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Polynomial time algorithms for prime factorization and discrete logarithms on
quantum computers were given by Shor in 1994 [14]. Thus, if an efficient quantum
computer existed (see [2, 17], for recent advances), most popular cryptographic
systems could be broken and much computational work could be done much faster.
Unlike classical information, quantum information cannot be cloned [5, 20], de-
spite this fact quantum (error-correcting) codes do exist [15, 18]. The above facts
explain why, in the last decades, the interest in quantum computations and, in par-
ticular, in quantum coding theory grew dramatically.

Set q = pr a positive power of a prime number p, and let Cq be a q-dimensional
complex vector space. A ((n,K,d))q quantum error correcting code is a q-ary
subspace Q of Cqn

= Cq⊗·· ·⊗Cq with dimension K and minimum distance d. If
K = qk we will write [[n,k,d]]q.

Constructing and computing the paramters of a quantum code is in general a
difficult task. In [3] Calderbank et al stablish the basis to use classical linear codes
(either with the Hermitian or the Euclidean inner product) to construct a class of
quantum codes named stabilizer codes. Later their results were generalized for an
arbitrary finite field [13, 1]. Most of the codes known so far are obtined via the
following result.

Theorem 1. [13, 1] The following two statements hold.

1. Let C be a linear [n,k,d] error-correcting code over Fq such that C⊥ ⊆ C.
Then, there exists an [[n,2k−n,≥ d]]q stabilizer code which is pure to d. If
the minimum distance of C⊥ exceeds d, then the stabilizer code is pure and
has minimum distance d.

2. Let C be a linear [n,k,d] error-correcting code over Fq2 such that C⊥h ⊆C.
Then, there exists an [[n,2k− n,≥ d]]q stabilizer code which is pure to d.
If the minimum distance d⊥h of the code C⊥h exceeds d, then the stabilizer
code is pure and has minimum distance d.

Codes obtained as described in Item (1) of Theorem 1 are usually referred to as
obtained from the CSS construction [4, 18]. The parameters of the codes coming
from Item (1) of Theorem 1 can be improved with the Hamada’s generalization
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[12] of the Steane’s enlargement procedure [19]. Let us state the result, where wt
denotes minimum weight.

Theorem 2. [12] Let C be an [n,k] linear code over the field Fq such that C⊥ ⊆C.
Assume that C can be enlarged to an [n,k′] linear code C′, where k′ ≥ k+2. Then,
there exists a stabilizer code with parameters [[n,k+k′−n,d≥min{d′,dq+1

q d”e}]]q,
where d′ = wt(C \C′⊥) and d” = wt(C′ \C′⊥).

We propose to work with the so called family of J-affine variety codes and char-
acterize when a code within this family is contained in its dual (either Hermitian or
Euclidean), see [6, 7, 8] for more details.

Consider the ring of polynomials Fq[X1,X2, . . . ,Xm] in m variables over the field
Fq and fix m integers N j > 1 such that N j− 1 divides q− 1 for 1 ≤ j ≤ m. For a
subset J ⊆ {1,2, . . . ,m}, set IJ the ideal of the ring Fq[X1,X2, . . . ,Xm] generated by
XN j

j −X j whenever j 6∈ J and by XN j−1
j − 1 otherwise, for 1 ≤ j ≤ m. We denote

by RJ the quotient ring Fq[X1,X2, . . . ,Xm]/IJ .
Set ZJ = Z(IJ) = {P1,P2, . . . ,PnJ} the set of zeros over Fq of the defining ideal

of RJ . Clearly, the points Pi, 1≤ i≤ nJ , can have 0 as a coordinate for those indices
j which are not in J but this is not the case for the remaining coordinates. Denote
by evJ : RJ→ FnJ

q the evaluation map defined as evJ( f ) = ( f (P1), f (P2), . . . , f (PnJ ),
where nJ = ∏ j/∈J N j ∏ j∈J(N j−1). Set Tj = N j−1 except when j ∈ J, in this last
case, Tj = N j−2, consider the set

HJ := {0,1, . . . ,T1}×{0,1, . . . ,T2}× ·· ·×{0,1, . . . ,Tm}

and a nonempty subset ∆⊆HJ . Then, we define the J-affine variety code given by
∆, EJ

∆
, as the vector subspace (over Fq) of FnJ

q generated by the evaluation by evJ

of the set of classes in RJ corresponding to monomials Xa := Xa1
1 Xa2

1 · · ·Xam
m such

that a = (a1,a2, . . . ,am) ∈ ∆. Stabilizer codes constructed from {1,2, . . . ,m}-affine
variety codes were considered in [6, 7] because they allowed us to do comparisons
with some quantum BCH codes. What we call /0-affine variety codes are simply
called affine variety codes in [9]. We will stand H for H /0. Notice that considering
different sets J we get codes of different lengths

(N1−1)(N2−1) · · ·(Nm−1) = n{1,2,...,m} ≤ nJ ≤ n /0 = N1N2 · · ·Nm.

We provide a generalization of the bound given in [10]. We define εi = 1 if
i ∈ J and 0 otherwise.

