
B323 Differential methods for Mobile
Robots

Javier Finat and Zhicheng Hou
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Previous remarks: These notes corresponds to an introduction to the Chapter
3 of the module B32 (Automatic Navigation) of the matter B3 (Robotics). From
the mathematical viewpoint, it is necessary to have some basic knowledge of
Computational Geometry, Differential Geometry, Differential Equations, Graph
Theory, and Statistics.

From the computational viewpoint, it is convenient to be familiar with Ob-
ject Oriented Programming (OOP) framework to ease the information exchange
with other modules. Python provides a common framework to integrate OOP
and functional frameworks. Thus, it is advisable to be familiar with Python,
specially for AI related issues, with TensorFlow as paradigm under Pytorch.
Some basic notions of Motion Analysis B23 in Computer Vision is advisable,
also.

Subsections or paragraphs marked with an asterisk (∗) have a higher diffi-
culty and can be skipped in a first lecture.
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0.1. Introduction to the chapter B323

Visual and/or effective Navigation involves the modelling of flows and the co-
rresponding strategies for mobile devices. It is estimated in terms of processing
and analysis of the information captured by mobile sensors. Most processing
and analysis tools use time series analysis based on finite differences of “quanti-
ties” (position or orientation in the simplest cases). The information affects all
PeCWA spaces appearing in the Basic Analytical Pipeline P → C → W → A
appearing in precedent chapters.

The presence of noise, errors or uncertainty in discrete data, and their pro-
pagation along the successive fibrations of the BAP, suggest the development
of “regularization strategies”.as an output, one must obtain an ideal Piecewi-
se Smooth (PS) model to be learned. The comparison between PS-models is
initially carried out in terms of smooth maps f : M → N between PS-manifolds
involving the space-time evolution of the “most meaningful” packaged data.

The main goal of differential models for Navigation is the modelling of mul-
tiple trajectories under multiple evolving constraints in the ambient space. By
taking a “snapshot” of an evolving scene, if we would have a “complete” in-
formation about the scene, the localization for each mobile segement and its
space-time evolution could be described in terms of evolving vectors (for ideal
trajectories of multiple agents) and by evolving covectors (representing even-
tually changing constraints).

Incomplete information and uncertainty about data make things a little bit
more complex. Structural models are the key to “stabilize” to obtain “more
regular” models. The first paragraphs are devoted to sketch how Differential
Geometry of Manifolds provides the simplest structural models for modelling
objects and behaviours, and how can be “relaxed” to include “events”. More rea-
listic models for objects and behaviours are obtained by means of (deterministic
vs stochastic) “perturbations” of structural models.

Structural models for motion analysis have been developed in the module
B14 (Computational Kinematics). Their estimation form visual data has been
developed in the module B23, where we introduce structural models for motion
based on the incorporation of different constraints for the Optical Flow. The
self-adjustment to a expected trajectory is developed in this chapter by using
basic notions of time series. A more structured approach in terms of different
extensions of Kalman filters will be developed in the chapter 6 of the module
B33 (Robot Kinematics).

Classical Analytical Mechanics provides structural models for motion equa-
tions (Hamilton-Jacobi), volumetric flow information (Liouville) and variational
principles (Euler-Lagrange). All of them use ideal models arising from Differen-
tial Geometry, which can be adapted to Optimization and Control issues in the
Phase space P corresponding to the total space TM of the tangent bundle τM
(for the simultaneous analysis of multiple trajectories) or the total space T ∗M
of the cotangent bundle τ∗M .
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The first “pseudo-deterministic” approaches use interpolation models (1 −
λ)f0 + λf1 for functions f0, f1 : X → R defined on a space X linked to shapes
or behaviours evaluation. The simplest probabilisticc model is the Bernouilli
density for one variable given by f(x; p) := px(1− p)1−x). By taking logarithms
one obtains x log p + (1 − x) log(1 − p) which vcna be interpreted as an affine
interpolation between the functions log p and log(1 − p). This basic example
is extended to the n Bernouilli variables (with the same probability function)
given by f(x; p) := Πn

i=1p
xi(1− p)1−xi with a similar interpretation in terms of

n interpolations.

All structural models have an ideal character, which is modified by using
generic vs random perturbations along this chapter. Multivariate frameworks
support geometric, analytical and statistical tools. Their simplest local repre-
sentations are given by (p× n)-matrices corresponding ot maps Rn → Rp.

Generic perturbations of (scalar, vector, covector) fields for regular beha-
viours are performed in the corresponding ambient space which can be
described in terms of dynamical systems, whose topological version (com-
patible with deformations) is expressed in terms of k-jets (truncated Taylor
polynomials) with the corresponding infinitesimal symmetries.

Random perturbations of fields for irregular behaviours (including unex-
pected events), where matrices with constant vs variable coefficients play
a fundamental role. Large dimensionality requires the development of ef-
ficient strategies to reduce the complexity, identify simpler eigenspaces,
and decompose the ambient space.

The geometric framework provides the support for connecting local and glo-
bal aspects. In particular, the above descriptions correspond to sections of (de-
terministic vs stochastic) bundles. In this way, one obtains a natural extension of
the deterministic approaches performed in Differential Geometry A1 and GAGA
A3.

Even in presence of landmarks and accurate systems for sensors and actua-
tors, Automatic Navigation of autonomous Vehicles (ANAV) is inexact. It is
necessary a Real-Time (RT) localization system aable of identifying and co-
rrecting errors in terms of multiple inputs. Furthermore, the maintenance of
an absolute reference system (Euclidean framework) is not a good solution, be-
cause small errors are propagated and increased by iteration. In practice, one
must combine metric and angular information involving near control points and
visual angles to correct positioning or drift errors, e.g.

Along this chapter we are mainly focused towards terrestrial navigation,
in despite of the interest for Automatic Navigation in the Maritime (including
undersea navigation), Aerial or Spatial environments. Along the stay of JF in the
GIAT (Nansha, Guandong, China), some applications to aerial transportation
of loud charges by small floats have been developed by the authors, but they will
be detailed later. Undersea and exterior space are crucial for civil and military
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applications, but require additional elements of Dynamic Control which will be
developed in the module B34 (Robot Dynamics).

To bound errors linked to the updating of en Euclidean planar reference, it
is convenient take affine references given by three affinely independent points
A0,A1 and A2 in the affine plane A2. i.e. vectors v1 = vA1 and v2 = A0A2 are
l.i. vectors. The current position of the robot R is determined as the intersection
of the three circles passing through R and any pair of the affine reference Ra :=
{A0,A1,A2} (each circle is computed from visual angles corresponding to each
pair).

Reference points can be landmarks, intensity maxima or triple junctions ap-
pearing in the scene. For 3D scenes, the affine reference R3 is given by four
points A0,A1,A2 and A3 fulfilling the vectors vi = A0Ai are linearly indepen-
dent. Relative psoitioning is computer from the sign of affine coordinates of the
robot R w.r.t. the reference. Each time the robot cuts out an affine reference
line aij = AiAj an affine coordinate changes its sign, and one must replace
a reference point by other one. In practice, it is convenient work with redun-
dant references to reinforce the information, and to avoid degenerate situations,
where points do not impose independent conditions for self-localization.

The above remarks suggest the relevance of introducing landmarks or selec-
ting 0–dimensional features for good localization. In presence of a large number
of “visual features”, tracing visual lines can gives a collection of intersecting
lines, which is computational managed in terms of an arrangement A of lines
for the planar case 1. The first step consists of determining the region where the
robot R is located.

The next step consists of choosing a “goodness function” for selecting the
most appropriate reference affine, between different possible choices linked to
“visiblle” points.

Analytical methods in Robotics involve to the use of differential and integral
methods (or their discrete versions) for usual spaces appearing in the PACW
sequence P → C → W → A involving Perception, configurations, Working and
Action spaces. All of them are (semi-)analytic spaces X = (X;OX) where X is
the topological support and
mathcalOX the set (in fact a ring) of regular functions defined on X. Furthermo-
re, all maps between their topological supports X → Y are topological fibrations
(see below for the characterizaiton).

The central part of the above sequence of fibrations is the most meaningful
for usual approaches for this chapter; it is described in terms of the mechanical
transfer map µ : C → W and superimposed structures such as principal budnles
(ideal case) or more general fiber bundles.In both cases, they are generated by
sections given by different kinds of G-invariant (scalar, co-vector, tensor) fields
or their dual G.invarianty forms.

