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Previous remarks: These notes corresponds to the Chapter 2 of the module
B32 (Automatic Navigation) of the matter B3 (Robotics). From the mathema-
tical viewpoint, it is necessary to have some basic knowledge of Computational
Geometry. Mathematical Analysis, Graph Theory, Discrete Mathematics and
Probability Theory.

From the computational viewpoint, it is convenient to be familiar with Ob-
ject Oriented Programming (OOP) framework or, more generally, with Python
to ease connections with Functional Programming, also.

In addition of this introduction and a fifth section for recapitulation, ma-
terials of this chapter are organized in four sections. They contain a list of
exercises for self-verification of understanding of materials. Subsections or para-
graphs marked with an asterisk (∗) have a higher difficulty and can be skipped
in a first lecture.
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0.1. Introduction to the chapter B322

The main goal of this chapter is to introduce some basic ideas about Mo-
tion Planning for a mobile robot R or, more generally, several autonomous
vehicles Vj in indoor structured or outdoor unstructured scenes. To simplify,
one supposes known the geo-positioning of autonomous vehicle(s) in a connec-
ted topological space X. Otherwise (GPS is not available in indoor scenes, e.g.)
and in absence of local sensor networks in the scene, it is necessary generate an
“environmental map” helping navigation strategies from image and range sen-
sors. Basic notions of Motion Planning for Anchored Robots have been exposed
in the precedent module B31.

In the precedent chapter B321 one shows the convenience of an efficient de-
sign for sensor networks giving a complete covering of the whole environment
where the autonomous vehicle must operate. The USA GPS and the Chinese
BeiDou provide two standards for localization and provision of services in out-
door environments. For most indoor environments, neither of both systems work
in an adequate way, and it is necessary

to design and implement a fixed sensor network covering the whole space
(public institutions as museum, or private firms as large stores, e.g.); or,
alternately,

to develop an Expert System able of RT processing from available data,
analysis, interpretation and decision making from the available informa-
tion.

Influence regions based on distance maps are crucial for the relative locali-
zation of sensors.A standard solution is given by Voronoi diagrams where each
sensor is interpreted as a Voronoi site for the provision of services based on
the nearest Voronoi sites. This approach must be completed by using visibility
maps, and extended to mobille platforms by using mobile Voronoi diagrams.

The combination of distance and angular information (in prevision of partial
occlusions) is key to obtain a covering of the whole environment. Some linked
services can involve to the automated management in large logistic installa-
tions till to simple navigation models following a“reactive approach” to avoid
collisions and provide customized services for each agent 1.

A more sophisticated extension can include some representation of an even-
tually changing scene. This goal requires a coarse-to-fine 3D reconstructions B22,
motion analysis of trajectories performed by other agents B23, and a coarse re-
cognition B24 of the nearest agents behaviours. A RT processing and analysis
of this problem is the key to a smarter Decision Making.

It is clear, that 3D reeconstruction based approach has a higheer compu-
tational cost and requires embarked hardware and software devices to carry out
reliable and adaptive solutions. Distance and angular-based models have been

1 Some applications to CH environments have been developed by the MoBiVAP group
(under the coordination of the first auhtor) for wheelchairs in CH environments
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developed in the module B11. Thus, the current chapter is mainly oriented to
embarked image and range-based sensors at each mobile agent. In particular, one
supposes a familiarity with basic aspects of the first three modules of computer
Vision B2.

A big challenge is how the above models can be learned in a semi-automatic
way by using recent Machine Learning (ML) strategies involving advanced AI
solutions as those arising from DNN (Deep Neural Networks). Increasingly rea-
listic simulations are key to develop cheaper solutions for learning and training.
Some AI-based recent contributions have introduced simplified models already
learned to ease query processes in regard to the selection of the nearest model.
This idea requires

1. the design of efficient strategies to reduce and cluster the information from
sensors in P;

2. an introduction of hierarchies according to relative importance functions
involving “features” as structuring elements to re-organize the information
;

3. generate clusters of “similar features” in the configurations space C, by
identifying the most meaningful elements (using SVD or PCA methods);

4. remap and pack features in “objects” in an extended Working space W
according to a catalogue of shapes;

5. re-assign priorities according to constraints and the goals to be performed;
and

6. make decision and execute the corresponding actions correcting errors in
the action space A.

