Quantum codes with bounded minimum distance

Carlos Galindo¹, Fernando Hernando², Diego Ruano³

¹ Universidad Jaume I, Spain, galindo@mat.uji.es

² Universidad Jaume I, Spain, carrillf@uji.es

³ Aalborg University, Denmark, diego@math.aau.dk

Polynomial time algorithms for prime factorization and discrete logarithms on quantum computers were given by Shor in 1994 [14]. Thus, if an efficient quantum computer existed (see [2, 17], for recent advances), most popular cryptographic systems could be broken and much computational work could be done much faster. Unlike classical information, quantum information cannot be cloned [5, 20], despite this fact quantum (error-correcting) codes do exist [15, 18]. The above facts explain why, in the last decades, the interest in quantum computations and, in particular, in quantum coding theory grew dramatically.

Set $q = p^r$ a positive power of a prime number p, and let \mathbb{C}^q be a q-dimensional complex vector space. A $((n, K, d))_q$ quantum error correcting code is a q-ary subspace Q of $\mathbb{C}^{q^n} = \mathbb{C}^q \otimes \cdots \otimes \mathbb{C}^q$ with dimension K and minimum distance d. If $K = q^k$ we will write $[[n, k, d]]_q$.

Constructing and computing the paramters of a quantum code is in general a difficult task. In [3] Calderbank et al stablish the basis to use classical linear codes (either with the Hermitian or the Euclidean inner product) to construct a class of quantum codes named stabilizer codes. Later their results were generalized for an arbitrary finite field [13, 1]. Most of the codes known so far are obtined via the following result.

Theorem 1. [13, 1] The following two statements hold.

- 1. Let C be a linear [n,k,d] error-correcting code over \mathbb{F}_q such that $C^{\perp} \subseteq C$. Then, there exists an $[[n,2k-n,\geq d]]_q$ stabilizer code which is pure to d. If the minimum distance of C^{\perp} exceeds d, then the stabilizer code is pure and has minimum distance d.
- 2. Let C be a linear [n,k,d] error-correcting code over \mathbb{F}_{q^2} such that $C^{\perp_h} \subseteq C$. Then, there exists an $[[n,2k-n,\geq d]]_q$ stabilizer code which is pure to d. If the minimum distance d^{\perp_h} of the code C^{\perp_h} exceeds d, then the stabilizer code is pure and has minimum distance d.

Codes obtained as described in Item (1) of Theorem 1 are usually referred to as obtained from the CSS construction [4, 18]. The parameters of the codes coming from Item (1) of Theorem 1 can be improved with the Hamada's generalization

[12] of the Steane's enlargement procedure [19]. Let us state the result, where wt denotes minimum weight.

Theorem 2. [12] Let C be an [n,k] linear code over the field \mathbb{F}_q such that $C^{\perp} \subseteq C$. Assume that C can be enlarged to an [n,k'] linear code C', where $k' \ge k+2$. Then, there exists a stabilizer code with parameters $[[n,k+k'-n,d \ge \min\{d', \lceil \frac{q+1}{q}d"\rceil\}]]_q$, where $d' = \operatorname{wt}(C \setminus C'^{\perp})$ and $d" = \operatorname{wt}(C' \setminus C'^{\perp})$.

We propose to work with the so called family of J-affine variety codes and characterize when a code within this family is contained in its dual (either Hermitian or Euclidean), see [6, 7, 8] for more details.

Consider the ring of polynomials $\mathbb{F}_q[X_1, X_2, \ldots, X_m]$ in *m* variables over the field \mathbb{F}_q and fix *m* integers $N_j > 1$ such that $N_j - 1$ divides q - 1 for $1 \le j \le m$. For a subset $J \subseteq \{1, 2, \ldots, m\}$, set I_J the ideal of the ring $\mathbb{F}_q[X_1, X_2, \ldots, X_m]$ generated by $X_j^{N_j} - X_j$ whenever $j \notin J$ and by $X_j^{N_j-1} - 1$ otherwise, for $1 \le j \le m$. We denote by R_J the quotient ring $\mathbb{F}_q[X_1, X_2, \ldots, X_m]/I_J$.