Differential methods are described in terms of relations (Ordinary Diffe-

1 See the chapter 6 of the odule B11 (Computational Geometry) for details.
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rential Equations, initially) between low order derivatives or variation rates of
“quantities” represented by coordinates, functions or any kind of fields. A ba-
sic example is given by U(1) → SU(2) → SU(2)/U(1) ' CP1 given by the
assignations

eiθ 7→
(
eiθ 0
0 e−iθ

)
=

(
cos θ + i sin θ 0

0 cos θ − i sin θ

)
quadand

(
z w

−− w̄ z̄

)
7→ [z : w]

where z̄ is the conjugate of z. Let us remark that

The unitary group U(1) (parametrized by S1 of unit complex numbers)
corresponding to electromagnetic interaction (structural group for Elec-
tromagnetism and, in particular, Signal Theory);,

The Special Unitary Group SU(2) (parametrized by S3 of unit quater-
nions) corresponding to the structural group for weak interaction (out of
nucleus) in Particle Physics, which is crucial for a vector representation of
Robotics in 3D (usefuñ for aerial navigation, also)

The projective line whici is the support for regular transformations (sim-
plest correspondences) of perspective representations given by collinea-
tions in traffic scenes, e.g.

Their corresponding transformations for ideal Kinematics are given by re-
gular transformations of the correspodning Lie algrbas g := TeG. They are
represented by (products of) Jacobian matrices acting on G-invariant fields (or
their transposed acting on G-invariant differential forms). They allow an ideal
description of the simultaneous evolution in the space-time of “mixed quan-
tities” representing trajectories (integral curves of vector fields) submitted to
evolving constraints (integral hypersurfaces of differential forms).

Ideal descriptions are useful to bound the local variability or to show asym-
potic behaviours. In practice, it is necessary to complement them with a statis-
tical treatment of data arising from kinematic sensors, and uncertainty about
the scene or events:

1. A first extension of structural models incorporates incomplete informa-
tion which are modelled in probabilistic terms, going from coarse Baye-
sian methods till more sophisticated random perturbations ot structural
equations (in the Stochastic Differential Equations framework, e.g.). Pa-
rametric statistical models have a natural Riemannian structure w.r..t to
the Cramer-Fisher-Rao metric, which allows a direct application of Diffe-
rential Geometry methods.

2. A second extension incorporates unexpected events which can be modelled
in terms of singularities of maps or, alternately, in terms of randomized
algorithms such as the Montecarlo algorithm (fast but with low successful
rate; used for coarse robot localization by using distance or odometry
sensors, e.g.) or Las Vegas algorithm (better results, higher complexity to
be reduced by using multithread architectures)
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To accomplish this program, one develops a feedback between top-down and
bottom-up approaches. The former one extends the differential or Piecewise
Smooth (PS) approach to an analytic approach where several solutions are pos-
sible (represented by analytical branches), which are managed in algebraic terms
(truncated Taylor developments, e.g.). In a complementary way, the bottom-up
approach constructs low-degree primitives or polynomial maps from clustered
data, which can be interpreted in terms of truncated Taylor developments; when
we “regularize” the corresponding distributions away the singular loci, one re-
covers a local PS-structure.

The exchange between top-down and bottom-up approaches involves to all
PeCWA spaces and maps of the Basic Analytical Pipeline) used to describe the
succesive fibrations labelled as:

1. representation of clusters fibration ρ : P → C on features);

2. the interaction with itself in terms of the transfer map µ : C → W;

3. the interaction with the environment by using the knowledge map κ : P →
A).

The jets language 2 provides the support for a unified presentation of suc-
cessive extensions, which are re-interpreted in terms of kinematic properties for
trajectories and constraints, also. To develop this scheme, we need to specify so-
me relations between different mathematical frameworks. To fix ideas, we follow
a scheme of increasing complexity:

A classical differential approach consists of starting with a smooth mani-
fold M as models, and maps f : N → P as relations between models.
In this case first order variations are locally represented by the diffe-
rential dxf of a vector map f |U which can be written as a linear map
TxU ' Rn → Rp ' Tf(x) between tangent spaces which is of class r ≥ 1
with x ∈ U is an open set of N . After fixing basis in source and target
spaces, the differential map df |U is represented by the Jacobian matrix
J = Jac(f) which induces a transformation between vector fields (formal
sums of ∂/∂xi with functional coeffi1cients). Alternately, if we take its
transposed JT , one has a transformation between covectors or differential
forms (given locally by formal sums of dxi with functional coefficients).
Matrix products J ·JT and JT ·J play a fundamental role for feedforward
analysis in Robotics 3.

In a complementary way, we can use a classical semi-algebraic approach
based on Lie groups of regular transformations leaving invariant “some
geometric or kinematic quantity”. Along the first module B31 (Anchored
Robots) of this matter B2 (Robotics), we have introduced Lie groups G

2 See the chapter 2 of A41 (Basic Differential Topology) for a systematic approach.
3 Some applicaitons to grasping and handling, have been introduced in the first module,

but they can be extended to other issues involving locomotion and any kind of navigation.
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and their Lie algebras g := TeG. They have been applied to describe
different issues concerning to motions at joints and end-effector of a robot,
and their common representation in terms of (successive extensions of) the
mechanical transfer map µ : C → W and their local “pseudo-inverses”.
The basic idea consists of every action on points, induces an action on
configurations of such points. Along this chapter we extend this approach
by giving a more accurate representation of Kinematics and Dynamics for
Mobile Robots. This approach is well known for mechanical issues from
the mid nineties (see [Par95], e.g.), but it is seemingly new for Visual
Perception issues which will be developed along the second section.

Locally symmetric structures linked to local actions of Lie groups (or their
linearization in terms of Lie algebra) give locally homogeneous structures. They
simplify the description of isotropic propagation phenomena and/or their transitions
towards anisotropic phenomena which appear as state changes or phase transitions,
e.g. To fix ideas, we start by considering the simplest case corresponding to lo-
cally homogeneous structures.

Lie groups are also manifolds. Thus, one can apply all methods developed fo-
llowing the classical appiriach, including differential and integral calculus, which
will be applied to optimization and control issues in Robotics. Both classical
and semi-classical approaches provide motivations to develop a differential ap-
proach which is largely inspired in well known results of Differential Geometry
(matter A1) and Differential Topology (matter A4), and their corresponding
computational versions developed along first three modules of the matter B4

(Computational Mechanics of Continuous Media). Some relevant issues are:

Estimation: How estimate low order differential data from sparse or irre-
gularly distributed date?

Matching: How match local kinematic data in a global model?

Prediction: How to propagate evolving models along time?

Correction: How to correct errors involving capture, tracking and propa-
gation?

Interaction: How represent interaction holding along propagation?

Control: How control reactions to preserve some kind of stability along
time in regard to possible interactions with other agents?

In Robotics, we are interested in solving these issues starting with the diffe-
rential dµ of the mechanical transfer map µ : C → W between configurations C
(or joints) space and the working space W as support for the dynamics, by one
side. On the other hand, we are interested in similar issues for the differential
dκ of the knowledge map κ : P → A between the Perception P and action space
A. Both differentials ca be read in terms of a first-order approach to the basic
MAD (Main Analytic diagram):
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P → A
↓ ↓
C → W

where each (horizontal or vertical) arrow is a fibration between (semi-)analytic
spaces. A simplified version of feedforward processes can be read by following a
counterclockwise path between the four subspaces:

1. Data arising from external and internal sensors are processed and analyzed
in terms of a a battery of filters, and stored in the Perception space P.

2. Low-level recognition tools allow to identify the most probable patterns
by detecting local versus global stable configurations which are stored in
the Configuration space C.

3. Stable patterns are inserted in some coarse-to-fine reconstruction of an
eventually mobile representation scene in the Working space W.

4. The resulting information is lifted to the “best choice” between possible
actions to be developed in the Action space A.

5. The interaction with an evolving environment E is performed in terms of
the locally trivial fibration P → A.

The existence of lifting maps is warranted by the locally trivial structu-
re of all fibrations appearing in the MAD. Furthermore, this construction is
compatible not only with the behavior of the set OX (in fact a sheaf of local
rings, in mathematical terms) of “regular functions” defined on each support X ,
but with any kind of superimposed fields F linked to differential structures (in
mathematical terms a OX -module).