Real Time (RT) data processing and analysis of image and range-based infor-
mation must assure an efficient reuse for automatic planning and free-collision
navigation having in account the constraints for each level. After re-projecting
the available information (initially in frequency domain) in a commonly shared
spatial representation (space-time domain). Hierarchies involve to all spaces of
the PeCWA pipeline which are now adapted to Automatic Navigation:

1. The planning in the Perception space P = (P,OP ) involves to optimal
design of sensor networks, including the corresponding (synchronous vs
asynchronous) low-level information processing of evolving information in
terms of multivariable time series, e.g.

2. The planning in the Configurations space C = (C,OC) involves the cha-
racterization of typical evolving features (multiple junctions, intensity ma-
xima, e.g.) with expected regular values, or the apparition of “anomalous”
configurations for higher levels of decision.
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3. The planning in the Working space W = (W,OW ) involves to the iden-
tification of “typical” objects or behaviours, for their optimal assignation
depending on morphological constraints on W and functional constraints
on OW to be fulfilled.

4. The planning in the Action space A = (A,OA) involves the design and
implementation of the Decision Making module in charge of selecting the
most appropriate action and the optimal control system to warrant a se-
cure and safe navigation.

Strategies for clustering and identifying the most relevant data, features and
clusters are specific for each semi-analytic space X = (X,OX). The problem is
not trivial because it affects to quite different inputs. In particular, similarity
between signal characteristics in P, have no relation with similarity between
configurations of mobile points arising from video sequences. The last one have
no immediate relations with any kind of (visible, convex, visual) hulls giving
mobile information packages in the Working space W. Finally, the action to be
chosen follows adaptive patterns to evolving scenes, including sudden jumps in
decision making depending on priorities and unexpected events.

Differential Equations and their discrete version (given by difference equa-
tions) provide a theoretical context. It is necessary to fix initial conditions for
ODE to obtain trajectories (locally unique under Lipschitz conditions), whereas
PDEs require boundary conditions to incorporate constraints to the solutions.
Both of them are described by evolving vectors and covectors in the discrete
case 2.

The most difficult problems concern to how to perform updating, tracking
and prediction in a compatible way with unexpected events. To be applicable,
Differential Systems must be relaxed in terms of deterministic vs random pertur-
bations (by using Stochastic Differential Equations or MRF in the discrete case).
The most complete and rigorous approach uses some variant of Kalman filters
3. Here, we adopt a more pedestrian viewpoint based on simpler properties of
image segmentation.

In presence of image and range information, initialization for automatic navi-
gation selects the “most meaningful” regions or RoI according to a segmentation
of planar vs volumetric representations of the evolving scene S(t). Furthermore
the localization (position and orientation) of Focus of Attention (usually corners
or intensity maxima) in an initial image segmentation 4. The resulting image
segmentation at each instant is the support for a semantic map including a coar-
se recognition of “radiometric features” contained in the planar or volumetric
representations of the scene.

2 More details about relations between differential and discrete differences systems can be
read in the first chapter of B13 (Computational Differential Topology).

3 For details see the chapter 6 of B33 (Computational Kinematics).
4 It is given as a decomposition of the visible part of the scene in a disjoint union of

radiometrically quasi-homogeneous regions (variation of the intensity level under a threshold).
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The update of meaningful data along the motion requires efficient methods
to represent evolving scenes S(t) following a coarse-to-fine strategy. The space-
time evolution of FoA gives Focus of Expansion (FoE) to be tracked and updated
in a mobile segmentation, including sudden unexpected events which can modify

1. The coarsest radiometric level involves to planar vs volumetric regions
which are characterized in topological terms (planar vs spatial ordering,
connectedness, compactness). Topological properties for objects are only
preserved for short video mini-sequences (between two video shots, e.g.)
where evolution is described by homeomorphisms.

2. An intermediate geometric level involves to geometric properties of the
scene which are initially formulated in geometric terms. The hierarchy
between geometric models (Projective, Affine, Euclidean) and their trans-
formations groups provide the key for more robust representations.

3. A higher kinematic level concerning to the update of radiometric and geo-
metric properties. Usual approaches based on Optical Flow are very unsta-
ble, require non-realistic hypotheses and generate a lot of noise around the
objects boundaries which are very meaningful for Automatic Navigation.
Our approach uses structured models based on Lie algebras g = TeG for
each Lie group G of transformations used to represent the scene (projec-
tive group and its subgroups) or motion characteristics (symplectic group
preserving ideal motion’s equations).