Set $Z_J = Z(I_J) = \{P_1, P_2, \dots, P_{n_J}\}$ the set of zeros over \mathbb{F}_q of the defining ideal of R_J . Clearly, the points P_i , $1 \le i \le n_J$, can have 0 as a coordinate for those indices j which are not in J but this is not the case for the remaining coordinates. Denote by $\operatorname{ev}_J : R_J \to \mathbb{F}_q^{n_J}$ the evaluation map defined as $\operatorname{ev}_J(f) = (f(P_1), f(P_2), \dots, f(P_{n_J}),$ where $n_J = \prod_{j \notin J} N_j \prod_{j \in J} (N_j - 1)$. Set $T_j = N_j - 1$ except when $j \in J$, in this last case, $T_j = N_j - 2$, consider the set

$$\mathscr{H}_{J} := \{0, 1, \dots, T_{1}\} \times \{0, 1, \dots, T_{2}\} \times \dots \times \{0, 1, \dots, T_{m}\}$$

and a nonempty subset $\Delta \subseteq \mathscr{H}_J$. Then, we define the *J*-affine variety code given by Δ , E_{Δ}^J , as the vector subspace (over \mathbb{F}_q) of $\mathbb{F}_q^{n_J}$ generated by the evaluation by ev_J of the set of classes in R_J corresponding to monomials $X^a := X_1^{a_1} X_1^{a_2} \cdots X_m^{a_m}$ such that $a = (a_1, a_2, \ldots, a_m) \in \Delta$. Stabilizer codes constructed from $\{1, 2, \ldots, m\}$ -affine variety codes were considered in [6, 7] because they allowed us to do comparisons with some quantum BCH codes. What we call \emptyset -affine variety codes are simply called affine variety codes in [9]. We will stand \mathscr{H} for \mathscr{H}_{\emptyset} . Notice that considering different sets J we get codes of different lengths

$$(N_1-1)(N_2-1)\cdots(N_m-1) = n_{\{1,2,\dots,m\}} \le n_J \le n_\emptyset = N_1N_2\cdots N_m.$$

We provide a generalization of the bound given in [10]. We define $\varepsilon_i = 1$ if $i \in J$ and 0 otherwise.

Proposition 1. Let $p(X) \in \mathbb{F}_q[X_1, X_2, ..., X_m]$ (we may also think that is a reduced class on *R*), with leading monomial $X^a := X_1^{a_1} X_1^{a_2} \cdots X_m^{a_m}$ where $a_i \leq T_i$ for i = 1, ..., m then the number of points in Z(I) which are not a root of p(X) is:

$$\delta_a \ge \prod_{j=1}^m (N_j - a_j - \varepsilon_j).$$

The minimum distance of the quantum code induced by Δ is bounded by the minimum distance of the dual $E_{\Delta}^{\perp} = E_{\Delta^{\perp}}$. In terms of the previous lower bound

$$d(E_{\Delta^{\perp}}) \ge \min\{\delta_a \mid a \in \Delta^{\perp}\}.$$
⁽¹⁾

Hyperbolic-like codes are constructed ad hoc in order to maximize the lower bound (1). Hyperbolic codes were studied in [11] in the particular case were $N_1 = \cdots = N_m = q^r$ and $J = \emptyset$. We propose the following generalization in this work.

Let $n_J = \prod_{i=1}^m (T_i + 1)$ be the length of the code (or the size of $Z(I_J)$). Fix a positive integer t, $0 \le t \le n_J$, define the linear code Hyp(t,m), over $F_q^{n_J}$, as the image of the evaluation map of the set of monomials:

$$M_{m}^{J}(t) = \left\{ x_{1}^{a_{1}} \cdots x_{m}^{a_{m}} : 0 \le a_{i} \le T_{i}, 1 \le i \le m, \prod_{i=1}^{m} (N_{i} - a_{i} - \varepsilon_{i}) \ge t \right\}$$

By definition and (1) the following result is clear.

Proposition 2. The minimum weight, d, of Hyp(t,m) satisfies $d \ge t$.

With this definition we maximize the dimension of a code with lower bound greater than or equal to *t*.