In principle, OX denotes the set of Cr-regular functions for some 0 ≤ r ≤ ∞
or r = ω (analytic case). They provide the support for multilinear superimposed
structures whose Ssmplest cases correspond to the module ΘX of vector fields
(locally given by partial derivatives) or the module Ω1

X of covector fields (locally
given by differentials). More generally, to represent “aggregated quantities” one
can consider any kind of tensors of type (r, s) (given by multilinear maps on r
copies of cotangent and s copies of tangent bundles) for a simultaneous repre-
sentation of constraints and possible paths or trajectories. Their estimation is
performed in terms of tensor voting procedures.

Everything would be easier if all the above spaces X would be smooth ma-
nifolds. Unfortunately, due to internal and external constraints, neither of these
spaces are smooth manifolds, but analytic spaces (X ,OX ). In other words X
can have singularities, and functions belonging to OX can display “pathological
behaviors” (changes of state, phase transitions, e.g.). Nevertheless the presence
of singularities, one can “stratify” the support X by decomposing in a disjoint
union of smooth “strata” verifying good incidence cionditoins at their bounda-
ries. In other words, one can associate PS-models (PS: Piecewise Smooth) where
manifolds strategies can be applied from the local viewpoint.
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In the same way as for the smooth case, first order approaches of maps
f : X → Y between (semi-)analytic spaces are loclaly given by Jacobian ma-
trices providing a support for corresponding kinematics. A first issue is how to
“propagate” and match solutions obtained for minimal vs redundant amount of
data to obtain meaningful configurations, which can give a coherent represen-
tation of en evolving working space which can be continuously lifted (avoding
switching procedures) to perform an action on a space-time evolving scene mo-
del. Matching local models in a more global model is easier if one has “enough
symmetries”for propagating local solutions in a coherent way. The next para-
graph presents some basic related ideas in the framework of locally symmetric
spaces.

Before starting one must be aware that in all cases there appear different
kind of errors; it is necessary not only minimize from the beginning, but also
along propagation phenomena involving anticipation, prediction, simulation and
decision making. In particular, locally symmetric structures used for propagation
can involve to discrete, continuous and infinitesimal symmetries, depending on
the framework, and the functionals we are looking for.

In the classical approach very often one takes a weighted sum of L1-
distance )to remove outliers) and L2-distance for a finer adjustment after
removing outliers; this method is inspired by the use of a total energy
functional given by the sum of a potential and a kinetic energy term.4

In the semi-classical approach errors appear also in the estimation of ele-
ments belonging to Lie groups G (non-linear manifolds) and their corres-
ponding Lie algebras g := TeG (vector spaces with a Lie bracket corres-
ponding to matrix product). In this case, to begin with it is convenient to
take weighted averaged mobile means for near localizations before propa-
gating them to minimize registration errors (see e.g. [Gov04]5, e.g.)

To difference with traditional geometric approaches, in applied fields such
as Robotics and Computer Vision, data estimation and correction of errors play
a fundamental role for prediction, tracking and validation. These issues involve
to every kind of transformations, including actions on intermediate entities. So,
transformations of Lie groups G are estimated in terms of their linear approaches
given by their Lie algebras g := TeG, and lifted to G via the exponential map
exp : g→ G. Similarly, errors are corrected by taking mobile Moving Averages.

0.1.1. Towards a locally symmetric formulation

The above remarks, suggest to analyze the situation at a point x ∈ X, and
extend to small neighborhood U of x ∈ X by using the action α : G×X → X of

4 In fact the Newtonian total energy is a functional defined on the total space TM of the
tangent bundle τM?‘(TM, π,M) taking values on R, hence it can be considered as a 1-form

5 V. M. Govindu: “Lie-algebraic averaging for globally consistent motion estimation”, in
Proc of the 2004 IEEE Conference on Computer Vision and Pattern Recognition, 2004, vol.
1. IEEE, 2004
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a group G on a space X. This approach is naturally extended to scalar functions
f : X → R defined on X or, even to more general fields. To warrant stability
and robustness properties of the model, we are interested in characterizing any
kind of G-invariant fields on X which allow to propagate local information and
“fill out” missing data.

In more dynamical terms, bifurcation phenomena for possible solutions are
translated to equivariant or G-bifurcation phenomena between G-spaces X,Y
for different groups G = (GX .GY ) acting on source X and target space Y of
a map f : X → Y . In more advanced models, G-bifurcations corresponding
to different solutions can be propagated along different G-orbits according to
adjacency hierarchies between subgroups H of G acting also on different “strata”
for maps f : X → Y between locally symmetric G-spaces.

If actions on source and targets spaces are decoupled, then one can take
the direct product G1 ×G2 of groups acting on source and target spaces
of f . In this case, one has the A := R × L or right-left action. A typical
example is given by decoupled strategies involviong Structure and Motion
(SfM vs MfS), e.g.

If actions are coupled between them, then one must take some kind of
mixed group (semi-direct product G1 n G2, e.g.) acting on the graph Γf
of f . Furthermore, well known examples of Euclidan and (Special) Affine
Groups, the most relevant for preserving relations between maps (and
their possible degenerations at critical loci) are given by contact group K,
which appears in different ways along this matter.

From a theoretical viewpoint, problems start with an explicit description
of each one of the above spaces in Robotics. Some of them (P and A), are
nor even parameterizable becuase they are described in functional terms (sig-
nals and commands) corresponding to spaces of infinite dimension. From the
Functional Analysis viewpoint, one can restrict to Hilbert spaces 6. From the
alegrabci viewpoint, one can use infinite-dimensional representations of s`(2;C)
to describe their locally symmetric structure as in Harmonic Analysis. From
the topological viewpoint, one can consider generic deformations of operators
or paraticular known solutions for these operators.

Anyway, all of them display some type of (infinitesimal, local, topological)
symmetries which can involve their local descriptions of configurations, their
kinematics or their dynamics. In particular, for a perspective map one has an
initial configuration given by a collection of points and lines fulfilling incidence
conditions, e.g; this configurtion evolves according to trajectories (vector fields)
for points and constraints (differential forms) linked to allowed motions; hence,
it can be represented as a variable tensor. Let us remember that symmetries
appearing at a mechanical level are not necessarily translated to the adjacent
mechanical levels such it appears in underactuated mechanisms, e.g.

6 Intuitively, a Hilbert space can be considered as the natural extension of Riemannian
structures (M,ds2) on manifolds M .
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Hence, one must be careful about lifting and descending processes for sym-
metries and their hierarchies7. Their locally symmetric character allows a “trans-
lation” of punctual pheonomena to a small neighborhood by means of the use
of a (metric vs affine) “connection” representing simple propagation models.
So, we obtain “generalized symmetries” having in account the geometry of the
support X extending classical actions GX ×X → X of a structural group GX
on a topological space X.

More specifically, in the first module B31 (Anchored Robots) we have already
seen the convenience of defining C andW in terms of (subvarieties of products of)
Lie groups G (i.e. manifolds with group structure). Their differential version is
given by the corresponding Lie algebras g := TeG corresponding to the tangent
space to G at the neutral element e ∈ G (the identity matrix for groups of
matrices) 8.

The Lie based approach is not new, and it has been increasingly used from
the early nineties. Roughly speaking, it can be justified by the own locally sym-
metric nature of transformations to be performed, by the non-linear nature of
most tasks which require locally symmetric manifolds M or by the reversible
nature of control to be performed on such manifolds. In other words, Lie al-
gebras allow recover a locally symmetric structure which can be observed in
most tasks, larger facilities for reversibility and also for tracking and prediction
by using simple propagation rules given by local symmetries. Beyond regular
behavior, the use of nilpotent Lie algebras allows to identify possible degenera-
tions (critical behaviors), relate adjacent but qualitively different behaviors and
control dissipation phenomena.

Thus, a novelty of this chapter is the use of symmetries for different kinds of
(scalar, co-vector, tensor) fields appearing in regard to environmental undertan-
ding, interaction and control. We shall show how all of them can be managed in
terms of different kinds of superimposed differential structures (vector bundles,
principal bundles, fibrations, sheaves) to ease all kinds of (mechanical, informa-
tion, learning) transfer between different embedded architectures in regard to
the Automatic Navigation of Mobile Robots.