Proposition 1. Let p(X) ∈ Fq[X1,X2, . . . ,Xm] (we may also think that is a reduced
class on R), with leading monomial Xa := Xa1

1 Xa2
1 · · ·Xam

m where ai ≤ Ti for i =
1, . . . ,m then the number of points in Z(I) which are not a root of p(X) is:
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δa ≥
m

∏
j=1

(N j−a j− ε j).

The minimum distance of the quantum code induced by ∆ is bounded by the
minimum distance of the dual E⊥

∆
= E∆⊥ . In terms of the previous lower bound

d(E∆⊥)≥ min{δa | a ∈ ∆
⊥}. (1)

Hyperbolic-like codes are constructed ad hoc in order to maximize the lower
bound (1). Hyperbolic codes were studied in [11] in the particular case were N1 =
· · ·= Nm = qr and J = /0. We propose the following generalization in this work.

Let nJ = ∏
m
i=1(Ti + 1) be the length of the code (or the size of Z(IJ)). Fix a

positive integer t, 0 ≤ t ≤ nJ , define the linear code Hyp(t,m), over FnJ
q , as the

image of the evaluation map of the set of monomials:

MJ
m(t) =

{
xa1

1 · · ·x
am
m : 0≤ ai ≤ Ti,1≤ i≤ m,

m

∏
i=1

(Ni−ai− εi)≥ t

}
By definition and (1) the following result is clear.

Proposition 2. The minimum weight, d, of Hyp(t,m) satisfies d ≥ t.

With this definition we maximize the dimension of a code with lower bound
greater than or equal to t.

Next question is to determine its dual. We define the linear code E(t), over FnJ
q

as the image of the evaluation map of the set of monomials:

NJ
m(t) =

{
xb1

1 · · ·x
bm
m : εi ≤ bi ≤ Ti,1≤ i≤ m,

m

∏
i=1

(bi +1− εi)< t

}

Proposition 3. Let us assume that there exists j /∈ J such that p| N j. Then E(t)⊥ =
Hyp(t,m) (where ⊥ denotes the euclidean dual).

Theorem 3. Let q = pr and N1− 1,N2− 1 | q2− 1 and assume that exists j /∈ J
such that p| N j. If any of the following cases hold:

(i) J = /0 and p| N j for all j /∈ J and exists i with Ni−1 | q−1, and Ni−1 > t−3
if t i odd and Ni−1 > t−4 if t is even.

(i’) J = /0 and exist i such that Ni−1 | q−1 and Ni−1≥ 2(t−2)+1.

(ii) J = {1} and N2−1 | q−1 and N2−1≥ 2(t−2)+1.
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(iii) J = {1} and N1−1 | q−1 and N1−1≥ t if t odd and N1−1≥ t−1 if t even.

(iv) J = {1,2} and exists i such that Ni−1 | q−1 and Ni−1≥ 2(t−1)+1.

Then there exist a quantum codes with parameters: [[nJ,≥ nJ−2#E(t),≥ t]]q.

Theorem 4. Let q = pr and N1− 1,N2− 1 | q2− 1 and assume that exists j /∈ J
such that p| N j. If any of the following cases hold:

(i) J = /0 and p| N j for all j /∈ J and exists i such that Ni−1 | q2−1 and Ni−1 >
( t−1

2 −1)(q+1) if t is odd and Ni−1 > ( t
2 −1)(q+1) if t is even.

(i’) J = /0 and exist i such that Ni− 1 | q2− 1 and Ni− 1 > (t − 2)(q+ 1) ≥
(t−2)(q+1)+1.

(ii) J = {1} and N2−1 | q2−1 and N2−1 > (t−2)(q+1)≥ (t−2)(q+1)+1.

(iii) J = {1} and N1−1 | q2−1 and N1−1> ( t−1
2 )(q+1) if t is odd and N1−1>

( t
2 −1)(q+1) if t is even.

(iv) J = {1,2} and exist i such that Ni−1 | q2−1 and Ni−1 > (q+1)(t−1).

Then there exist a quantum code with parameters [[nJ,≥ nJ−2#E(t),≥ t]]q.

Furthermore, we present the following generalization of the Steane’s enlarge-
ment procedure that allowed us to obtain excellent codes in [8].

Theorem 5. Let C1 and Ĉ1 be two linear codes over the field Fq, with parameters
[n,k1,d1] and [n, k̂1, d̂1] respectively, and such that C⊥1 ⊆ Ĉ1. Consider a linear
code D ⊆ Fn

q such that dimD ≥ 2 and (C1 + Ĉ1)∩D = {0}. Set C2 = C1 + D
and Ĉ2 = C2 +D, that enlarge C1 and Ĉ1 respectively, with parameters [n,k2,d2]
and [n, k̂2, d̂2] (k2− k1 = k̂2− k̂1 = dimD > 1). Set C3 the code sum of the vector
spaces C1 + Ĉ1 +D, whose parameters we denote by [n,k3,d3]. Then, there exists
a stabilizer code with parameters[[

n,k2 + k̂1−n,d ≥min

{
d1, d̂1,

⌈
d2 + d̂2 +d3

2

⌉}]]
2

,

when q = 2. Otherwise, the parameters are[[
n,k2 + k̂1−n,d ≥min

{
d1, d̂1,M

}]]
q ,

where M = max{d3 + d(d2/q)e,d3 + d(d̂2/q)e}.
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