Next question is to determine its dual. We define the linear code E(t), over $F_q^{n_j}$ as the image of the evaluation map of the set of monomials:

$$N_m^J(t) = \left\{ x_1^{b_1} \cdots x_m^{b_m} : \varepsilon_i \le b_i \le T_i, 1 \le i \le m, \prod_{i=1}^m (b_i + 1 - \varepsilon_i) < t \right\}$$

Proposition 3. Let us assume that there exists $j \notin J$ such that $p | N_j$. Then $E(t)^{\perp} = Hyp(t,m)$ (where \perp denotes the euclidean dual).

Theorem 3. Let $q = p^r$ and $N_1 - 1, N_2 - 1 | q^2 - 1$ and assume that exists $j \notin J$ such that $p | N_j$. If any of the following cases hold:

- (i) $J = \emptyset$ and $p \mid N_j$ for all $j \notin J$ and exists i with $N_i 1 \mid q 1$, and $N_i 1 > t 3$ if t i odd and $N_i - 1 > t - 4$ if t is even.
- (*i*') $J = \emptyset$ and exist *i* such that $N_i 1 | q 1$ and $N_i 1 \ge 2(t 2) + 1$.
- (*ii*) $J = \{1\}$ and $N_2 1 \mid q 1$ and $N_2 1 \ge 2(t 2) + 1$.

- (iii) $J = \{1\}$ and $N_1 1 \mid q 1$ and $N_1 1 \ge t$ if t odd and $N_1 1 \ge t 1$ if t even.
- (iv) $J = \{1,2\}$ and exists *i* such that $N_i 1 \mid q 1$ and $N_i 1 \ge 2(t-1) + 1$.

Then there exist a quantum codes with parameters: $[[n_J, \ge n_J - 2\#E(t), \ge t]]_q$.

Theorem 4. Let $q = p^r$ and $N_1 - 1, N_2 - 1 | q^2 - 1$ and assume that exists $j \notin J$ such that $p | N_j$. If any of the following cases hold:

- (i) $J = \emptyset$ and $p \mid N_j$ for all $j \notin J$ and exists i such that $N_i 1 \mid q^2 1$ and $N_i 1 > (\frac{t-1}{2} 1)(q+1)$ if t is odd and $N_i 1 > (\frac{t}{2} 1)(q+1)$ if t is even.
- (i') $J = \emptyset$ and exist i such that $N_i 1 \mid q^2 1$ and $N_i 1 > (t 2)(q + 1) \ge (t 2)(q + 1) + 1$.

(*ii*)
$$J = \{1\}$$
 and $N_2 - 1 \mid q^2 - 1$ and $N_2 - 1 > (t - 2)(q + 1) \ge (t - 2)(q + 1) + 1$

(iii) $J = \{1\}$ and $N_1 - 1 \mid q^2 - 1$ and $N_1 - 1 > (\frac{t-1}{2})(q+1)$ if t is odd and $N_1 - 1 > (\frac{t}{2} - 1)(q+1)$ if t is even.

(iv) $J = \{1,2\}$ and exist *i* such that $N_i - 1 | q^2 - 1$ and $N_i - 1 > (q+1)(t-1)$. Then there exist a quantum code with parameters $[[n_J, \ge n_J - 2\#E(t), \ge t]]_a$.

Furthermore, we present the following generalization of the Steane's enlargement procedure that allowed us to obtain excellent codes in [8].

Theorem 5. Let C_1 and \hat{C}_1 be two linear codes over the field \mathbb{F}_q , with parameters $[n,k_1,d_1]$ and $[n,\hat{k}_1,\hat{d}_1]$ respectively, and such that $C_1^{\perp} \subseteq \hat{C}_1$. Consider a linear code $D \subseteq \mathbb{F}_q^n$ such that dim $D \ge 2$ and $(C_1 + \hat{C}_1) \cap D = \{0\}$. Set $C_2 = C_1 + D$ and $\hat{C}_2 = C_2 + D$, that enlarge C_1 and \hat{C}_1 respectively, with parameters $[n,k_2,d_2]$ and $[n,\hat{k}_2,\hat{d}_2]$ ($k_2 - k_1 = \hat{k}_2 - \hat{k}_1 = \dim D > 1$). Set C_3 the code sum of the vector spaces $C_1 + \hat{C}_1 + D$, whose parameters we denote by $[n,k_3,d_3]$. Then, there exists a stabilizer code with parameters