To ilustratge this viewpoint, let us remember that along the first module
we have used essentially the Lie formalism to describe rigid motions in terms of
some basic properties of (the product of a finite number of copies of) the Special
Orthogonal Group SO(n) := SL(n) ∩ O(n), where SL(n) is the Special Linear
Group (preserving oriented volumes, very useful for conservative flows) and O(n)
is the Orthogonal Group (preserving orthogonality properties). Their interest
for Robotics consistis of the Euclidean Group SE(3) (preserving distances in the
ordinary space) given as the semidirect product SO(n)nRn of SO(n) represents
rigid motions for the palne and space; in other words corresponds to the joint

7 Here, we are considering Geometric, Kinematic and Dynamic “levels” not only for Me-
chanics, but also for PAC, as in other modules of this matter.

8 The extension of Lie’s apoproach to Perception and Action Spaces can be performed in
terms of Lie groups, but details are more cumbersome; see chapter 6 of this module for more
details.
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action of rotations group by the group of translations; this interpretation is only
valid for n ≤ 3. In this chapter we extend this approach to other Lie groups
which are meaningful for Automatic Navigation in regard to

the Special Affine Group SA(n) = SL(n) × Rn, preserving flows up to
translations, and consequently to relate image flow with scene flow; and

the Symplectic Group Sp(2n;R) preserving ideal motion’s equations as
“toy model” for more advanced interaction patterns (in presence of “ex-
ternal forces”).

Unfortunately, the classical management of elements of SO(n) in terms of
trigonometric functions is a source of increasing errors and “artificial singulari-
ties”. Luckily, quaternions allows to avoid these inconvenients, but the cost is
the introduciton of an ambiguity because the set S3 of unit quaternions (repre-
senting spatial rotations) displays an ambiguity linked to the antipodal map.
This issue is very important in control issues, because for large or abrupt mo-
tions in UAVs, convergence towards a quaternion must be fulfilled in the same
copy of S3 (it is not allowed a jump to the opposite and equivalent copy) 9.

0.1.2. An adaptation to navigation issues

The situation in module B32 (Automatic Navigation) is a little bit more
complex than in module B31 (Anchored robots) in which concerns to much mo-
re complex evolving interactions with the environment and other mobile agents.
For an effective navigation, we must display forward and feedback mechanisms
able of relating the image and range information (deformed by perspective ef-
fects, noise and/or reaching of range sensors) with the information relative to
rigid motions to be performed by a mobile platform.

To fix ideas, let us consider an “example” corresponding to the capture of
a scene with a video camera. Segments alignment in perspective lines gives a
perspective map which is continuously updated according to projective models
for typical man-made scenes. To simplify, one supposes central camera models
(like pinhole), giving eventually skewed projection. In this case,

1. Features (corners or intensity maxima, e.g.) are generated from the analy-
sis of sampled images in the video sequence; next, they are identified, and
evaluated (acceptation vs rejection) for their use in clusters;

2. mobile configurations are given by semi-dense clouds of points to be trac-
ked, and grouped in clusters along consecutive sampled frames (by using
some variant of SLAM procedures).

3. Clusters of accepted features are re-projected on quasi-homogeneous radio-
metric regions, which are superimposed to a perspective map as simplified
model for the Working space W.

9 See Chapter 5 for related Control issues
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4. Preliminary steps for effective navigation in the Action space A are focused
towards the identification of the Free Collision space, and the near-optimal
selection of the action to be undertaken according a system of logical rules.

(*) In this case, the apparent deformation of the scene (appearing in the
perspective map) and its time evolution can be locally described in terms of the
Affine Group GA2 defined as the semidirect product GL(2)nR2 of the General
Linear Group GL(2) and the group of translations R2 in the plane. If we take
regular transformations up to scale (the affine group preserves segment ratios
up to scale), the main “normalized” ingredient is given by the Special Linear
Group SL(2) := {A ∈ GL(2) | det(A) = 1}.

Hence, these transformations preserve ideally the volume of image flow, and
consequently, allow its propagation by using s`(2)nR2 along a perspective map
by means an adequate rescaling depending on depth. 10

How can use this information for the design of rigid motions to be performed
by the mobile platform? If we restrict ourselves to SO(3) (rotations in the
ordinary space), one can make it by the following simple remark: The group
SU(2) := SL(2;C)∩U(2) (where U(2) is the unitary group), is a double covering
of both of them 11. Therefore, the idea is very simple:

1. Lift the visual information from SL(2) to SU(2), and descend to SO(3),
next. Since SU(2) is a complex Lie group one must complexify each one of
the above special lineal and special orthogonal groups. Remark that all of
them are three-dimensional Lie groups; hence their complexification gives
also three-dimensional complex groups. Unfortunately, their geometry is a
little bit complicated. Thus, it is preferable to linearize them by choosing
appropriate basis for their Lie algebras. In this way, one can apply SVD
or PCA methods on g.

2. Inversely, one can simulate the effect of a rigid transformation belonging to
SE(3) = SO(3)nR3 (useful for training, e.g.). It suffices lift the element of
SO(3) to SU(2), and descend to SL(2), by taking in account the effect of a
central projection on the image plane . In this way, one has an “anticipated
evolution” of the scene according to the planned motion to be compared
with perspective map obtained at the following sampled frame.

So, our strategy consists of, instead of working with Lie groups G (non-linear
manifolds), take their linear approach given by the corresponding Lie algebras
g = TeG, and recover G by using the exponential map exp : g → G (local
diffeomorphism). Last ones are nothing else than vector spaces with an inner
product (given by the Lie bracket of matrices) verifying the anti-commutativity

10 The situation for UAV is a little bit more complex, because furthermore variable depth
maps, one must manage variable height maps. In this case, one must consider the affine group
of the ordinary affine space A3, and SL(3) instead of SL(2).
11 In fact SU(2) the “universal” double covering of both groups, in such way that every map

relating both of them “factorizes” necessarily thorugh SU(2)
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property and the Jacobi’s identity. In the above cases, they are 3-dimensional
vector spaces.

(*) As s`(2) and so(3) are 3-dimensional real vector spaces, and su(2) is a
3-dimensional complex vector space, one must complexify the two former ones,
giving also three-dimensional Lie algebras gC := ð ⊗R C, or in more intuitive
term, now coefficients are complex instead of real numbers. In a nutshell, the
general strategy consists of the following steps:

1. Estimate infinitesimal motion at the corresponding Lie algebra g by using
SVD (or its corresponding statistics version PCA).

2. Correct errors by taking near k-tuples of points and apply mobile Moving
Averages.

3. Translate the information to the group G by using exp : g→ G is a local
diffemorphism in a small neighborhood of the neutral element.

4. Propagate by translating along G according to the reuslt τG = g × G
(every Lie group is parallelizable, i.e, its tangent bundle is topologically
trivial).

(*) Splitting properties of Lie groups in terms of Lie algebras representations
is the key for the reduction to low dimension objects (groups vs algebras, and
their corresponding homomorphisms). In this way, one reduces the problem
of updating and tracking information along Automatic Navigation to simple
computations with small matrices appearing in natural decompositions of Lie
algebras 12 in terms of “basic pieces” given by representations of s`(2).

Nevertheless, it is necessary to have very efficient methods to interpret these
computations, not only in terms of the support (given by perspective maps and
semantic maps), but to their space-time evolution according to propagation ac-
tions. Their local description in terms of infinitesimal symmetries corresponding
to Lie algebras, provideds a general context for a joint treatment. To fix ideas,
we restrict ourselves to propagation based on perspective maps, initially, where
s`(2) is the basic piece.

For any perspective map, the action induced by Lie algebras is estimated by
using standard SVD techniques for decomposing each infinitesimal perception
of a motion X ∈ g in a weighted combination

∑3
i=1 λiXi (where λi are the

eigenvalues of SVD) in terms of the corresponding standard basis {Xi, X2, X3}
for g 13.

The action of the group SL(2) in the plane is translated to linear objects
(pencils of perspective lines) by taking the transposed matrix. Their transla-
tion to G-invariant functionals defined on curved objects is more involved and
requires some basic elements of Geometric Invariant Theory, which are difficult

12 For Lie algebras, one must replace diagonal decompositions by semisimple Lie algebras,
and finite sums of vevcctor spaces by infinite sums of representations of s`(2). The first general
results are due to E.Cartan; for an introduction see the chapter 0 of [Gri78].
13 If one desires, the exponential exp(tX) gives the desired element of the group G
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to implement. Thus, we shall restrict ourselves to basic properties involving li-
nes and conics to represent second order momenta. Conic curves can be easily
estimated by using central momenta of order two, and their degenerations are
well known.

