
A new approach to the key equation and to the
Berlekamp-Massey algorithm

M. Bras-Amorós1, M. E. O’Sullivan2, M. Pujol1

1 Universitat Rovira i Virgili, Tarragona, Catalonia, Spain, {maria.bras,marta.pujol}@urv.cat
2 San Diego State University, California, USA, mosulliv@sciences.sdsu.edu

The two primary decoding algorithms for Reed-Solomon codes are the Berlekamp-
Massey algorithm [5] and the Sugiyama et al. adaptation of the Euclidean algo-
rithm [7], both designed to solve Berlekamp’s key equation [1]. Their connections
are analyzed in [2, 4, 6]. We present a new version of the key equation for errors
and erasures, more natural somehow, and a way to use the Euclidean algorithm to
solve it. A straightforward reorganization of the algorithm yields the Berlekamp-
Massey algorithm.

Settings on Reed-Solomon codes Let F be a finite field of size q and let α be a
primitive element in F. Let n= q−1. We identify the vector u=(u0, . . . ,un−1) with
the polynomial u(x) = u0 + · · ·+ un−1xn−1 and denote u(a) the evaluation of u(x)
at a. Classically the (primal) Reed-Solomon code C∗(k) of dimension k is defined
as the cyclic code with generator polynomial (x−α)(x−α2) · · ·(x−αn−k), The
dual Reed-Solomon code C(k) of dimension k is the cyclic code with generator
polynomial (x−αn−(k+1))(x−αn−(k+2)) · · ·(x−α)(x−1).

Both codes have minimum distance d = n− k + 1. Furthermore, C(k)⊥ =
C∗(n−k). There is a natural bijection from Fn to itself which we denote by c 7→ c∗.
It takes C(k) to C∗(k). The codeword c∗ can be defined either as iG∗(k) ∈ C∗(k)
where i is the information vector of dimension k such that c = iG(k) ∈ C(k) or
componentwise as c∗ = (c0,α

−1c1,α
−2c2, . . . ,αcn−1) where c = (c0,c1, . . . ,cn−1).

Then, (c∗0,αc∗1,α
2c∗2, . . . ,α

n−1c∗n−1). In particular, c(α i) = c∗(α i+1).
A decoding algorithm for a primal Reed-Solomon code may be used to decode

a dual Reed-Solomon code by first applying the bijection ∗ to the received vector
u. If u differs from a codeword c ∈ C(k) by an error vector e of weight t, then
u∗ differs from the codeword c∗ ∈C∗(k) by the error vector e∗ of weight t. If the
primal Reed-Solomon decoding algorithm can decode u∗ to obtain c∗ and e∗ then,
transforming by the inverse of ∗ we may obtain c and e. Conversely, a decoding
algorithm for a dual Reed-Solomon code may be used to decode a primal Reed-
Solomon code by applying the inverse of ∗, decoding, and then applying ∗.

Decoding for errors and erasures Suppose that c ∈C(k) is transmitted and that
errors occurred at t different positions and that other s positions were erased, with

1

2t + s < d. Suppose that u is the received word once the erased positions are put to
0 and that e = u−c. Define the erasure locator polynomial as Λr = ∏i:ciwas erased(x−
α i) and the error locator polynomial as Λe =∏i:ei 6=0,cinot erased(x−α i). We will use Λ

for the product ΛrΛe. Notice that Λr is known from the received word, while Λe is
not. Define the error evaluator as Ω = ∑ i:ei 6=0

or ci erased
ei ∏ j:e j 6=0 or c j erased,

and j 6=i
(x−α i). The error

positions can be identified by Λe(α
i) = 0 and the error values, as well as the erased

values, can be derived from an analogue of the Forney formula [3], ei =
Ω(α i)
Λ′(α i)

.
The syndrome polynomial is defined as S= e(αn−1)+e(αn−2)x+· · ·+e(α)xn−2+

e(1)xn−1. It can be proved that Ω(xn−1)=ΛS.The general term of S is e(αn−1−i)xi,
but from a received word we only know e(1) = u(1), . . . ,e(αn−k−1) = u(αn−k−1).
Define S̄ = e(αn−k−1)xk+e(αn−k−2)xk+1+ · · ·+e(1)xn−1. The polynomial Ω(xn−
1)−ΛS̄ = Λ(S− S̄) has degree at most t + s+ k−1 < d−s

2 + s+n−d = n− d−s
2 .

Next theorem provides an alternative key equation for dual Reed-Solomon codes.

