Quantum codes with bounded minimum distance

Carlos Galindo ${ }^{1}$, Fernando Hernando ${ }^{2}$, Diego Ruano ${ }^{3}$
${ }^{1}$ Universidad Jaume I, Spain, galindo@mat.uji.es
${ }^{2}$ Universidad Jaume I, Spain, carrillf@uji.es
${ }^{3}$ Aalborg University, Denmark, diego@math.aau.dk

Polynomial time algorithms for prime factorization and discrete logarithms on quantum computers were given by Shor in 1994 [14]. Thus, if an efficient quantum computer existed (see [2,17], for recent advances), most popular cryptographic systems could be broken and much computational work could be done much faster. Unlike classical information, quantum information cannot be cloned [5, 20], despite this fact quantum (error-correcting) codes do exist [15, 18]. The above facts explain why, in the last decades, the interest in quantum computations and, in particular, in quantum coding theory grew dramatically.

Set $q=p^{r}$ a positive power of a prime number p, and let \mathbb{C}^{q} be a q-dimensional complex vector space. A $((n, K, d))_{q}$ quantum error correcting code is a q-ary subspace Q of $\mathbb{C}^{q^{n}}=\mathbb{C}^{q} \otimes \cdots \otimes \mathbb{C}^{q}$ with dimension K and minimum distance d. If $K=q^{k}$ we will write $[[n, k, d]]_{q}$.

Constructing and computing the paramters of a quantum code is in general a difficult task. In [3] Calderbank et al stablish the basis to use classical linear codes (either with the Hermitian or the Euclidean inner product) to construct a class of quantum codes named stabilizer codes. Later their results were generalized for an arbitrary finite field $[13,1]$. Most of the codes known so far are obtined via the following result.

Theorem 1. [13, 1] The following two statements hold.

1. Let C be a linear $[n, k, d]$ error-correcting code over \mathbb{F}_{q} such that $C^{\perp} \subseteq C$. Then, there exists an $[[n, 2 k-n, \geq d]]_{q}$ stabilizer code which is pure to d. If the minimum distance of C^{\perp} exceeds d, then the stabilizer code is pure and has minimum distance d.
2. Let C be a linear $[n, k, d]$ error-correcting code over $\mathbb{F}_{q^{2}}$ such that $C^{\perp_{h}} \subseteq C$. Then, there exists an $[[n, 2 k-n, \geq d]]_{q}$ stabilizer code which is pure to d. If the minimum distance $d^{\perp_{h}}$ of the code $C^{\perp_{h}}$ exceeds d, then the stabilizer code is pure and has minimum distance d.

Codes obtained as described in Item (1) of Theorem 1 are usually referred to as obtained from the CSS construction [4, 18]. The parameters of the codes coming from Item (1) of Theorem 1 can be improved with the Hamada's generalization
[12] of the Steane's enlargement procedure [19]. Let us state the result, where wt denotes minimum weight.

Theorem 2. [12] Let C be an $[n, k]$ linear code over the field \mathbb{F}_{q} such that $C^{\perp} \subseteq C$. Assume that C can be enlarged to an $\left[n, k^{\prime}\right]$ linear code C^{\prime}, where $k^{\prime} \geq k+2$. Then, there exists a stabilizer code with parameters $\left[\left[n, k+k^{\prime}-n, d \geq \min \left\{d^{\prime},\left\lceil\frac{q+1}{q} d^{\prime}\right\rceil\right\}\right]\right]_{q}$, where $d^{\prime}=\operatorname{wt}\left(C \backslash C^{\prime \perp}\right)$ and $d^{\prime \prime}=\operatorname{wt}\left(C^{\prime} \backslash C^{\prime \perp}\right)$.

We propose to work with the so called family of J-affine variety codes and characterize when a code within this family is contained in its dual (either Hermitian or Euclidean), see $[6,7,8]$ for more details.

Consider the ring of polynomials $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ in m variables over the field \mathbb{F}_{q} and fix m integers $N_{j}>1$ such that $N_{j}-1$ divides $q-1$ for $1 \leq j \leq m$. For a subset $J \subseteq\{1,2, \ldots, m\}$, set I_{J} the ideal of the ring $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ generated by $X_{j}^{N_{j}}-X_{j}$ whenever $j \notin J$ and by $X_{j}^{N_{j}-1}-1$ otherwise, for $1 \leq j \leq m$. We denote by R_{J} the quotient ring $\mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right] / I_{J}$.

