Quantum codes with bounded minimum distance
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Polynomial time algorithms for prime factorization and discrete logarithms on
quantum computers were given by Shor in 1994 [14]. Thus, if an efficient quantum
computer existed (see [2, 17], for recent advances), most popular cryptographic
systems could be broken and much computational work could be done much faster.
Unlike classical information, quantum information cannot be cloned [5, 20], de-
spite this fact quantum (error-correcting) codes do exist [15, 18]. The above facts
explain why, in the last decades, the interest in quantum computations and, in par-
ticular, in quantum coding theory grew dramatically.

Set g = p” a positive power of a prime number p, and let C? be a g-dimensional
complex vector space. A ((n,K,d)), quantum error correcting code is a g-ary
subspace Q of C?" = C?¢® - --® C? with dimension K and minimum distance d. If
K = ¢* we will write [[n,k,d]],.

Constructing and computing the paramters of a quantum code is in general a
difficult task. In [3] Calderbank et al stablish the basis to use classical linear codes
(either with the Hermitian or the Euclidean inner product) to construct a class of
quantum codes named stabilizer codes. Later their results were generalized for an
arbitrary finite field [13, 1]. Most of the codes known so far are obtined via the
following result.

Theorem 1. [13, 1] The following two statements hold.

1. Let C be a linear [n,k,d| error-correcting code over F, such that ctcc
Then, there exists an [[n,2k —n,> d||, stabilizer code which is pure to d. If
the minimum distance of C+ exceeds d, then the stabilizer code is pure and
has minimum distance d.

2. Let C be a linear [n,k,d| error-correcting code over qu such that C*» C C.
Then, there exists an [[n,2k —n,> d|], stabilizer code which is pure to d.
If the minimum distance d*" of the code C exceeds d, then the stabilizer
code is pure and has minimum distance d.

Codes obtained as described in Item (1) of Theorem 1 are usually referred to as
obtained from the CSS construction [4, 18]. The parameters of the codes coming
from Item (1) of Theorem 1 can be improved with the Hamada’s generalization



[12] of the Steane’s enlargement procedure [19]. Let us state the result, where wt
denotes minimum weight.

Theorem 2. [12] Let C be an [n,k] linear code over the field F, such that C*+ C C.
Assume that C can be enlarged to an [n,k'] linear code C', where k' > k+2. Then,
there exists a stabilizer code with parameters [[n,k+k' —n,d > min{d’, [qqild”} Hlg

where d' = wt(C\ C'*) and d” = wt(C'\ C'Y).

We propose to work with the so called family of J-affine variety codes and char-
acterize when a code within this family is contained in its dual (either Hermitian or
Euclidean), see [6, 7, 8] for more details.

Consider the ring of polynomials F,[X1,X>, ..., X,,] in m variables over the field
F, and fix m integers N; > 1 such that N; — 1 divides g — 1 for 1 < j <m. For a
subset J C {1,2,...,m}, set I; the ideal of the ring IF,[X;,X>,...,X,,] generated by
X;V-’ — X, whenever j ¢ J and by X]]-v" ~!_ 1 otherwise, for 1 < j < m. We denote
by Ry the quotient ring Fy[X1, X5, ..., X, /1.

Set Z; =Z(I;) = {P1,P,,...,P,,} the set of zeros over I, of the defining ideal
of R;. Clearly, the points P,, 1 <i < ny, can have 0 as a coordinate for those indices
J which are not in J but this is not the case for the remaining coordinates. Denote
by evy : Ry — I/ the evaluation map defined as ev;(f) = (f(P1), f(P2),- .., f(Py,)s
where nj = [];¢;N;[1jes(Nj—1). Set T; = N; — 1 except when j € J, in this last
case, T; = N; — 2, consider the set

H7:=10,1,....T1} x{0,1,...,Th} x--- x{0,1,..., T, }

and a nonempty subset A C .7Z7. Then, we define the J-affine variety code given by
A, Ei, as the vector subspace (over Fy) of Iy generated by the evaluation by ev,
of the set of classes in R; corresponding to monomials X¢ := X{" X} --- X% such
thata = (ay,a2,...,a,) € A. Stabilizer codes constructed from {1,2,...,m}-affine
variety codes were considered in [6, 7] because they allowed us to do comparisons
with some quantum BCH codes. What we call @-affine variety codes are simply
called affine variety codes in [9]. We will stand .77 for .7%). Notice that considering
different sets J we get codes of different lengths

(NM—=1)(N2—=1) - (Nu—1) =ng12,.m) <y <ng=NNp- Np.

We provide a generalization of the bound given in [10]. We define & =1 if
i € J and O otherwise.

