \\
& d_{i+1}=\tilde{d}_{i}-1 \\
& \tilde{d}_{i+1}=d_{i}
\end{aligned}
\]
```

end if
end while
Return F_{i}, Φ_{i}
Algorithm 3 is exactly the Berlekamp-Massey algorithm that solves the linear recurrence $\sum_{j=0}^{t} \Lambda_{j} e\left(\alpha^{i+j-1}\right)=0$ for all $i>0$. This recurrence is derived from $\Lambda \frac{S}{x^{n}-1}$ being a polynomial and thus having no terms of negative order in its expression as a Laurent series in $1 / x$, and from the equality $\frac{S}{x^{n}-1}=\frac{1}{x}\left(e(1)+\frac{e(\alpha)}{x}+\frac{e\left(\alpha^{2}\right)}{x^{2}}+\cdots\right)$.

References

[1] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill Book Co., New York, 1968.
[2] Jean-Louis Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms. IEEE Trans. Inform. Theory, 33(3):428-431, 1987.
[3] G. D. Forney, Jr. On decoding BCH codes. IEEE Trans. Inform. Theory, IT-11:549-557, 1965.
[4] Agnes E. Heydtmann and Jørn M. Jensen. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms for decoding. IEEE Trans. Inform. Theory, 46(7):2614-2624, 2000.
[5] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Information Theory, IT-15:122-127, 1969.
[6] T. D. Mateer. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms for algebraic decoding. In 12th Canadian Workshop on Inf. Theory (CWIT) pp. 139-142, 2011.
[7] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa. A method for solving key equation for decoding Goppa codes. Information and Control, 27:87-99, 1975.