Set $Z_{J}=Z\left(I_{J}\right)=\left\{P_{1}, P_{2}, \ldots, P_{n_{J}}\right\}$ the set of zeros over \mathbb{F}_{q} of the defining ideal of R_{J}. Clearly, the points $P_{i}, 1 \leq i \leq n_{J}$, can have 0 as a coordinate for those indices j which are not in J but this is not the case for the remaining coordinates. Denote by ev $J_{J}: R_{J} \rightarrow \mathbb{F}_{q}^{n_{J}}$ the evaluation map defined as $\operatorname{ev}_{J}(f)=\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n_{J}}\right)\right.$, where $n_{J}=\prod_{j \notin J} N_{j} \prod_{j \in J}\left(N_{j}-1\right)$. Set $T_{j}=N_{j}-1$ except when $j \in J$, in this last case, $T_{j}=N_{j}-2$, consider the set

$$
\mathscr{H}_{J}:=\left\{0,1, \ldots, T_{1}\right\} \times\left\{0,1, \ldots, T_{2}\right\} \times \cdots \times\left\{0,1, \ldots, T_{m}\right\}
$$

and a nonempty subset $\Delta \subseteq \mathscr{H}_{J}$. Then, we define the J-affine variety code given by Δ, E_{Δ}^{J}, as the vector subspace (over \mathbb{F}_{q}) of $\mathbb{F}_{q}^{n_{J}}$ generated by the evaluation by ev ${ }_{J}$ of the set of classes in R_{J} corresponding to monomials $X^{a}:=X_{1}^{a_{1}} X_{1}^{a_{2}} \cdots X_{m}^{a_{m}}$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \Delta$. Stabilizer codes constructed from $\{1,2, \ldots, m\}$-affine variety codes were considered in [6, 7] because they allowed us to do comparisons with some quantum BCH codes. What we call \emptyset-affine variety codes are simply called affine variety codes in [9]. We will stand \mathscr{H} for \mathscr{H}. Notice that considering different sets J we get codes of different lengths

$$
\left(N_{1}-1\right)\left(N_{2}-1\right) \cdots\left(N_{m}-1\right)=n_{\{1,2, \ldots, m\}} \leq n_{J} \leq n_{\emptyset}=N_{1} N_{2} \cdots N_{m} .
$$

We provide a generalization of the bound given in [10]. We define $\varepsilon_{i}=1$ if $i \in J$ and 0 otherwise.

Proposition 1. Let $p(X) \in \mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ (we may also think that is a reduced class on R), with leading monomial $X^{a}:=X_{1}^{a_{1}} X_{1}^{a_{2}} \cdots X_{m}^{a_{m}}$ where $a_{i} \leq T_{i}$ for $i=$ $1, \ldots, m$ then the number of points in $Z(I)$ which are not a root of $p(X)$ is:

$$
\delta_{a} \geq \prod_{j=1}^{m}\left(N_{j}-a_{j}-\varepsilon_{j}\right)
$$

The minimum distance of the quantum code induced by Δ is bounded by the minimum distance of the dual $E_{\Delta}^{\perp}=E_{\Delta^{\perp}}$. In terms of the previous lower bound

$$
\begin{equation*}
d\left(E_{\Delta^{\perp}}\right) \geq \min \left\{\delta_{a} \mid a \in \Delta^{\perp}\right\} . \tag{1}
\end{equation*}
$$

Hyperbolic-like codes are constructed ad hoc in order to maximize the lower bound (1). Hyperbolic codes were studied in [11] in the particular case were $N_{1}=$ $\cdots=N_{m}=q^{r}$ and $J=\emptyset$. We propose the following generalization in this work.

Let $n_{J}=\prod_{i=1}^{m}\left(T_{i}+1\right)$ be the length of the code (or the size of $Z\left(I_{J}\right)$). Fix a positive integer $t, 0 \leq t \leq n_{J}$, define the linear code $\operatorname{Hyp}(t, m)$, over $F_{q}^{n_{J}}$, as the image of the evaluation map of the set of monomials:

$$
M_{m}^{J}(t)=\left\{x_{1}^{a_{1}} \cdots x_{m}^{a_{m}}: 0 \leq a_{i} \leq T_{i}, 1 \leq i \leq m, \prod_{i=1}^{m}\left(N_{i}-a_{i}-\varepsilon_{i}\right) \geq t\right\}
$$

By definition and (1) the following result is clear.
Proposition 2. The minimum weight, d, of $H y p(t, m)$ satisfies $d \geq t$.
With this definition we maximize the dimension of a code with lower bound greater than or equal to t.