As always, the most difficult problems concern to the interplay between the
above items. Topology is the natural extension of Geometry; thus the second
item (concerning to the Geometry) can be considered as an “instantiation” of the
first one (concerning to Topology). This claim will be justified later in terms of
“retraction-expansion” representations involving the Topology and Geometry of
visible regions (star-shaped polygons and polytopes). Connections between Lie
groups and algebras for locally symmetric spaces (to ease propagation models)
are developed by taking the differential and the exponential as usual

In more advanced settings it is necessary to have in account some “delicate”
properties involving relations between local and global issues which have al-
ready appeared in the module B31 (Anchored Robots) in differential terms. An
advantage of the topological approach is linked to their “topological stability”
(independence w.r.t. the dimension) of superimposed structures 5

A daily motivation for this structural approach is linked to the automa-
tic driving of vehicles. Highway traffic requires only an affine framework where
the horizon line is fixed for each driver; sharing this information with other
vehicles or the updating of this information for each driver requires a projec-
tive framework where the horizon line changes. Similarly, when one drives in

5 This result is not trivial and requires some additional elements of Geometric Topology
which have been developed in the module A24 of the matter A2 (Algebraic and Geometric
Topology).
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an urban environment, perspective representations of scenes provide an affine
geometric framework with evolving structural elements (vanishing points, e.g.).
However, when one tries of parking the vehicle, it is necessary to introduce an
Euclidean framework to avoid contact with other vehicles, and to incorporate
non-holonomic aspects.

The precedent simple remarks show the need of developing a similar hie-
rarchy for automatic driving in artificial devices having in account the Kinema-
tics for the scene. The most commonly used methods for video-based information
updating are based on SLAM (Simultaneous Localization and Mapping) in the
configurations space C. This method must be reprojected on a coarse perspective
representation of the evolving scene to ease their interpretation in the Working
space W. A hybrid approach incorporates geometric perspective and radiome-
tric semantic maps which are useful for the central stages o the Basic Anlaytic
Pipeline (BAP).

From a classical viewpoint, perspective models have been used from the Re-
naissance to represent scenes. The Alberti’s method (1435) provides a basic stra-
tegy to propagate simple perspective models from the knowledge of vanishing
points, which has been used in Western culture from the 15th century. Pinhole
camera models use central projections which are easily interpreted in terms of
perspective models. However, the update of information, prediction and simu-
lation of decisions making, and, more recently, information shared with other
agents introduce additional complexity for automatic navigation issues which
require a Real-Time (RT) generation and updating of perspective maps.

After image and range processing in P, one must extract the most meaning-
ful elements in C, which are grouped in objects caontained in the scene (as a
model for W). An efficient design and implementation must provide a real-time
interpretation and updating of the above stages at different Levels of Detail
(LoD). The final stage is the selection of optimal decision for a safe and secure
navigation.

From the 1980s there are several increasingly complex strategies for the
above problems going from structured to more open environments. In absence of
interaction between different agents, the simplest cases correspond to monitored
indoor scenes (such as office or Lab environments, e.g.), where a collection of
regularly distributed marks or beacons are available. The most complex cases
correspond to natural outdoor scenes.

The problem becomes harder in presence of several fixed or mobile obstacles
which can evolve and interact between them. In this case, uncertainty grows
and one needs more adaptive strategies in a robust framework provided by
the kinematic extension of geometric frameworks. A quite general strategy for
collision-free navigation and smart interaction (not only a reactive behaviour,
e.g.) displays a lot of open challenges, still. In this chapter we develop a “qua-
litative” approach. The final goal is to try of contributing to automatic driving
in Traffic Scenes and Intelligent Transportation.
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0.1.1. A topological reformulation

If one has previous information about the environment and the own locali-
zation, motion planning in a space X is a topological problem. In the simplest
case, given an initial element x0 ∈ X and a final element x1 ∈ X one wishes
find a collision-free path γ : [0, 1] → X such that γ(0) = x0 and γ(1) = x1. A
basic example is given by the image of the segment γ(t) = (1− t)x0 + tx1 where
t ∈ [0, 1] is the affine or barycentric coordinate of the segment connecting x0
and x1 in X. Its functional formulation is given by a continuous interpolation
(1− t)f0 + tf1 between regular functions fi ∈ OX on X.

A first drawback consists of inteerpolating “segments” are not necessarily
contained in the ambient space. Thus, a previous analysis of the topology of
X or OX is required. More complex to solve drawbacks are linked to the va-
riability of the scene and agents along time. In practice, it is not possible to
have a “complete” catalogue of possible behaviours, and one must adopt some
simplifications involving the scene and its variability.