The above ideas show a general strategy for translating visual information
to motor information for an effective navigation in terms of rigid transformation
to be accomplished by actuators. Furthermore, one can add range information
in terms of a sparse depth map, which is superimposed to the semantic segmen-
tation (by means RGB-D cameras, laser or Lidar, e.g.).

Inversely, motion planning in terms of rigid transformations can be lifted to
SU(2); their descent to SL(2) provides a method to propagate the information
contained in the current perspective map in another extended perspective map
to be validated (or not) in the next iteration. In this way, one obtains a Lie-based
closed loop not only for information update, but for anticipating the following
projected scene, also.

In practice, visual information at each instant is managed in terms of two
layers consisting of a perspective map for geometric information, and a semantic
segmentation for the scene included in the FoV (Field of View) of the camera.
Both of them are related by depth (and height for UAV) map. More recently,
semi-dense clouds Np(t) of meaningful points, incorporating scalar information
(depth, height), have been extended to disperse cloud Ns(t) of segments (grou-
ped in the correspoinding Hough space, e.g.).

Advanced models to update, tracking and prediction of point clouds are
performed in terms of some extension of Kalman filters 14 applied to mobi-
le perspective maps. For lower-level approaches, similar tasks for radiometric
information are performed in terms of SLAM (Simultaneous Localization and
Mapping) or particles filter (also called Monte-Carlo sequences). Relations bet-
ween the update of continuous (perspective maps) and discrete models (mobile
point clouds) are not still well understood. If we superimpose meshes, they invol-
ve to different kinds of image and scene flows which ideally are ideally preserved
by SL(2) and SL(3), respectively.

0.1.3. Space-time evolving scenes

To start with, one supposes initially an underlying smooth structure M(t)
or a PL-approach given by a meshM(t) for an evolving scene S(t). Inside such
scene there are a finite collection of evolving PS-objects Bα(t) contained in the
scene S(t) which provide an underlying space-time model. Their space-time evo-
lution will be denoted as 2D+1d for image flow φt in video sequences, and as a
3D+ 1d for scene flow Φt for evolving volumetric representations. In this chap-
ter we extend usual functions-based approaches to co-vector or more generally
tensor fields to stimate “mixed quantities” (see §1,4,1 for an introduction).

14 See chapter 6 of B33 (Robot Kinematics) for details.
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In Cartesian coordinates, flows are denoted as φ(x, y; t) and Φ(X,Y, Z; t),
respectively, expressing surface or volumetric variations. Obviously, the planar
flow is a projection πCt

(Φt) = φt of the scene flow for each mobile position Ct

of the camera’s center. Lifting a planar to a volumetric flow is an “ill-posed
problem” in the Hadamard sense. One must add constraints linked to the scene
and/or motion characteristics as it occurs for Optical Flow. An advantage of
our approach consists of the incorporation of information about the scene and
its projection, differential invariants for a volumetric and planar flows (corres-
ponding to an adapatation of Gauss and Stokes theorems).

Above we have seen how Differential and Integral Methods can be formu-
lated in terms of different frameworks concerning the space-time evolution of
evolving scene and obstacles. One can choose a smooth, a PL or even a discrete
support; depending on the choice, we will use ordinary (co-)vector fields, their
PL-approach or their discrete versions given by pde (partial difference e qua-
tions). In all cases the basic notion is that of vector field for small displacements
or its dual given by co-vector fields (called differential forms in the smooth case)
for constraints.

To represent different agents with their own kinematic characteristics, one
uses a finite number of vector fields Xi to describe motion characteristics. Simi-
larly, one uses a finite number of covector fields ωj to evaluate the behaviour of
vector fields and to represent evolving constraints in the Cartesian space. From
a formal viewpoint, both of them can be considered in a simultaneous way in
terms of tensor fields which are nothing else than tensor products of a finite
number of vector and covector fields.

This reasoning scheme can be applied to control issues and optimization
strategies for decisions making which are developed with more detail in Chapter
5. The simplest vector fields Xi are locally given by like-gradient potential fields
∇fi which provide a coarse approach for solving general motion equations. In
our context, they are given by algebraic expressions in terms of vector fields or
their dual expressions in terms of covector fields (the same as differential forms
for smooth manifolds M).

(*) More generally, to include higher PDE (or their PdE versions), they can
be written as polynomial expression in the corresponding “jets space” 15. A sys-
tematic study of their solutions will be developed in modules B23 (Kinematics)
and B24 (Dynamics). Thus, along this chapter, we restrict ourselves to simpler
issues concerning to the behaviour of (generic perturbations of) scalar fields or
like-gradient or potential (co)vector fields.

Two crucial aspects concern to the estimation and prediction of trajectories
for a low number of “meaningful points (control points, beacons, markers), and
AI strategies for multimedia contents learning in video sequences 16

15 Intuitively, a k-jet jkf of a function f is (an equivalence class of) the truncated Taylor
development at order k of f .
16 For a recent survey on Statistical Learning and Multimedia Learning see the chapters 42,

44 and 56 of [Pha23].
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A common approach consists of a space-time decoupling. In other words:

1. extract general characteristics of the mobile scene going from background
segmentation till more complete semantic segmentation; next

2. perform a content analysis for isolated images, depending on the processing
and analysis capability for such images.

This strategy ignores “internal links” (entrelacement) between the “most mea-
ningful” objects which are found in the video sequence. A first formalization of
this idea was made in terms of space-time surfaces (Faugeras and Papadopou-
los, ECCV’96); see last section of this chapter. These surfaces are understood as
“slices” of the volumetric flow along time. Their estimation requires additional
elements to identify tangential and normal components along these surfaces.

Motion estimation is directly related to the discrete vs continuous infor-
mation arising from available sensors, including fusion of information in P,
reprojection on configurations in C, and reinterpretation of clusters in terms
of “objects” in W. Thus, a key issue is to provide smooth approaches for suc-
cesive fibrations between PeCWA spaces of the BAP, by starting with discrete
information provided by sensors. There are several strategies to generate related
PL-models from discrete data. We use alignment between signals, configurations
and objects which are finally embedded in perspective maps, with the corres-
ponding automatic generation of generic meshes (away discontinuities of depth
map).

PS-models simplify PL-models (drastic reduction of cells). However, they re-
quire an efficient implementation of regularization models. In addition, smothing
strategies to pass from PL-models to PS-models can require advanced Optimi-
zation techniques for non-convex models. The simplest smoothing strategies use
some variants of statistical parametrics (Bernouilli, Gauss, Poisson) linked to
inputs. More advanced models use regularization techniques (Tikhonov, e.g.)
which can be seen in the module B23 of the matter B2 (Computer Vision).

From a statistical viewpoint, classical estimation models for time evolving
phenomena (corresponding to ODE in the smooth case) are given by time series
with ARMA (AutoRegressive Moving Average) as paradigm. This approach is
extended to time multiseries, where each agent can have its own time (one
requires a common time scale for the management of delays).

In a complementary way, the estimation of space-time distributions D (co-
rresponding to PDE in the smooth case) is performed in terms of multi-correlation
models. The existence of a “dictionary” between basic notions provides bridges
for connecting top-down and bottom-up approaches. A non-trivial example is
given by the analogy between curvature and covariance matrices, e.g., involving
second order variation rates of “quantities”.

Observed phenomena are not strictly random, nor even at beginning in some
cases one starts with this kind of models. Data estimation in an evolving scene
and tracking mobile objects under uncertainty or incomplete information must
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incorporate self-adaptive optimization procedures to improve coarse-to-fine PS
models.

In more advanced stages, one relaxes smoothness conditions about varie-
ties and morphisms by more realistic hypotheses relative to objects and their
transformations. Relaxation procedures are convenient to incorporate Piecewise
Linear (PL) or even discrete models, including events or experimentally obser-
ved discontinuities involving the information treatment in terms of fields.

In view of uncertainty, often we use Markov Random Fields (MRF) as a
discrete analogue of ordinary vector fields. The use of pde (partial difference
equations) on Graphs representing symbolically evolving regions in Semantic
Maps simplifies the global treatment of underlying information.