Theorem 1. If s erasures and at most bd−s−1
2 c errors occurred, then Λe and

Ω are the unique polynomials f and ϕ satisfying the following properties. 1.
deg(f ΛrS̄−ϕ(xn−1)) < n− d−s

2 ; 2. deg(f) ≤ d−s
2 ; 3. f ,ϕ are coprime; 4. f

is monic

Suppose first that only erasures occurred. Then Λ = Λr, Λe = 1, and Ω can be
directly derived from this inequality. Indeed, Ω is the sum of monomials in ΛrS̄
with degrees at least n− d−s

2 , divided by xn− d−s
2 .

Suppose that a combination of errors and erasures occured. The extended Eu-
clidean algorithm applied to ΛrS̄ and−(xn−1) computes not only gcd(ΛrS̄,xn−1)
but also two polynomials λ (x) and η(x) such that λΛrS̄−η(xn−1)= gcd(ΛrS̄,xn−
1). At each intermediate step a new remainder ri is computed, with decreased de-
gree, together with two intermediate polynomials λi(x) and ηi(x) such that λiΛrS̄−
ηi(xn− 1) = ri. Truncating this algorithm at a proper point we can get a pair of
polynomials λi and ηi such that λiΛrS̄−ηi(xn−1) has degree as small as desired
(in particular, smaller than n− d−s

2). Algorithm 1 is the truncated Euclidean algo-
rithm. It satisfies that, for all i≥ 0, deg(ri)≤ deg(ri−1) and deg(fi)≥ deg(fi−1).

Algorithm 1

Initialize:(
r−1 f−1 ϕ−1
r−2 f−2 ϕ−2

)
=

(
−(xn−1) 0 1

ΛrS̄ 1 0

)
while deg(ri)≥ n− d−s

2 :

qi = Quotient(ri−2,ri−1)(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
=

(
−qi 1

1 0

)(
ri−1 fi−1 ϕi−1
ri−2 fi−2 ϕi−2

)

2

end while

Return fi/LC(fi), ϕi/LC(fi)

Theorem 2. If a codeword c ∈ C(k) is transmitted and s erasures and t errors
occur with 2t + s < d then the algorithm outputs Λe and Ω.

For all i≥−1 consider the matrices
(◦

Ri
◦

Fi
◦
Φi

◦
R̃i

◦
F̃i

◦

Φ̃i

)
=

(
1/LC(ri) 0

0 −LC(ri)

)(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
Notice that

◦
Ri is monic. The update step in the algorithm can be replaced by(◦

Ri
◦

Fi
◦
Φi

◦
R̃i

◦
F̃i

◦

Φ̃i

)
=

 1

LC(
◦
R̃i−1−Qi

◦
Ri−1)

0

0 −LC(
◦

R̃i−1−Qi
◦

Ri−1)

(−Qi 1
1 0

)(◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦

Φ̃i−1

)
,

where Qi is the quotient of
◦

R̃i−1 by
◦

Ri−1. Moreover, if Qi = Q(0)
i +Q(1)

i x+ · · ·+

Q(li)
i xli , then

(
−Qi 1
1 0

)
=

(
1 −Q(0)

i
0 1

)(
1 −Q(1)

i x
0 1

)
. . .

(
1 −Q(l)

i xl

0 1

)(
0 1
1 0

)
and

the update step becomes(◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦

Φ̃i

)
=

 1

LC(
◦
R̃i−1−Qi

◦
Ri−1)

0

0 −LC(
◦

R̃i−1−Qi
◦

Ri−1)

(1 −Q(0)
i

0 1

)(
1 −Q(1)

i x
0 1

)
. . .

. . .

(
1 −Q(l)

i xl

0 1

)(
0 1
1 0

)(◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦

Φ̃i−1

)
,

It can be easily shown that LC(
◦

R̃i−1−Qi
◦

Ri−1) as well as all the Q(j)
i ’s, are the

LC of the left-most, top-most element in the previous product of all the previous
matrices. This is because

◦
Ri is monic. If we define µ to be the (changing) LC of

the left-most, top-most element in the product of all the previous matrices, then(◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦

Φ̃i

)
equals

(1
µ

0
0 −µ

)(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .

(
1 −µxli

0 1

)(
0 1
1 0

)(◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦

Φ̃i−1

)
=

(1
µ

0
0 −µ

) Mm︷ ︸︸ ︷(
1 −µ

0 1

) Mm−1︷ ︸︸ ︷(
1 −µx
0 1

)
. . .

(
1 −µxli−1

0 1

)(
1 −µxli

0 1

)(
0 −µ

1/µ 0

)
...

Ml0︷ ︸︸ ︷(
1 −µ

0 1

) Ml0−1︷ ︸︸ ︷(
1 −µx
0 1

)
. . .