Next question is to determine its dual. We define the linear code $E(t)$, over $F_{q}^{n_{J}}$ as the image of the evaluation map of the set of monomials:

$$
N_{m}^{J}(t)=\left\{x_{1}^{b_{1}} \cdots x_{m}^{b_{m}}: \varepsilon_{i} \leq b_{i} \leq T_{i}, 1 \leq i \leq m, \prod_{i=1}^{m}\left(b_{i}+1-\varepsilon_{i}\right)<t\right\}
$$

Proposition 3. Let us assume that there exists $j \notin J$ such that $p \mid N_{j}$. Then $E(t)^{\perp}=$ $\operatorname{Hyp}(t, m)$ (where \perp denotes the euclidean dual).

Theorem 3. Let $q=p^{r}$ and $N_{1}-1, N_{2}-1 \mid q^{2}-1$ and assume that exists $j \notin J$ such that $p \mid N_{j}$. If any of the following cases hold:
(i) $J=\emptyset$ and $p \mid N_{j}$ for all $j \notin J$ and exists i with $N_{i}-1 \mid q-1$, and $N_{i}-1>t-3$ if $t i$ odd and $N_{i}-1>t-4$ ift is even.
(i^{\prime}) $J=\emptyset$ and exist i such that $N_{i}-1 \mid q-1$ and $N_{i}-1 \geq 2(t-2)+1$.
(ii) $J=\{1\}$ and $N_{2}-1 \mid q-1$ and $N_{2}-1 \geq 2(t-2)+1$.
(iii) $J=\{1\}$ and $N_{1}-1 \mid q-1$ and $N_{1}-1 \geq t$ ift odd and $N_{1}-1 \geq t-1$ ift even.
(iv) $J=\{1,2\}$ and exists i such that $N_{i}-1 \mid q-1$ and $N_{i}-1 \geq 2(t-1)+1$.

Then there exist a quantum codes with parameters: $\left[\left[n_{J}, \geq n_{J}-2 \# E(t), \geq t\right]\right]_{q}$.
Theorem 4. Let $q=p^{r}$ and $N_{1}-1, N_{2}-1 \mid q^{2}-1$ and assume that exists $j \notin J$ such that $p \mid N_{j}$. If any of the following cases hold:
(i) $J=\emptyset$ and $p \mid N_{j}$ for all $j \notin J$ and exists i such that $N_{i}-1 \mid q^{2}-1$ and $N_{i}-1>$ $\left(\frac{t-1}{2}-1\right)(q+1)$ ift is odd and $N_{i}-1>\left(\frac{t}{2}-1\right)(q+1)$ ift is even.
(i') $J=\emptyset$ and exist i such that $N_{i}-1 \mid q^{2}-1$ and $N_{i}-1>(t-2)(q+1) \geq$ $(t-2)(q+1)+1$.
(ii) $J=\{1\}$ and $N_{2}-1 \mid q^{2}-1$ and $N_{2}-1>(t-2)(q+1) \geq(t-2)(q+1)+1$.
(iii) $J=\{1\}$ and $N_{1}-1 \mid q^{2}-1$ and $N_{1}-1>\left(\frac{t-1}{2}\right)(q+1)$ ift is odd and $N_{1}-1>$ $\left(\frac{t}{2}-1\right)(q+1)$ if t is even.
(iv) $J=\{1,2\}$ and exist i such that $N_{i}-1 \mid q^{2}-1$ and $N_{i}-1>(q+1)(t-1)$.

Then there exist a quantum code with parameters $\left[\left[n_{J}, \geq n_{J}-2 \# E(t), \geq t\right]\right]_{q}$.
Furthermore, we present the following generalization of the Steane's enlargement procedure that allowed us to obtain excellent codes in [8].
Theorem 5. Let C_{1} and \hat{C}_{1} be two linear codes over the field \mathbb{F}_{q}, with parameters $\left[n, k_{1}, d_{1}\right]$ and $\left[n, \hat{k}_{1}, \hat{d}_{1}\right]$ respectively, and such that $C_{1}^{\perp} \subseteq \hat{C}_{1}$. Consider a linear code $D \subseteq \mathbb{F}_{q}^{n}$ such that $\operatorname{dim} D \geq 2$ and $\left(C_{1}+\hat{C}_{1}\right) \cap D=\{0\}$. Set $C_{2}=C_{1}+D$ and $\hat{C}_{2}=C_{2}+D$, that enlarge C_{1} and \hat{C}_{1} respectively, with parameters $\left[n, k_{2}, d_{2}\right]$ and $\left[n, \hat{k}_{2}, \hat{c}_{2}\right]\left(k_{2}-k_{1}=\hat{k}_{2}-\hat{k_{1}}=\operatorname{dim} D>1\right)$. Set C_{3} the code sum of the vector spaces $C_{1}+\hat{C}_{1}+D$, whose parameters we denote by $\left[n, k_{3}, d_{3}\right]$. Then, there exists a stabilizer code with parameters