0.1.4. AI for automatic navigation (*)

From an experimental viewpoint, one must develop an interplay between
multivariate time series (for evolving data), and stochastic perturbations of ideal
submanifolds N in the Phase Space P (Poincaré) corresponding to the total
space TM or T ∗M of the co-tangent bundle of an ideal manifold M (space-time
surface, e.g.). Hence, the central problem of this paragraph is to sketch the main
learning strategies for submanifolds in P . We start with a top-down approach..

ç

The simplest models for evolving scenes are given by PS-manifolds M , and
PS-maps f : N → P between them (PS: Piecewise smooth). They provide the
framework for Deep Learning methods in AI, with Learning Manifolds as a
central topic for applications in different areas going from Recognition of static
objects and their motion characteristics in the mobile case. The Phase space P
(introduced by Poincaré) is given by the total space TM of the tangent bundle
τM = (TM, π,M,Rm) or its dual T ∗M .

The Phase space P it has a natural structure as manifold induced via π−1

(by using the local triviality of the tangent bundle( of the smooth structure
of M . In addition, P has a natural symplectic structure. Thus, recognition of
smooth characteristics of a motion in the Phase space is formulated as Learning
Manifolds in the Phase space P , which is decoupled in terms of learning vector
and covector fields.

From a theoretical viewpoint, one starts in a PS framework, and one enlarges
in a two-fold way, by incorporating PL-objects and maps (for connecting discrete
data with continuous models), and extending the PS to the Semi-Analytic fra-
mework to i ncorporate “events” which are modelled as singularities of varieties
X or, more generally, maps f : X → Y between varieties.

For linear models (given by paraperspective or weak perspective in W , e.g.),
motion characteristics are subject to r constraints wi (evolving hyperplanes
represented by linear forms TxM → R on the tangent space), and described in
terms of s vector fields vj (whose integral curves give ideal trajectories γi(q)
for i control points. Each one of them can have a variable weight wij which is
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represented by a scalar field. Constraints on W are naturall lifted to constraints
on C and P in the PeCWA pipeline.

Linear combination of weighted products of scalar, vector and covector fields
gives a tensor of type (r, s) for the motion, which is called the structural tensor
for the motion. Tensors are estimated by using Tensor Voting procedures. Their
evolution in the space-time is described in terms of Tensor Flows. Extensions
of classical tensor Voting procedures can be read in the chapter 39 of [Pha23].
From the AI viewpoint, the implementation of TensorFlow under PyTorch pro-
vides the first integrated approach for the estimation of multiple motions under
weighted constraints [Goo16].

The joint management of multiple trajectories γj for 1 ≤ j ≤ s is performed
in terms of distributions D of vector fields vj . The joint management of multiple
linear constraints Hi for 1 ≤ i ≤ r is performed in terms of a differential system
S of covectors given locally by linear forms wi : TxM → R on the tangent space.
Initially, we suppose that distributions and systems are integrable.

If we adopt a bottom-up approach, the simplest motion characteristics are
given by the first and second order finite differences of localization (e.g. position
and orientation) for a finite number of control points which are tracked along
the motion B23. At the lowest level, one can use time series modelling for the
coarsest motion characteristics, with multivariate ARMA (Auto Regresssive and
Moving Average) patterns for linear vs angular speed and acceleration. Typical
statistical models for motion tracking are based on some variant of the Kalman
filters. B336

Hence, AI-based modelling in the DNN framework, requires the use of (at
lrast) three consecutive layers for each module, able of extracting information
from variable weights at “small units”. A typical choice in the classical case (be-
fore the massive use of AI), is given by radiometric superpixels corresponding to
quasi-homogeneous regions in consecutively sampled images of a video sequence,
e.g. Currently, one can work at pixel level on supercomputers. However, an em-
barked system in an automatic car has a more limited computation capability.
Thus, even for off-line training one can use a supercomputer, it is convenient
preserve the methodology linked to “older” solutions, in order to incorporate
“singular events” which have not been included in the learning stages.

0.2. Outline of the chapter B323

As usual, furthermore this introduction and a fifth section for recapitulation,
materials are organized in four sections to be given along one month (one per
week). They contain a list of exercises for self-verification of understanding of
materials.. Materials are organized in the following sections:

1. Differential Geometry for Mobile Robots, where geometric foundations are
developed according to ideal PS objects and maps.
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2. Motion estimation, where one develops a Lagrangian approach for connec-
ting with the preservation of motion characteristics (momenta, motion’s
equations, flow volume).

3. Tensor flows for visuo-motor integration, where one develops a joint treat-
ment of trajectories and weighted constraints, with the corresponding evol-
ving hierarchies extending classical Flag Manifolds.

4. A differential approach to the PeCWA as a natural extension of the PAC
(Perception-Action Cycle), where one shows the utility of decoupling with
Configurations and Working space in the extended PeCWA pipeline to
improve the performance of Navigation systems

0.2.1. Some methodological issues

Along this chapter we prior a top-down methodology, where theoretical mo-
dels are based on the PS manifolds for the Phase space P (Poincaré). The Phase
space P can be modelled in terms of the total space TM of the tangent bundle
τM or the total space T ∗M of the cotangent bundle τ∗M , whose sections are
locally given by vectors (for trajectories) and covectors (for constraints) in the
linear case.

If we adopot a “deterministic” approach, motion’s equations are obtained
in the Newton context, as the derivative of an energy functional. Hamilton-
Jacobi equations give an expression for N control points. The incorporation of
internal and external forces, and the introduction of torques “to compensate”
undesirable phenomena (linked to instability, e..g) gives matrix expressions for
the Robot Dynamics which will be exploited in the module B24. Thus, along
this cahpter we adopt a simpler approach whcih is based on the preservation of
motion’s equations.

The local parametrization of the Phase space P and the total space TP
of its tangent bundle τP is described in terms of the Lagrangian generalized
coordinates (q, p, r) fulfilling the contact structural constraints (relations in the
cotangent bundle of P ) given by

pdt− dq and rdt− dp

In absence of external forces, ideal motion’s equations appearing in the diffe-
rential approach (Hamilton-jacobi) and integral approach(Euler-Lagrange) co-
rresponding to the minimization of the total energy functional, are expressed in
terms of the preservation of the two-form on P given by the symplectic form ω
whose canonical form is locally expressed as ω |U=

∑
i dqi∧dpi. The symplectic

group Sp(n) acting on tge Phase space P is characterized by the preservation
of ω. The symplectic 2-form ω is related with the contact form α given locally
by
∑
i pidqi by ω = −dα.
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(*) Lagrangian and Legendrian (resp. Legendrian) varieties are the integral
solutions of maximal dimension in P (or its contactification) corresponding to
the motion’s equations linked to the preservation of the symplectic (resp. con-
tact) form. Their projection on the base space given by the PS-manifold M
gives Lagrangian (resp. Legendrian) waves which can be visualized as even-
tually singular “leaves” of a foliation on M . Classification of the corresponding
singularities has been performed in the module A44 (Singular map-germs) of
the matter A4 (Differential Topology), and provide ideal models for “events” in
space-time evolving phenomena. In this chapter, we adopt a more basic approach
by restricting to the regular case or to “generic singularities” (codimension one).

Vector and covector fields acting on the base manifold M or the Phase space
P (modelled as “sections’ of the corresponding tangent and cotangent bundles)
can be considered as two layers involving evolving trajectories and constraints.
Their overlapping is carried out in the corresponding bigraded piece of the tensor
algebra.

Usual regular transformations are locally described in terms of the Jaco-
bian matrix for vector fields (or its transposed for covector fields) for each map
relating two “states” for each analytical space X = (X,OX) or for each map
F : X → Y between two analytic spaces of the PeCWA pipeline.

Less attention is paie in the application of TensorFlows in DNN to non-
regular operations in the tensor algebra consisting of contracting or expanding
indexes. They can correspond to the decreasing or increasing of the number
of agents vs constraints operating in the evolving space-time representation of
the environment (including the removal of a layer for some kind of vectors or
covectors, e.g.).

Along the third section, we develop this extension (well known from the
Classical Differential Geometry of the Italian school at the end of the 19th cen-
tury), by incorporating some basic combinatorial tricks for their combinatorial
treatment. So, furthermore regular transformations of tensors “travelling” in
an abstract space of tensors, we have regular operations, which allow contract
and expand information in a similar way to submersions and immersions in
Differential Topology. Some “immediate applications” are linked to automatic
recognition and generation of new video contents in AI.