The description based on multipaths Γ = (γ1, . . . , γk) corresponding to k
agents (a1, . . . , ak) with the corresponding behaviours is called a Multi-Agent
system (MAS). Typical advanced examples appear in simultaneous interaction
between agents (pedestrians, cars, trucks) in traffic scenes, which is the main
topic for all this module. Their joint management is performed in terms of
Mixed Integer Programmin (MIP), where we adapt Iterated Local Search (ILS)
strategies to find near-optimal solutions.

Some basic ideas of this challenging problem are shared with the Automation
of Intelligent Transport and Smart Logistics. In the last case, one has a lot of
inputs (relative to infrastructures and goods, e.g.) and a lot of outputs (services
to be provided as regular fields) under a lot of constraints. This simple remark
motivates the development of different Optimization strategies on a Multi-Input
Multi-Output (MIMO) model. Their adaptation to Integral Logistics i carried
out in terms of Multi-Agent Path Planning (MAPP).

From a simplified local geometric viewpoint, the Affine Geometry allows
the simultaneous management of k agents in terms of barycentric coordinates
(t1, . . . , tk) fulfilling 0 ≤ ti ≤ 1 and

∑k
i=1 ti = 1, to be interpreted as “relative

weights”. The main invariants of the Affine Geometry are linked to the “ra-
tio” between quantities which is preserved on “parallel” pencils of lines. The
main invariant of the projective completion of the Affine space in terms of the
Projective space is the cross-ratio 6

In the functional case, the expressions
∑k
i=1 wifi for fi ∈ OX for the rela-

tive weights w can be interpreted as a simultaneous interpolation of ordinary
pdf (probabilistic density functions) in the probabilistic context. The simple in-
terpolation between functions (or more general fields) does not give a function
having “near” properties to the extremal ones. This is due to the non-linear
character of the ambient functonal space.

6 See the chapter B220 of the module B22 (Three-Dimensional Reconstruction) for details.
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(*) To be more precise, one must take a “folding” representing “generic
deformations”; if unique, it is called “unfolding”. Explicit computations for un-
foldings of “simple singularities” of function germs have been developed in the
module A43 (Singular function germs). Their extension to more general foldings
of non-regular map germs are developed in the module A44 . Due to the high
complexity of matehamticla expressions we limit ourselves to the “quasi-regular”
case, i.e. regular maps (submersions and immersions in the PS framework), and
codimension one map germs for the singular case.

In Automatic Navigation it is difficult to follow an ideal path γ in an exact
way; the problem becomes more difficult for paths defined on curved manifolds.
In particular, rigid constraints show that allowable motions are composition of
planar rotations and translations . Only combinatorial properties of “deforma-
tions” for closed paths are useful for motion planning. The fundamental group
π1(X,x0) corresponding to homotpy classes of closed paths with base point
x0 ∈ X provides a coarse invariant to classify surfaces with g holes; in practice,
holes correspond to obstacles to be avoided (columns in an indoor scene, other
vehicles) 7

In presence of k autonomous vehicles or agents ai, one must consider a
multipath Γ = (γ1, . . . , γk). Depending on the existence of possible interactions
or not, multipaths Γ can be visualized in terms of

a surface given as the connected sum T2# . . .g . . .#T2 of g two-dimensional
toruses T2 := S1 × S1 (donuts), where each hole represents an obstacle to
be avoided in automatic navigation; or alternately, as

a k -dimensional homogeneous manifold given by the product of k copies
of S1, i.e. a k-dimensional torus Tk := S1 × . . . × S1, which is useful for
topological models in ITS.

Each one of basic pieces admits quite different embeddings in the ambient
space. A knot is the image of a closed path S1 in the ordinary space R3 or
in a sphere S3. A link is given by the image of two or more knots which are
interlaced between them without a common intersection. A braid is a finite
collection of interlacing paths in R3 or S3 (unit quaternions). Links and braids
provide patterns for traffic management in space highway crossroads or for aerial
navigation of UAV, e.g.

Other central contributions of Computational Algebraic Topology B12 are
given by superimposed PL-structures (PL: Piecewise Linear) to the support
given by a (eventually discrete) topological space X. In addition of (equivalence
classes of closed) paths. Topological properties of the support X are computed
by using combinatorial characteristics of multipaths or, alternately, (triangular
vs quadrangular) meshes. Invariants of PL-structures are expressed in terms of
equivalence classes of q-chains cq(X) (given as linear combinations of simplices
or cuboids).