$$
\left[\left[n, k_{2}+\hat{k}_{1}-n, d \geq \min \left\{d_{1}, \hat{d}_{1},\left\lceil\frac{d_{2}+\hat{d}_{2}+d_{3}}{2}\right\rceil\right\}\right]\right]_{2},
$$

when $q=2$. Otherwise, the parameters are

$$
\left[\left[n, k_{2}+\hat{k}_{1}-n, d \geq \min \left\{d_{1}, \hat{d}_{1}, M\right\}\right]\right]_{q}
$$

where $M=\max \left\{d_{3}+\left\lceil\left(d_{2} / q\right)\right\rceil, d_{3}+\left\lceil\left(\hat{d}_{2} / q\right)\right\rceil\right\}$.
Acknowledgment: The authors gratefully acknowledge the support from the Spanish MINECO (Grant No. MTM2012-36917-C03-03), the Danish Council for Independent Research (Grant No. DFF-4002-00367) and from the "Program for Promoting the Enhancement of Research Universities" at Tokyo Institute of Technology.

References

[1] Aly, S.A., Klappenecker, A., Kumar, S., Sarvepalli, P.K. On quantum and classical BCH codes, IEEE Trans. Inf. Theory 53 (2007) 1183-1188.
[2] Bian, Z. et al. Experimental determination of Ramsey numbers, Phys. Rev. Lett. 111130505 (2013).
[3] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A. Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory 44 (1998) 1369-1387.
[4] Calderbank A.R., Shor, P. Good quantum error-correcting codes exist, Phys. Rev. A 54 (1996) 1098-1105.
[5] Dieks, D. Communication by EPR devices, Phys. Rev. A 92 (1982) 271.
[6] Galindo, C., Hernando, F. Quantum codes from affine variety codes and their subfield subcodes. To appear in Des. Codes Crytogr.
[7] Galindo, C., Hernando, F., Ruano, D. New quantum codes from evaluation and matrix-product codes. Preprint arXiv:1406.0650.
[8] Galindo, C., Hernando, F., Ruano, D. Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement . Preprint arXiv:1503.00879. To appear in Quantum Inf. Process.
[9] Geil, O. Evaluation codes from an affine variety code perspective. Advances in algebraic geometry codes, Ser. Coding Theory Cryptol. 5 (2008) 153-180. World Sci. Publ., Hackensack, NJ. Eds.: E. Martinez-Moro, C. Munuera, D. Ruano.
[10] Geil, O. Roots and coefficients of multivariate polynomials over finite fields, to appear in Finite Fields and their applications.
[11] Geil, O., Høholdt, T. On hyperbolic codes, Lect. Notes Comp. Sc. 2227 (2001) 159-171.
[12] Hamada, M. Concatenated quantum codes constructible in polynomial time: Efficient decoding and error correction, IEEE Trans. Inform. Theory 54 (2008) 5689-5704.
[13] Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K. Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory 52 (2006) 4892-4914.
[14] Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proc. 35th ann. symp. found. comp. sc., IEEE Comp. Soc. Press 1994, 124-134.
[15] Shor, P.W. Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A $\mathbf{5 2}$ (1995) 2493-2496.
[16] Shor, P.W., Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett. 85 (2000) 441-444.
[17] Smith, G., Smolin, J. Putting "quantumness" to the test, Physics 6105 (2013).
[18] Steane, A.M. Simple quantum error correcting codes, Phys. Rev. Lett. 77 (1996) 793-797.
[19] Steane, A.M. Enlargement of Calderbank-Shor-Steane quantum codes, IEEE Trans. Inform. Theory 45 (1999) 2492-2495.
[20] Wootters W.K., Zurek, W.H. A single quantum cannot be cloned, Nature 299 (1982) 802-803.