Proposition 1. Let p(X) € Fy[X1,X>,...,X,| (we may also think that is a reduced
class on R), with leading monomial X* := X{"X{?--- X where a; < T; for i =
1,...,m then the number of points in Z(I) which are not a root of p(X) is:



6a > H(Nj*aj*-gj).
j=1

The minimum distance of the quantum code induced by A is bounded by the
minimum distance of the dual Ey = E,. . In terms of the previous lower bound

d(Ep.) > min{8, | a € A*}. (1)

Hyperbolic-like codes are constructed ad hoc in order to maximize the lower
bound (1). Hyperbolic codes were studied in [11] in the particular case were N; =
-+ =N, = ¢q" and J = 0. We propose the following generalization in this work.
Let ny = [T, (T; 4+ 1) be the length of the code (or the size of Z(I;)). Fix a
positive integer 7, 0 < t < ny, define the linear code Hyp(t,m), over Fq”f , as the
image of the evaluation map of the set of monomials:

M,fl(t):{x‘l”-- 0<al§T,,1<l<mH i —a; — Si)Zt}
By definition and (1) the following result is clear.
Proposition 2. The minimum weight, d, of Hyp(t,m) satisfies d > t.

With this definition we maximize the dimension of a code with lower bound
greater than or equal to 7.

Next question is to determine its dual. We define the linear code E(¢), over F"
as the image of the evaluation map of the set of monomials:

m
Ny(t) = {?‘-xﬁ;":eisbé 1<i<mJJbi+1-¢) r}
i=1

Proposition 3. Let us assume that there exists j & J such that p| N;. Then E(t)* =
Hyp(t,m) (where L denotes the euclidean dual).

Theorem 3. Let g = p" and Ni — 1,N> — 1| ¢*> — 1 and assume that exists j ¢ J
such that p| N;. If any of the following cases hold:

(i) J=0and p| N, forall j ¢ J and exists i with N;—1|g—1, and N;—1 > 1 —3
iftioddand Ni—1 >t —4ift is even.

(i’) J =0 and exist i such that Nj—1|gq—1and N;—1>2(t —2) + 1.

(ii)) J={1}and Ny — 1| g—1land N, —1 > 2(t —2) + 1.



(iii) J={1}and Ny —1|g—1and Ny — 1 >t ift odd and N} — 1 >t — 1 if t even.
(iv) J ={1,2} and exists i such that N;— 1 |q—1and N;—1>2(t—1)+ 1.
Then there exist a quantum codes with parameters: [[ny,> ny—2#E(t),> t]],.

Theorem 4. Let g = p" and Ny — 1,N, — 1 | ¢*> — 1 and assume that exists j ¢ J
such that p| N;. If any of the following cases hold.:

(i) J=0and p| N, forall j ¢ J and exists i such that N;—1|q*—1 and N;— 1 >
(5 —1)(g+1) iftis odd and Ni— 1 > (5 —1)(q+1) if t is even.

(i’) J =0 and exist i such that N;—1|q*—1 and N;—1 > (t —2)(¢g+1) >
(t—=2)(g+1)+1.

(ii) J={1}and Ny — 1| ¢* —1and N, — 1 > (t —=2)(g+1) > (t —2)(g+ 1)+ 1.
(ii) J={1}and N, —1|q*—1and Ny — 1 > (51)(g+1) it is odd and Ny — 1 >
(5=1)(g+1) ift is even.
(iv) J = {1,2} and exist i such that N;— 1| q*> —1 and N;—1 > (g+1)(t — 1).
Then there exist a quantum code with parameters [[ny,> ny —2#E(t),> t|],.

Furthermore, we present the following generalization of the Steane’s enlarge-
ment procedure that allowed us to obtain excellent codes in [8].
Theorem 5. Let C; and Cy be two linear codes over the field 'y, with parameters
[n,k1,d] and [n,lAq,dA]] respectively, and such that ClL C Cy. Consider a linear
code D C Fy such that dimD > 2 and (C, +C)ND ={0}. Set C;=C,+D
and éz = Cy + D, that enlarge C| and ¢ | respectively, with parameters [n,ky,d]
and [n,l%z,cfz] (ky —ki = ko — ky = dimD > 1). Set C3 the code sum of the vector
spaces C| + ¢ | + D, whose parameters we denote by |n,ks,ds]. Then, there exists
a stabilizer code with parameters

. . | dr+dr+d
n,k2+k1—n,d2min{d1,d1,{ﬁzm—‘ }” :
2

when q = 2. Otherwise, the parameters are

Hl’l,kz—i—]%l —n,d > min{dl,cil,M}]]

where M = max{ds + [(d2/q)],d3+ [(d2/q)]}.
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