M1︷ ︸︸ ︷(
1 −µxl0−1

0 1

) M0︷ ︸︸ ︷(
1 −µxl0

0 1

)(
0 1
1 0

)
.

(◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦

Φ̃−1

)

3

Let us define now,(
R−1 F−1 Φ−1
R̃−1 F̃−1 Φ̃−1

)
=

(
0 1
1 0

)(◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦

Φ̃−1

)
=

(
ΛrS̄ 1 0

xn−1 0 −1

)
(

Ri Fi Φi
R̃i F̃i Φ̃i

)
= Mi ·Mi−1 · · · · ·M0 ·

(
R−1 F−1 Φ−1
R̃−1 F̃−1 Φ̃−1

)

One can prove that now R̃i and Fi are monic for all i≤m. Algorithm 2 computes

the matrices
(

Ri Fi Φi
R̃i F̃i Φ̃i

)
until deg(Ri)< n− d−s

2 .

Algorithm 2

Initialize:(
R−1 F−1 Φ−1
R̃−1 F̃−1 Φ̃−1

)
=

(
ΛrS̄ 1 0
xn−1 0 −1

)
while deg(Ri)≥ n− d−s

2 :

µ = LC(Ri)
p = deg(Ri)−deg(R̃i)

if p≥ 0 then(
Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 −µxp

0 1

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
else (

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
0 −µ

1/µ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
end if

end while

Return Fi, Φi

After each step corresponding to p < 0 the new p is exactly the previous one
with opposite sign and so is µ . This is because the polynomials R̃i are monic. So,
we can join each step corresponding to p < 0 with the next one and get that, in this

case,
(

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 µx−p

0 1

)(
0 −µ

1/µ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
This modification does not alter the output Fi,Φi. Furthermore, the only reason

to keep the polynomials Ri (and R̃i) is that we need to compute their leading coef-
ficients (the µi’s). One can show that LC(Ri) = LC(FiΛrS̄), and so these leading
coefficients may be obtained without reference to the polynomials Ri. This allows
us to compute the Fi,Φi iteratively and dispense with the polynomials Ri.

Algorithm 2 can be transformed in a way such that the remainders are not kept
but their degrees. We use di, d̃i which satisfy at each step di≥ deg(Ri), d̃i = deg(R̃i).

Algorithm 3

4

Initialize:

d−1 = s+deg(S̄)
d̃−1 = n(

F−1 Φ−1
F̃−1 Φ̃−1

)
=

(
1 0
0 −1

)
while di ≥ n− d−s

2 :

µ = Coefficient(FiΛrS̄,di)
p = di− d̃i

if p≥ 0 or µ = 0 then(
Fi+1 Φi+1
F̃i+1 Φ̃i+1

)
=

(
1 −µxp

0 1

)(
Fi Φi
F̃i Φ̃i

)
di+1 = di−1
d̃i+1 = d̃i

else (
Fi+1 Φi+1
F̃i+1 Φ̃i+1

)
=

(
x−p −µ

1/µ 0

)(
Fi Φi
F̃i Φ̃i

)
di+1 = d̃i−1
d̃i+1 = di

end if

end while

Return Fi,Φi

Algorithm 3 is exactly the Berlekamp-Massey algorithm that solves the linear
recurrence ∑

t
j=0 Λ je(α i+ j−1) = 0 for all i > 0. This recurrence is derived from

Λ
S

xn−1 being a polynomial and thus having no terms of negative order in its expres-

sion as a Laurent series in 1/x, and from the equality S
xn−1 =

1
x

(
e(1)+ e(α)

x + e(α2)
x2 + · · ·

)
.

References
[1] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill Book Co., New York, 1968.
[2] Jean-Louis Dornstetter. On the equivalence between Berlekamp’s and Euclid’s algorithms.

IEEE Trans. Inform. Theory, 33(3):428–431, 1987.
[3] G. D. Forney, Jr. On decoding BCH codes. IEEE Trans. Inform. Theory, IT-11:549–557, 1965.
[4] Agnes E. Heydtmann and Jørn M. Jensen. On the equivalence of the Berlekamp-Massey and

the Euclidean algorithms for decoding. IEEE Trans. Inform. Theory, 46(7):2614–2624, 2000.
[5] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Information The-

ory, IT-15:122–127, 1969.
[6] T. D. Mateer. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms for

algebraic decoding. In 12th Canadian Workshop on Inf. Theory (CWIT) pp. 139–142, 2011.
[7] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa. A method

for solving key equation for decoding Goppa codes. Information and Control, 27:87–99, 1975.

5