0.2.2. Fields and flows for navigation

Local Differential Analysis allows compare and analyse events w.r.t. struc-
tural elements of evolving continuous scenes S(t). The same strategy can be
applied to discrete configurations of elements contained in objects Bβ(t) var-
ying along time. In both cases, their space-time evolution is described in terms
of scalar, (co-)vector and tensor fields. Each one of them has its own flow which
is characterized as the set of evolving solutions in some representation of the
space-time:

The gradient flow ∇f of f : M → R relates two level surfaces for f .
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It can be applied to depth, height or attitude, image intensity, energy
function, Hamiltonian or Lagrangian functionals in Analytical Mechanics,
probablity density functions (pdf), e.g.

Flows φ(ξ; t) of a field ξ is locally given by a pack of solutions of the ODE
representing locally ξ; flow of a covector field is given by a uniparametric
family of constraints (dual of a vector field) evolving in a simultaneous
way. They are applied to non-gradient fields (dense set), work performed
by a system, contact constraints, optimization issues, between others.

Tensor flows correspond to the formal product of a finite number of sca-
lar, vector and covector fields, representing “evolving quantities” whcih
are varying in a simultaneous way. Typical examples are given by struc-
ture tensors for 3D Reconstruction and Motion, simulation of complex
articulated mechanisms; evolving texture maps and reflectance maps in
radiometric analysis, can be also considered as tensor fields.

The above description follows an increasing order of difficulty, and maps
between fields allow to relate different “distributions” for evolving quantities.
Lie derivative is an extension of directional derivative which can be defined
for any tensor, leaving invariant its type. Furthermore regular transformations
between tensors of the same type, one has contraction and expansion operators
which allow to relate planar and volumetric objects along time.

A typical example is given by trajectories of k agents (persons, cars, e.g.) as
integral curves of distributions D of k vector fields Xi, and apparent displace-
ments of structural elements (walls or ground floor, e.g.) as integral surfaces of
systems S of differential forms ωj in an evolving scene given at each point by
a manifold M(t). When the behavior of two or more agents is similar, one can
replace them by once a agent (acting as the leader,e.g.) and increase the flow
size; this can be interpreted as a contraction of the associated volume form (a
differential form) along several fields.

The comparison between static objects (manifolds M(t), e.g.) is performed
in terms of maps f : N → P , where N (resp. P ) is the source (resp. target)
space. Differential Geometry provides a support for Kinematics on the total
space of tangent and cotangent bundles. In more down-to-earth terms, the first
order approach to f is described in terms of linear maps between (co)tangent
spaces given by the differential map dxf : TxN → Tf(x)P at each point x ∈ N ,
and locally represented by the Jacobian matrix; it allows to express how vector
fields Xi and differential forms ωj are transformed between both spaces.

In this way one obtains, not only a linear approach for objects and maps, but
also for Kinematics. So, one can identify flows in terms of (forward or inverse)
images of flows. Anyway, differential tools allow identify not only regular beha-
viors, but “sudden transitions” between them. Last ones are described in terms
of Kinematic Singularities for the system 17. This viewpoint has been already
introduced in the module B21 in regard to Kinematic Singularities of anchored

17 The simplest example appear in scalar fields with critical Morse points as singularities.
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robots; here, we extend it ot incorporate transitions in agent´s behavior or in
the whole scene (turning a corridor or a corner in a street, e.g.

0.2.3. The interplay between frameworks

In this paragraph, we sketch some basic ideas relative to the interplay bet-
ween discrete vs continuous, statistical vs smooth, geometric vs kinematic fra-
meworks. Mobile Platforms were originally designed for automatic navigation
in indoor structured scenarios. A later relaxation of initial conditions has allo-
wed to extend some functionalities to explore and navigate outdoor scenarios,
including exploration or realization of tasks in hazardous, toxic (including was-
te cleanup, e.g.) or unaccessible environments (planetary exploration, e.g.). To
perform these tasks it is necessary to integrate information about the environ-
ment (by using odometric resources, e.g.) which provide a feedback for tasks
execution.

Hence, this process involves the whole PeCWA pipeline as a factorization
of the PAC (Perception Action Cycle), linking sensors in terms of input sig-
nals. and actuators in terms of commands. Their integration is performed in
terms of coarse-to-fine fibrations corresponding to smart systems. Along succes-
sive fibrations there is an interplay between “deterministic” and “probabilistic”
frameworks. The intrplay is obtained by by “relaxation” of initial models or
by using “regularization” strategies. An extension of Differential Geometry ba-
sed on deformations vs stochastic perturbations of manifolds and superimposed
structures provides an initial structural framework.

To increase the performance and ease the computational implementation,
one must relax some of these hypotheses and replace them by other nearer to
the discrete information provided by sensors. Furthermore, one must incorpora-
te discontinuities and the uncertainty linked to the interpretation of processed
information. Anyway, smooth models (given by manifolds M and their super-
imposed structures) provide a robust framework to adjust more casuistic and
less structured information. A typical adaptation to the discrete under uncer-
tainty conditions, consists of replacing ordinary distributions D of vector fields
by some probabilistic discrete version usually given in terms of Markov fields,
e.g..

By the same reason, the capture and generation of evolving volumetric mo-
dels for the scene in W start from an initially already known simplified 3D
reconstruction which can be generated in an automatic way; typical examples
are given by perspective maps, e.g.. Next, one tries of adjusting the fundamen-
tal tasks (motion planning, effective navigation) to a “continuous deformation”
where one has only a partial information about the environment (correspon-
ding to a uniparametric family of evolving perspective maps, e.g.). Propagation
models along the motion direction provides a “deterministic” support for the
environment, where different kinds of events (agents operating in the scene) can
be incorporated as they would be on an additional layer.
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The above reasoning scheme for an evolving environment can be translated
to Differential Geometry framework in terms of a distribution D of vector fields
Xi to describe egomotion and motion of different agents, and a system S of dif-
ferential forms ωj representing constraints to evaluate geometric or radiometric
“quantities”. After linearizing at each point, the support for last ones can be
thought as evolving hyperplanes which “separate” relevant information for the
scene or its kinematics.

In regard to the scene, typical examples are given in terms of “domi-
nant planes” corresponding to architectural elements (walls or floor, e.g.)
or their radiometric properties (color or textures, e.g.). Their automatic
labeling and recognition must be “so independent as possible” of environ-
mental conditions (lightening, relative orientation).

In regard to its kinematics, typical examples are given by the simplest
linear (first or second order) ODE; contact forms (dq − pdt, dp− rdt) in-
volving generalized coordinates (q, p, r); reflectance maps for self-adapting
to evolving lightening conditions, control and torque differential forms for
self-adapting to evolving conditions. Their automatic recognition requires
a bounded number of local patterns able of providing a PL-approach in
terms of linear low-order ODE or PDE.

The space-time evolution of all these data can be described in terms of Lie
derivatives for any kind of tensors, including scalar fields f on the ordinary
space (height, depth, e.g.) or tangent space (total energy, Hamiltonians, La-
grangiands), vector fields Xi (linked to motion) or differential forms ωj (work
performed by a system, e.g.) as the most relevant “particular cases”. Last ones
are denoted as LXf (directional derivative also called Frechet derivative), LXXi

and LXωj , respectively 18; in this way, it is possible to describe the space-time
evolution of planar or volumetric elements corresponds to the (real or apparent)
motion of objects in the scene.

The discrete version (necessary by raw data provided by sensors) of infor-
mation is developed in terms of PL-models which can be simplified in terms of
cuboidal maps. A n-dimensional cube (resp.cuboid) is the image of the standard
cube [0, 1]n by a PL (resp. continuous) map. Cuboids can be matched together
along common faces giving “cuboidal complexes” (formal combinations of cu-
boids) with usual formal operations linked to the boundary operator. Ideally, a
cuboidal map is a continuous map between complexes.

The discrete nature of information, partial occlusions and uncertainty about
measures generates discontinuities along tracking which require to complete the
information (interpolation, propagation, regularization) to recover continuous
models. The statistical version of the above arguments, allows to introduce se-
veral procedures for information selection (sampling techniques, e.g.) and uncer-
tainty management for clustered information arising from sensors. Along this

18 The Lie derivative of a vector field or a differential form is the natural extension of the
directional derivative of a scalar or vector function.