7 More details can be found in the module A21 (Basic Homotopy) of the matter A2 (Alge-
braic and Geometric Topology).
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So, simplicial vs cuboidal representations appear as the natural extensions
of the well known triangular vs quadrangular decompositions of planar tesse-
llations. They provide unordered vs ordered deformable topological support for
objects or behaviours for evolving scenes in W. The main problem is to de-
velop enough efficient (flexible and fast) algorithms to describe the updating
of evolving PL-structures. Perspective models provide the key for quadrangu-
lar decompositions which are easily extended to cuboidal representations (by
using extrusion strategies of Computer Graphics). Their updating is performed
in terms of RT generated quadtrees and octrees, respectively.

The topological management of multipaths Γ corresponding to k agents on a
PL-approach to the scene requires starting and ending time, task duration and
reward-penalty rules in regard to tasks execution. A computational approach is
performed in terms of Multi-Agent Path Planning (MAPP), which is a variant of
the classical Multiple Travelling Salesmen Problem (MTSP). Some meaningful
extensions of this description involve to

Internal data provided by embarked sensors of discrete vs continuous na-
ture; dense vs sparse distribution, spatial vs frequency domain, between
others, to have information about the own state of the mobile platform in
th Perception space P.

External data about the scene S(t) supported on evolving clouds of “ba-
sic features” (points or oriented segments) . The scene can be known vs
unknown, indoor vs outdoor; structured (man-made, e.g.) vs unstructu-
red (sonar for submarine exploration, e.g.); monitored in the short range
(beacons, markers, BT, RFID sensors, e.g.) vs monitored only by remote
sensor networks (satelitar information for Earth or planets, e.g.)

Obstacles in the Working space W Denoted as bβ(t) for the planar case,
or Bβ(t) for the volumetric case; they can be static (constant w.r.t time
t) or mobile (depending on t), known vs unknown or variable shape, etc
The union of obstacles is denoted as B(t), with complementary collision
free-space denoted as F(t) := S(t)−B(t).

Interaction with the scene S(t) or with other mobile agents ai(t) (hu-
man or robots) at different levels: avoiding collisions, sharing information,
collaborative behaviors, assistance, between others.

Mechanical issues in regard to the superposition of (geo)metric informa-
tion for the scene, or low-level descriptions of the corresponding kinema-
tics.

In an introduction as this one can not give a detailed analysis of all these
topics. To simplify, we will restrict along the first section to the case of once a
mobile platform R. Several extensions will be given in the other 3 sections.
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0.1.2. Some remarks about interaction

The next step consists of incorporating some basic properties arising from the
interaction with other agents in a HRI (Human Robot Interaction) framework as
extension of the HCI (Human Computer Interaction) paradigms. Some remarks
in regard to interaction issues are the following ones:

Internal data: We have in account the information arising from multiple
sensors in an evolving Perception space P (t), which have been described in
the precedent chapter 8. In particular, we paid attention initially only to
range and image sensors for once a mobile platform, which will be enlarged
to other sensors in the last 2 sections. In the mobile case, furthermore
the individual processing and analysis, the first tasks to be accomplished
concern to the fusion of time evolving information. We will use multivariate
variants of ARMA.

Modelling evolving configurations C(t) (including obstacles) by using adap-
tive envelopes (cuboidal, convex, α-shapes) generated from semi-dense
clouds of points (SLAM) vs sparse clouds of segments (to extract mo-
tion characteristics). Learning obstacles from both clouds is an advanced
research problem in a changing Configurations space C(t). Thus, we shall
restrict ourselves to regular configurations of segments, such those appea-
ring in simplified perspective scenes.

Evolving scene representation of the working space W (t) to different levels
including objects and behaviours in W (t). They are modelled by suing pla-
nar vs volumetric, visible vs virtual or augmented (in prevision of events)
evolving primitives. We use a two-layered perspective vs semantic segmen-
tation which is managed in terms of symbolic representations (dynamical
graphs, e.g.)

Basic patterns for interaction in an evolving Action Space A(t) by fo-
llowing centralized vs decentralized paradigms, collaborative vs opponent
behaviors, coupled vs decoupled tasks for the Decision Making module.

All the above processes are mutually dependent,, and require a specifica-
tion of adaptive geometric frameworks and relations between them depending
on the required accuracy for (coarse-to-fine, relative vs absolute) localization
criteria and to perform automatic navigation tasks. In this chapter we adopt a
description in terms of data arising from signals, clusters of “features” in C, and
their grouping in evolving geometric primitives in W . More advanced structural
kinematic models to be developed in the next module B33 (Robot Kinematics).

Anyway, one must be aware that all localization and navigation issues are
prone to errors which must be corrected on-line at each stage. This correction
means that, if errors are beyond a tolerance threshold, we must adapt the current

8 An on-line reference is http://planning.cs.uiuc.edu/node1.html
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trajectory to a nominal one; up to risky or catastrophic events which must be
recognized, also by a supervisory module in regard to tasks to be performed.

