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In this talk, we propose a method to perform linear algebra on a matrix with
nearly sparse properties. More precisely, although we require the main part of the
matrix to be sparse, we allow some dense columns with possibly large coefficients.
We modify Block Wiedemann algorithm and show that the contribution of these
heavy columns can be made negligible compared to the one of the sparse part of the
matrix. In particular, this eases the computation of discrete logarithms in medium
and high characteristic finite fields, where nearly sparse matrices naturally appear.

Sparse Linear Algebra. Linear algebra is a widely used tool in both mathemat-
ics and computer science. At the boundary of these two disciplines, cryptography
is no exception to this rule. Yet, one notable difference is that cryptographers
mostly consider linear algebra over finite fields, bringing both drawbacks – the no-
tion of convergence is no longer available – and advantages – no stability problems
can occur. As in combinatory analysis or in the course of solving partial differen-
tial equations, cryptography also presents the specificity of frequently dealing with
sparse matrices.

A sparse matrix is a matrix containing a relatively small number of coefficients
that are not equal to zero. It often takes the form of a matrix in which each row (or
column) only has a small number of non-zero entries, compared to the dimension
of the matrix. With sparse matrices, it is possible to represent in computer memory
much larger matrices, by giving for each row (or column) the list of positions con-
taining a non-zero coefficient, together with its value. When dealing with a sparse
linear system of equations, using plain Gaussian Elimination is often a bad idea,
since it does not consider nor preserve the sparsity of the input matrix. Indeed,
each pivoting step during Gaussian Elimination increases the number of entries in
the matrix and, after a relatively small number of steps, it overflows the available
memory.

Three families of sparse linear algebra algorithms. In order to deal with sparse
systems, a different approach is required. Three main families of algorithms have
been devised: the first one adapts the ordinary Gaussian Elimination in order to
choose pivots that minimize the loss of sparsity and is generally used to reduce the
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initial problem to a smaller slightly less sparse problem. The two other algorithm
families work in a totally different way. Namely, they do not try to modify the input
matrix but aim at directly finding a solution of the sparse linear system by comput-
ing only matrix-by-vector multiplications. One of these families consists of Krylov
Subspace methods, adapted from numerical analysis, and constructs sequences of
mutually orthogonal vectors.

Block Wiedemann algorithm. Throughout this talk, we focus on the third fam-
ily that contains Wiedemann algorithm and its generalizations. Instead of comput-
ing an orthogonal family of vectors, Wiedemann proposed in 1986 [5] to recon-
struct the minimal polynomial of the considered matrix. This algorithm computes
a sequence of scalars of the form twAiv where v and w are two vectors and A the
sparse matrix of the linear algebra problem. It tries then to extract a recursive re-
lationship that holds for this sequence. Coppersmith and Kaltofen [2, 3] adapted
Wiedemann algorithm for parallelization and even distributed computations. The
main idea of Coppersmith’s Block Wiedemann algorithm is to compute a sequence
of matrices of the form tWAiV where V and W are not vectors as previously but
blocks of vectors. This step is parallelized by distributing the vectors of the block V
to several processors or CPUs – let us say c. The asymptotic complexity of
extracting the recursive relationships within the sequence of small matrices is in
Õ(cN2) where N is the largest dimension of the input matrix. Finally, a further
improvement was proposed by Thomé [4] in 2002: he reduced the complexity of
finding the recursive relationships to Õ(c2N).

Note that both Krylov Subspace methods and Wiedemann algorithms cost a
number of matrix-by-vector multiplications equal to a small multiple of the matrix
dimension: for a matrix containing λ entries per row in average, the cost of
these matrix-by-vector multiplications is O(λN2). With Block Wiedemann, it is
possible to distribute the cost of these products on c machines. In this case, the
search for recursive relationships adds an extra cost of the form Õ(c2N).

Nearly Sparse Linear Algebra. For a d-nearly sparse matrix, which includes
d dense columns in addition to its sparse part, the cost of matrix-by-vector multi-
plications increases. As a consequence, the total complexity becomes:

O((λ +d)N2)+ Õ(c2N) (1)

where the second term is an extra cost for Block Wiedemann.
In this talk, we present an algorithm to solve linear algebra problems associated

to these special matrices. Our aim is to adapt the Coppersmith’s Block Wiedemann
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algorithm to improve the cost of linear algebra on matrices that have nearly sparse
properties and reduce it to:

O(λN2)+ Õ(max(c,d)2N). (2)

We compare our method with preexisting linear algebra techniques and show that
it is competitive even with a large number of dense columns. In particular, when
the number of dense columns is lower than the number of processors we use for
the matrix-by-vector steps, we show that the presence of these unwelcome columns
does not affect the complexity of solving linear systems associated to these matri-
ces.

Application to Discrete Logarithm Computations in Finite Fields. In prac-
tice, this result precisely applies to the discrete logarithm problem. Indeed, nearly
sparse matrices appear in both medium and high characteristic finite fields discrete
logarithm computations. To illustrate this claim, we recall the latest record [1] an-
nounced in June 2014 for the computation of discrete logarithms in a prime field
GFp, where p is a 180 digit prime number. It uses a matrix containing 7.28M rows
and columns with an average weight of 150 non-zero coefficients per row and also
presents 4 dense Schirokauer maps columns. These columns precisely give to the
matrix the nearly sparse structure we study.
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