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We show the connections between trial sets and Gröbner bases for binary codes,
which gives more characterizations of trial sets in the context of Gröbner bases and
algorithmic ways for compute them. In this sense, minimal trial set are character-
ized as trial sets associated with minimal Gröbner bases.

The concept of trial set was introduced in [6]. This set of codewords can be
used to derive and algorithm for doing complete decoding in a similar way that a
gradient decoding algorithm uses a test set (see [1]). A trial set allows to charac-
terize the so called correctable errors and to investigate the monotone structure of
correctable and uncorrectable errors, also important bounds on the error-correction
capability of binary codes beyond half of minimum distance using trial sets are
presented in [6]. One problem posted in the conclusion of [6] was the importance
of charactherize minimal trial sets for families of binary codes.

The ideal associated with any linear code (code ideal for simplicity) was in-
troduced in [2] together with applications of Gröbner bases theory in this context,
such that the reduction process by Gröbner bases of code ideals w.r.t. to specific
orders corresponds to the decoding process of the code.

In Section 1 we give the main concepts and results related with binary codes,
trial sets, the code ideals and Gröbner bases which are needed for an understanding
of this work. The connection between trial sets for binary codes and Gröbner bases
for the corresponding code ideal is presented in Section 2. The main results in this
contribution are Proposition 2, Theorems 4 and 5, and the subsection 2.1 about
minimal trial sets and minimal Gröbner bases.

1 Preliminaries

Binary codes
By Z, K, K[X] and F2 we denote the ring of integers, an arbitrary field, the poly-
nomial ring in n variables over the field K and the finite field with 2 elements.
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A binary linear code C over F2 of length n and dimension k, or an [n,k] binary
code for short, is a k-dimensional subspace of Fn

2. We will call the vectors v in Fn
2

words and in the particular case where v ∈ C , codewords. For every word v ∈ Fn
2

its support is defined as supp(v) = {i | vi 6= 0} and its Hamming weight, denoted
by wH(v) as the cardinality of supp(v).

The Hamming distance, between two vectors x, y∈Fn
2 is dH(x,y)=wH(x−y).

The minimum distance d(C ) of a linear code C is defined as the minimum weight
among all nonzero codewords.

For the rest of this section we follow [6]. We will consider ≺ a so called α-
ordering on Fn

2 (a weight compatible total ordering on Fn
2) which is monotone:

for any y1, y2 s.t. 2≤wH(y1) = wH(y1)< n and supp(y1)∩supp(y1) 6= /0
and for any i ∈ supp(y1)∩ supp(y1) and vectors x1 and x2 defined by
supp(x1) = supp(y1) \ {i} and supp(x2) = supp(y2) \ {i} then y1 ≺ y2 if
x1 ≺ x2.

 (1)

The set of correctable errors of a binary code C (E0(C )) are the minimal elements
w.r.t. ≺ in each coset of Fn

2/C , and the elements of E1(C ) = Fn
2 \E0(C ) are called

uncorrectable errors. A trial set T ⊂ C \ 0 of the code C is a set which has the
property y ∈ E0(C ) if and only if y≤ y+ c, for all c ∈ T .

Note that with a trial set we obtain an algorithm which returns the correspond-
ing correctable error for a received word y. Since we choose a monotone α-
ordering on Fn

2, the set of correctable and uncorrectable errors form a monotone
structure, namely, that if x⊂ y, then x ∈ E1(C ) implies y ∈ E1(C ) and y ∈ E0(C )
implies x ∈ E0(C ).

Let M1(C ) be the set of minimal uncorrectable errors i.e. the set of y ∈ E1(C )
such that, if x⊆ y and x ∈ E1(C ), then x = y. In a similar way, the set of maximal
correctable errors is the set M0(C ) of elements x ∈ E0(C ) such that, if x ⊆ y and
y ∈ E0(C ), then x = y.

For c ∈ C \ 0, a larger half is defined as a minimal word u in the ordering �
such that u+ c ≺ u. The set of larger halves for a codeword c is denoted by L(c),
and for U ⊆ C \ 0 the set of larger halves for elements of U is denoted by L(U).
Note that L(C )⊆ E1(C ).

For any y ∈ Fn
2, let H(y) = {c ∈ C : y+ c≺ y}, and we have y ∈ E0(C ) if

and only if H(y) = /0, and y ∈ E1(C ) if and only if H(y) 6= /0. Theorem 1 of [6]
provides a characterization of the set M1(C ) in terms of H(·) and larger halves of
the set of minimal codewords M(C ).

Proposition 1 (Corollary 3, [6]) Let C be a binary code and T ⊆ C \ 0. The
following statements are equivalent:
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1. T is a trial set for C .

2. If y ∈M1(C ), then T ∩H(y) 6= /0.

3. M1(C )⊆ L(T ).

Gröbner bases and binary codes
We define the following characteristic crossing function: ∆ : Fs

2 −→ Zs which re-
place the class of 0,1 by the same symbols regarded as integers. This map will
be used with matrices and vectors acting coordinate-wise. Also, for the recip-
rocal case, we defined ∇ : Zs −→ Fs

2. Let X denotes n variables x1, . . . ,xn and
let a = (a1, . . . ,an) be an n-tuple of elements of the field F2. We will adopt the
following notation:

Xa := x∆a1
1 · · ·x

∆an
n ∈ [X]. (2)

The code ideal can be given by the two equivalent formulas in (3) and (4) below,
the equivalency between (3) and (4) was proved in [4]. Let W be a generator matrix
of an [n,k] binary code C (the row space of the matrix generates C ) and wi denotes
its rows for i = 1, . . .k.