$$\left[\left[n, k_2 + \hat{k}_1 - n, d \ge \min\left\{d_1, \hat{d}_1, \left\lceil \frac{d_2 + \hat{d}_2 + d_3}{2} \right\rceil\right\}\right]\right]_2$$

when q = 2. Otherwise, the parameters are

$$\left[\left[n, k_2 + \hat{k}_1 - n, d \ge \min\left\{d_1, \hat{d}_1, M\right\}\right]\right]_q,$$

where $M = \max\{d_3 + \lceil (d_2/q) \rceil, d_3 + \lceil (\hat{d}_2/q) \rceil\}$.

Acknowledgment: The authors gratefully acknowledge the support from the Spanish MINECO (Grant No. MTM2012-36917-C03-03), the Danish Council for Independent Research (Grant No. DFF-4002-00367) and from the "Program for Promoting the Enhancement of Research Universities" at Tokyo Institute of Technology.

References

- Aly, S.A., Klappenecker, A., Kumar, S., Sarvepalli, P.K. On quantum and classical BCH codes, *IEEE Trans. Inf. Theory* 53 (2007) 1183-1188.
- [2] Bian, Z. et al. Experimental determination of Ramsey numbers, *Phys. Rev. Lett.* **111** 130505 (2013).
- [3] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A. Quantum error correction via codes over GF(4), *IEEE Trans. Inf. Theory* 44 (1998) 1369-1387.
- [4] Calderbank A.R., Shor, P. Good quantum error-correcting codes exist, *Phys. Rev. A* 54 (1996) 1098-1105.
- [5] Dieks, D. Communication by EPR devices, Phys. Rev. A 92 (1982) 271.
- [6] Galindo, C., Hernando, F. Quantum codes from affine variety codes and their subfield subcodes. To appear in *Des. Codes Crytogr.*
- [7] Galindo, C., Hernando, F., Ruano, D. New quantum codes from evaluation and matrix-product codes. Preprint arXiv:1406.0650.
- [8] Galindo, C., Hernando, F., Ruano, D. Stabilizer quantum codes from *J*-affine variety codes and a new Steane-like enlargement. Preprint arXiv:1503.00879. To appear in *Quantum Inf. Process.*
- [9] Geil, O. Evaluation codes from an affine variety code perspective. Advances in algebraic geometry codes, Ser. Coding Theory Cryptol. 5 (2008) 153-180. World Sci. Publ., Hackensack, NJ. Eds.: E. Martinez-Moro, C. Munuera, D. Ruano.
- [10] Geil, O. Roots and coefficients of multivariate polynomials over finite fields, to appear in Finite Fields and their applications.
- [11] Geil, O., Høholdt, T. On hyperbolic codes, Lect. Notes Comp. Sc. 2227 (2001) 159-171.
- [12] Hamada, M. Concatenated quantum codes constructible in polynomial time: Efficient decoding and error correction, *IEEE Trans. Inform. Theory* 54 (2008) 5689-5704.
- [13] Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K. Nonbinary stabilizer codes over finite fields, *IEEE Trans. Inform. Theory* 52 (2006) 4892-4914.
- [14] Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proc. 35th ann. symp. found. comp. sc., *IEEE Comp. Soc. Press* 1994, 124-134.
- [15] Shor, P.W. Scheme for reducing decoherence in quantum computer memory, *Phys. Rev. A* 52 (1995) 2493-2496.
- [16] Shor, P.W., Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol, *Phys. Rev. Lett.* 85 (2000) 441-444.
- [17] Smith, G., Smolin, J. Putting "quantumness" to the test, *Physics* 6 105 (2013).
- [18] Steane, A.M. Simple quantum error correcting codes, Phys. Rev. Lett. 77 (1996) 793-797.
- [19] Steane, A.M. Enlargement of Calderbank-Shor-Steane quantum codes, *IEEE Trans. Inform. Theory* 45 (1999) 2492-2495.
- [20] Wootters W.K., Zurek, W.H. A single quantum cannot be cloned, *Nature* 299 (1982) 802-803.