(*) More sophisticated issues concern to the simulation of signals, configura-
tions, structured objects and possible decisions to be made. A good feedforward
design is crucial to develop cheaper AI-based simulation for learning and training
in quite different scenarios for Automatic Navigation. The design and implemen-
tation of software tools will be developed in the module B44 (Simulation and
Animation) of B4 (Computer Graphics).

In the meantime, we use already available tools of Advanced Visualization
B16, whcih give a support to databases, processing and analysis, insertion of ba-
sic primitives, and low-level interaction models for evolving objects. For more ad-
vanced applications, it is necessary to develop multi-scale adaptive solutions for
quite different issues, going from simplified traffic scenes till the semi-automatic
management of merchandises in very large stores or logistic centers.

0.1.3. From topological to metric issues

The alternance between more and less structuted environments even for traf-
fic scenes, suggests an exchange between topological and metric properties at
each level of the Basic Analytic Pipeline (BAP). The most general topological
properties to be evaluated are connectedness (involving number of components),
compacity (to warrant convergence) and separability (to discriminate compo-
nents). All of them involve paths for basic objects and behaviours, even under
uncertainty conditions due to partial occlusions, reflectance or bad illumination
conditions. The last ones can require luminance-based approaches and low-level
restoration to complete objects, which are artificially separated due to bad en-
vironmental conditions.

A challenge is related to the automatic completion of information. One can
use sensors at different resolutions, by starting with low level restoration, and
incorporate initially supervised methods linked to approximate shapes and mo-
tion characteristics. To accelerate completion, we restrict ourselves to simple
evolving envelopes in simplified perspective models given locally by frontal or
angular perspective models (corresponding to one or two vanishing points at
finite distance). From the statistical viewpoint, it is necessary to develop a to-
pological extension of the Geometric Information Theory (GIT) which is labelled
as TIT (Topological Information Theory)

All the available information is submitted to uncertainty conditions, and
propagation models are “degraded” after 2 or 3 iterations. By this reason, it is
necessary to have robust reference models, and specify the error models, (having
in account the need of giving a RT response for traffic scenes). From the AI
viewpoint, it is necessary to perform a previous training which uses supervised
learning of linear patterns to be combined by means superposition principles.

The correction of errors puts the accent on metric properties (minimize dis-
tance between current and nominal or expected behaviour), and an estimation
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of different kinds of errors and how to minimize them in terms of control fun-
ctions. Minimization of errors must be performed on the kinematic layers, also.
Accuracy requirements are not the same for an isolated terrestrial robot than
for a flock of UAV, e.g. Furthermore, some constraints are specific of a higher
level and do not descend to the geometric level.

For known static man-made scenes motion planning is “easy”. In absence
of occlusions, it suffices to align current data about the environment with the
“nearest part” of nominal plane or volumetric representation. Even so, the pro-
blem is not elementary, because it requires efficient search algorithms in regard
to beacons, markers, or any kind of signals in the scene. If one intends a na-
vigation based on visual alignment in W, the problem becomes more complex
because it requires image segmentation, generation of perspective maps and es-
timation of the geometric transformation performing the alignment for both of
them. These issues are considered in the first section.

A statistical treatment of mobile information is classically incorporated in
the third section, by using terms of stochastic process vs Markov Random Fields
(MRF), depending on the availability of high vs low structured patterns. The
Symplectic Geometry provides a structured framework to integrate all these
issues in a common kinematic framework. The corresponding Information Sys-
tem is developed in terms of Kinematic Information theory (KIT) to be develo-
ped, which can be considered as an extension of Geometric Information Theory
[Ama16] to Kinematics.

Let us remember that usual approaches to the Geometric Information Theory
(GIT) use a mixture of Statistics and Riemannian Differential Geometry on
the space of (initially parametrized) statistics of multivariate distributions. In
particular, the introduction of the Cramer-Fisher-Rao metric ds2CFR induces a
structure as a Riemannian Manifold (M,ds2CFR) on the space of multivariate
normal distributions, with the corresponding metric connection ∇CFR, which is
nothing else that the CFR adaptation of the Levi-Civita connection ∇LC .

(*) In our case, due to the systematic use of perspective models (supported
by an evolving Affine Geometry), it is necessary to replace the metric connec-
tion by an affine connection ∇a and its corresponding statistical version. The
maininconvenient of this extension is the existence of infinite affine connections,
which requires the introduction of a “variational principle” linked to “some kind
of curvature operator” (locally represented by the covariance matrix).