25

chapter, this extension is accomplished in terms of a probabilistic version of
manifolds, (co)vector fields and superimposed global structures (vector bundles
in the simplest case).

A more difficult problem is how to update events linked to the structure of
the scene or, alternately, to objects:

Sudden modifications in the scene structure which can be due to turn
around a corner, e.g. or the (dis)apparition of elements belonging to walls
or the ground due to partial occlusions, e.g.. At the lowest level, they are
incorporated in terms of updating of perspective maps (involving an ideal
mobile 3D reconstruction) and semantic maps (to ease interpretation).
SLAM (Simultaneous Localization and Mapping) provides the support for
their integration in an extended Structure from Motion (SfM) framework.

From the dynamical viewpoint, it is necessary to incorporate events rela-
tive to the (dis)apparition of mobile agents (persons, cars, e.g.). Following
our approach, they are managed in terms of coarse cubical representations
(bounding boxes), which are superimposed to perspective representations
in a restricted shape-from-motion (sfm) framework, where only cubical
hulls are considered to ease their RT integration in a mobile scene.

So, cubical complexes (like-Manhattan scenarios) developed along the Chapter 1
play a fundamental role; in particular, contraction and expansion operators can
be managed in a very easy way for cuboidal scenes and for bounding boxes for
objects. From the differential viewpoint, the simltaneous management of a low
number of evolving constraints is managed in terms of pencils, nets or webs for
systems of differential forms depending on 1, 2, or 3 parameters in the ordinary
space. In particular, evolving depth or height maps in a scene correspond to
pencils or nets; similarly, in the Kinematic framework we can use energy and
entropy fields to improve the management of objects in scene; if we wish specify
more complex relations with the geometry of scene or objects inside, we will need
more refined energy functionals (Wilmore nergy, e.g.) giving us an example for a
web (three-dimensional famlly of differentialforms). In particular, optimization
procedures must have in account both components.

0.2.4. Some strategies for resolution

Furthermore, even when the global problem is well-defined (a non trivial
problem in presence of eventually mobile obstacles and any kind of loops), one
follows an incremental strategy consisting of decomposing the global problem in
local ones, and solving local problems separately. Often, local problems are re-
ferenced to previously known landmarks or, alternately, to meaningful elements
which can be easily discovered and tracked by sensors, with a special regard to
the visual information inputs.

Some relations between different modules can be described in terms of “re-
lational maps” which allow to connect different partial subproblems. A typical
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example corresponds to information request by mutually related agents; it must
be possible to share odometric information to reduce uncertainty levels by seve-
ral collaborative agents. The interplay between local and global issues plays a
fundamental role and it is ubiquitous in issues as diverse as the management of
partially occluded regions, variable aspect of deformable objects, regular maps
between objects or their superimposed structures (such as vector bundles, e.g.)

In more formal terms, when one requires higher accuracy or behaviors are
inherently complex, one must use local analysis based on successive differentials
of functions. So, for any function f ∈ Cr(Rn,R) with r ≥ 2, initial differential
data are given by the first and second order differential df(p) and the Hessian
Hess(f)(p) at each point, which correspond to linear and quadratic approa-
ches in the Taylor development series. Both expressions are widely used for the
analysis of kinematic representations, because they correspond to first and se-
cond order variation rates of the observed parameters. It is very important to
identify critical values (where the differential is vanishing) and their type (de-
pending on the signature of the Hessian quadratic form at each singular point)
to predict and understand the behavior in terms of kinematic events.

Global Analysis uses models and tools for patching together local inputs in
a global framework. Usual data to be matched are given by fields, i.e. maps
which assign a vector quantity to one or several functions which can vary in a
simultaneous way. There are several kinds of fields which are labeled as scalar,
vector or tensor fields:

Scalar fields are represented by the different values which takes a function
on a domain; they are locally represented by functions f ∈ Cr(Rn,R). In
the discrete case, the range of values is limited and it can be given by a
locally finite amount of values in a bounded interval.

Vector fields are represented by a Cr-map which assigns to each fun-
ction another function which depends on variable coefficients; in terms
of local coordinates x = (x1, . . . , xn) it can be written as an operator∑n
i=1 gi(x)∂/∂xi which maps each function f in

∑n
i=1 gi(x)∂f/∂xi where

gi(x) ∈ Cr(Rn,R) for 2 ≤ r ≤ ∞ (the constraint about r is due to existen-
ce and uniqueness conditions for solutions of Ordinary Differential Equa-
tions). A typical example is given by the gradient field ∇ which to each
function f ∈ Cr(Rn,R) assigns the vector function ∇f := (∂1f, . . . , ∂nf)
(it gives an ordinary vector when it is evaluated at each point). A vector
distribution is a finite collection of vector fields.

Tensor fields: Beyond vector fields, one can consider their evaluation at
each particular point p0 which given a real number which is called a diffe-
rential or, more precisely, a differential 1-form which is denoted by means
α. i.e., if ξ is a vector field, α(ξ) ∈ R, i.e. it is a dual version of a vector
field. For example, the product T∇f (x − x0) represents a differential
1-form. The “exterior” product (an extension of the notion of vector pro-
duct) of k differential 1-forms gives a k-form which allows to evaluate k



27

quantities varying simultaneously on a manifold M . A tensor of type (r, s)
is a formal product of r differential forms and s vector fields whose beha-
vior is compatible with coordinate changes in order to obtain a global
object defined on a manifold.

It is clear that the above fields follow an increasing order of complexity, and
the compatibility properties between local data, they allow to construct glo-
bal objects on manifolds (or more generally, not necessarily smooth varieties;
see below). By matching the above fields one obtains “sections” of superimpo-
sed structures verifying topologically trivial conditions (as product of varieties)
which are called vector bundles. These conditions can be relaxed to achieve a
more realistic adaptation to real situations, giving principal bundles or, more
generally, topological fibrations. 19

0.3. References for this introduction

References appearing below are not exhaustive, nor the most recent ones.
They must be understood as an invitation to complete and improve the infor-
mation given in the precedent paragraphs, and ease to the reader the completion
of his/her own knowledge “reconstruction” according to his/her interests.

0.3.1. Basic bibliography

We include only classical textbooks or handbooks. More detailed references
can be found at the end of the chapter. As usual, each chapter ends with a fifth
section devoted to recapitulation including conclusions, practices, challenges
and more detailed references. [Mur94] contains the first approach to the use of
differential methods for manifolds in Robotics.

[Chr08] H.I. Christensen, and G.D. Hager: “Sensing and Estimation”, Chap-
ter 4 of [Sic08], 2008.

[Fan23] R.Fan, S.Guo and M.Junaid Bocus (eds): Autonomous Driving Per-
ceptio: Fundamentals and Applications, Springer, 2023.

[Goo16] I.Goodfellow, Y.Bengio and A.Courville: Deep Learning, The MIT
Press, 2016

[Koh97] T.Kohonen: Self-Organizing Maps (2nd ed),Springer-Verrlag, 1997.
[Lat91] J.C.Latombe; “Robot Motion Planning”, Kluwer, 1991.
[Mur94] R.M. Murray, Z.Li and S.S.Sastry: A Mathematical Introduction to

Robotic Manipulation, CRC Press, 1994.
[Oks03] B.Oksendahl: Stochastic Differential Equations. An Introduction with

Applications, Springer, 2003.
[Pha23] Hoang Pham (ed): Springer Handbook of Engineering Statistics (2nd

ed), Springer, 2023.

19 See my notes on Differential Topology for additional details.
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[Sic08] B.Siciliano and O.Khatib (eds): Handbook of Robotics, Springer-Verlag,
2008.

0.3.2. Software resources

Only open source references are included. Some of them could be obsolete.
Any suggestion to complete and improve the following is welcome.

g2o is an open-source C++ framework to optimize graph-based nonlinear
least-square problems in SLAM context. 20

The TDA (Topological Data Analysis) package package provides an R in-
terface for the efficient algorithms of the C++ li-braries GUDHI, Dionysus,
and PHAT.

Final remark: Readers which are interested in a more complete presentation
of this chapter or some chapter of this moduleB32 (Automatic Navigation), must
write a message to javier.finat@gmail.com or to zhicheng.hou@gpnu.edu.cn.

20 https://openslam-org.github.io/g2o.html