I(C ) =
〈
Xa−Xb | a−b ∈ C

〉
⊆K[X]. (3)

I(C ) =
〈
{Xwi−1 : i = 1, . . .k}∪{x2

i −1 : i = 1, . . . ,n}
〉
⊆K[X]. (4)

Note that I(C ) is a zero-dimensional ideal since the quotient ring R =K[X]/I(C )
is a finite dimensional vector space and its dimension is equal to the number of
cosets in Fn

2/C .
For every element Xa in the monoid [X], with a ∈Nn, we have a corresponding

vector ∇(a) ∈ Fn
2, and viceversa, any vector w ∈ Fn

2 has a unique standard repre-
sentationb Xw as an element of [X] (see (2)).

Let < be a term order, let us T( f ) denotes the maximal term of a polynomial
f with respect to the order <. The set of maximal terms of the set F ⊆ K[X ] is
denoted T{F} and T(F) denotes the semigroup ideal generated by T{F}. Finally,
〈F〉 is the polynomial ideal in K[X] generated by F . In particular, for the code ideal
I(C ), T(I(C )) is the set of maximal terms and N(I(C )) = [X]\T(I(C )) the set of
canonical forms. We emphasize that there is a one to one correspondence between
the set of canonical forms and the cosets in Fn

2/C . One characterization of Gröbner
bases is that G is a Gröbner basis of the ideal 〈G〉 if and only if T(〈G〉) = T(G).

bThe exponents of the variables are 0 or 1.
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2 Gröbner bases and trial set for binary codes

It is not difficult to see also the conection between total degree orders < on [X] and
α-orderings monotone ≺ on Fn

2. In essence, any total degree compatible ordering
induces an α-ordering monotone ≺ on Fn

2 such that v ≺ w if Xv < Xw for any
v, w ∈ Fn

2. On the other hand, given an α-ordering monotone on Fn
2 we could

define a total ordering on [X] which is not admisible, a class of these orders on [X]
were called in [2] error-vector orderings.

In this work we will focus in the first situation, the α-ordering monotone which
is defined in [6] it is derived from the Graduated Lexicographical order. In general,
let < be a total degree term order on [X], and let≺ be the corresponding α-ordering
monotone on Fn

2.

Proposition 2 [Correctable and uncorrectable errors and canonical forms and
maximal terms] Let Xw ∈ [X], w ∈ Nn then

1. If Xw is not the standard representation of the word ∇(w) in Fn
2, then it is a

maximal term i.e. Xw ∈ T(I(C )).

2. If ∇(w) ∈ E1(C ), then Xw ∈ T(I(C )).

3. If Xw is the standard representation of the word ∇(w) and ∇(w) ∈ E0(C ),
then Xw is a canonical form i.e. Xw ∈ N(I(C )).

4. If Xw is the standard representation of the word ∇(w) and ∇(w) ∈M1(C ),
then Xw is an irredundant maximal term, i.e. Xw /∈ T(I(C ))\{Xw} and is a
maximal term of any Gröbner basis. The set of irredundant maximal terms
are the maximal terms of any minimal Gröbner basis, for example, of the
reduced Gröbner basis.

For simplicity, we will assume that the coefficients of the maximal terms in a
Gröbner basis are positive.

Definition 3 (Gröbner codewords [3]) Let G be a Gröbner basis for I(C ) w.r.t.
<, the set of Gröbner codewords CG corresponding to G are the codewords asso-
ciated with G by CG = {c ∈ C : c = w+v, s.t. Xw−Xv ∈ G, w,v ∈ Fn

2, v≺ w}.

Theorem 4 Let G be a Gröbner basis for I(C ) w.r.t. <, then CG is a trial set.

Proof. We will prove the stament 2 in Proposition 1. Let w ∈ M1(C ), then
Xw ∈ T(G) (see Proposition 2.4) and there exists c ∈ CG s.t. c = w+v s.t. v≺ w.
Thus c+w = v≺ w and c ∈ H(w).
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Theorem 5 Let T be a trial set, the set GT = {Xw−Xv : w ∈ L(c) for some c ∈
T and v = c−w}∪{x2

i −1 : i = 1, . . . ,n} is a Gröbner basis for I(C ) w.r.t. <.

Proof. If Xu is a maximal term which is not the standard representation of ∇(u),
then it can be reduced to the standard representation of ∇(u) by means of the set
{x2

i −1 : i = 1, . . . ,n}. Thus, let us assume that Xu ∈ T(I(C )) and u ∈ E1(C ). It is
clear that there exists w⊆ u s.t. w∈M1(C ), w∈M1(C ) implies there exists c∈ T
s.t. w ∈ L(c) (by Proposition 1.3). Let v = c−w, then we have Xw−Xv ∈GT and
Xw | Xu (remember w⊆ u). Consequently, GT is a Gröbner basis for I(C ).

2.1 Minimal trial sets and minimal Gröbner bases

A minimal trial set is a trial set such that any strictly subset is not a trial set. Having
an smaller trial set, it is an smaller set that it is used for decoding in order to com-
pute the corresponding correctable error to a received word, althought smaller trial
sets do not necessaryly ensure more efficiency. In [6] is given a main advantage
of having a minimal trial set, because the size of trial sets are used to derive some
important bounds on the error correction beyond half the minimum distance.

By Proposition 1.3, the set of larger halves of a trial set T should contains at
least the set M1(C ), by Theorem 5 and Proposition 2.4 this means that the cor-
responding Gröbner basis GT should coontains at least the irredundant maximal
terms (it is the case for any Gröbner basis); therefore, there is a direct connection
between minimal trial sets and minimal Gröbner bases. In particular, a distin-
guished minimal trial set would be the set of Gröbner codewords corresponding to
the reduced Gröbner basis.
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