In the KIT framework, the initial kinematic paradigm is given by th Analy-
tical Mechanics initially developed by Lagrange and Legendre at the beginning
of the 19th century. From the middle of the 19th century (Hamilton), the in-
troduction of the now called Symplectic Geometry (Hamilton-Jacobi) plays a
similar role on the Poincaré Phase space P (total space of the co.tangent bund-
le) to the metric on the original manifold M . The incorporation of the variatio-
nal viewpoint (the first systematic approach is due to L.Euler), was performed
by Lagrange. This incorporation gives the so-called Euler-Lagrange or integral
approaches. In absence of external forces, integral adn differential (Hamilton-
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Jacobi) are equivalent between them.
(*) In presence of external forces (corresponding to different kinds of in-

teractions), it is necessary to perform “small perturbations”, in terms of non-
vanishing terms in the right-hand of structural equations. Unfortunately, the
equivalence between differential and integral approaches is not longer true.
Thus, one must choose the corresponding framework. By coherence with simpler
methods developed in the module B23 (Motion Analysis) of B2 (Computer Vi-
sion), along this chapter we privilege differential methods labelled as Hamilton-
Jacobi (in despite several important contributions are due to Lagrange and
Legendre, also). So, the KIT initially modelled as the extension to Statistics to
the Symplectic Geometry.

0.1.4. Symbolic management

Most of the above issues involving different terms of the Basic Analytic Pipe-
line (BAP) linking PeCWA spaces, can be formulated in terms of Optimization
problems, and the corresponding dual Control strategies for tracking and co-
rrecting behaviours. Optimization in a space X is carried out w.r.t. a finite set
of constraints, which are locally given by equalities fi = 0, inequalities gj ≤ 0
and strict inequalities hk < 0. Their simultaneous consideration is a hard pro-
blem to solve, specially in the non-linear case. Thus, a basic strategy consists of
decoupling, by removing some of them, and re-coupling in successive stages.

For each removed hypothesis the problem becomes more and more ambi-
guous and, consequently, difficult. In absence of previous information about the
evolving scene S = [S(t)][t ∈ I], a first problem concerns to the automatic gene-
ration of the “nearest” simplified representations for the environment from the
information fusion arising from different sensors; a second problem is the mana-
gement (inserting vs removing nodes in dynamic graphs) of eventually mobile
objects in the environmental layer. Efficient solutions require the introduction
of hierarchies to process the information for each one of the spaces appearing in
the Basic Analytic Pipeline (BAP)

1. Hierarchies for sensor fusion in the Perception space P suggest the use
of similar sensors working at different resolution levels. A coarse-to-fine
approach provides a general coarse framework, where refinements are in-
cluded in a selective way (only for RoI) in depth along “vertical direction”.
Propagation is performed at each resolution level in an horizontal way. A
symbolic representation of the corresponding tree can be visualized in
terms of upper block triangular matrices whose rectangular boxes of the
same “row” represent propagation along time for each abstraction level,
and whose “columns” represent successive refinements of RoI.

2. Hierarchies to update and track features in the Configurations space C
are introduced from an initial configuration C0 of isolated junctions and
intensity maxima in a Visibility Graph. Their space-time evolution is des-
cribed in terms of pdf (probability density functions) linked to normal



14

distributions around each “feature”. Updating of the “features graph” is
performed by using queries on the nearest neighbors for each node 8By
using a variant of the k-NN algorithm).

3. Hierarchies for evolving objects in the Working space W are described
in terms of coarse-to-fine objects recognition at different LoD. Flattening
graphs provide a coarse description for polyhedral objects to be validated
as embedded subgraphs of the Aspects Graph for standard objects. In man-
made scenes, a symbolic representation is given by structural elements
of a perspective representation (vanishing points, perspective lines, e.g.).
For non-structured scenes, the most maingful information is given by the
space-time evolution of FoA, given by FoE.

4. Hierarchies for Decision Making in the Action space A use different op-
timization criteria involving increasingly complex criteria (linear, convex,
non-linear smooth). Statistical Decision Theory is the key.

The big challenge is how all these hierarchies can be learned, and how can be
modified in a semi-automatic way. Related topics are developed in the chapter
B326.

0.2. Outline of the chapter B322

In a nutshell, along the first section, one develops a static approach which
are supported by geometric (perspective maps) and topological models (regio-
nal segmentation); both of them incorporate uncertainty levels involving the
environment. The second section introduces several dynamical aspects, invol-
ving paths, interpolation and some applications to more realistic environments,
where basic types of interaction are allowed. Third section is focused towards
situations where several agents operate in a “similar way”. Last section intro-
duces heterogeneous clusters which interact between them with a higher un-
certainty level and some unstability phenomena linked to the lack of control
for mechanisms. Some advanced illustrations are introduced to motivate further
developments.

More specifically, in addition of this introduction and the fifth section of
complements, this chapter has four sections labeled as

1. Evolving representations of scenes, starting with 2D cenital vs 2,5D pers-
pective representations as initial paradigms. Their time evolution is des-
cribed in terms of planar affine transformations (with PL-approaches for
curved elements). In absence of cenital views, RT estimation of perspecti-
ve models provide local models for Visual Navigation. A final subsection
devoted is devoted to a short description of basic algorithms.

2. A topological approach to Motion Planning is developed in the section 2 to
provide a common framework for semantic and perspective maps. Homo-
topy methods provide some keys for information reduction in an invariant
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way. Extrusion of perspective maps from depth or height functions allows
a RT generation of 2,5D representations. Finally, one introduces a mul-
tivector approach adapted to cuboidal maps for a joint management of
2,5D perspective models.

3. Statistical methods for Navigation are crucial for clustering, sampling, ex-
tracting and remapping meaningful features in parametrized models. To
achieve these goals, one introduces second order methods and one descri-
bes some basic Optimization procedures which are applied to ITS (Inte-
lligent Transportation Systems). One describes some basic algorithms for
automatic extraction, which are applied to mobile scenes.

4. Learning of evolving perspective maps is the most complex section. In view
of the very large diversity of motion patterns, we start with a based-models
structured approach (having in account basic Analytic Mechanics for Ki-
nematics). Next, one relaxes these conditions to incorporate the learning of
low-dimensional patterns for evolving isolated objects (cars, people, e.g.).
Their fusion is developed in simplified cuboidal representations for the
scene. The last subsection proposes an extension of learning procedures
which is based on joint evolving kinematics.

Several topics will be developed in depth along successive chapters. By this
reason, in this chapter we consider only simplified or “toy models”, as an initial
description of more realistic models which will be incorporated later. The next
paragraphs of this subsection illustrate some methodological issues, jointly with
some illustrations showing the interplay between different approaches.

0.2.1. Some specific troubles

Complete information about a scene is an unrealistic hypothesis. One must
incorporate uncertainty or incomplete information about the scene in all Na-
vigation stages. Hence, smart navigation requires some capability to generate
low-level environment representations for indoor as for outdoor scenes. It is very
common the existence of “shadow zones”, where communication is degraded or,
simply, is lost.

In these zones, autonomous robots must be able of developing their tasks,
including possible cooperation with other robots. Furthermore, the use of local
terrestrial networks (as WiFi, BT, RF, e.g.) has a limited bandwidth which
degrades information contents even if the coverage is “complete”. A related
challenge is the incorporation of AR modules to smart mobile agents for com-
pleting information. It requires more advanced AI models and tools for a simple
management of “similar” situations. Again, it is necessary to develop a more
topological approach.

In some cases, even if the communication with a central node is lost for
some agents (due to partial occlusions, e.g.), the presence of other agents with
whom the information is shared, allows to recover an indirect communication by
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selecting a new leader (who receives the most complete communication). This
implies the need of developing tools for reconfigurable floats which is performed
in the framework of MAS (MultiAgent Systems). An illustration to Intelligent
Transportation systems is developed in the subsection §3,3.

In the last section we specify computational tools and provide some mea-
ningful examples relative to motion planning with a special regard to dynamic
groups. In particular, we paid a special attention to some qualitative aspects of
cooperative vs collaborative behaviours with several examples to illustrate our
approach which appear in a recurrent way in other chapters of these notes.

0.2.2. Methodological issues

As usual, we follow an increasingly complex strategy, where we prior top-
down approaches along the two first sections, and bottom-up approaches along
the third and fourth sections. Top-down approaches have a geometric vs kine-
matic character, where kinematics is understood as “geometry in motion” (in
an initially ideal Symplectic framework). Next, along the second section one
“relaxes” rigidity conditions of geometry, by replacing it by a more topologi-
cal approach, where deformations and abrupt changes (corresponding to visual
events) are allowed.

In a complementary way, bottom-up approaches incorporate mobile data in
terms of multivariate time-series, where ARMA (Auto-Regressive Mean Ave-
rage) methods play a central role. The main problem to be solved consists of
identifying “typical patterns” appearing along the motion. Covariance matri-
ces to estimate the curvature, are replaced by correlation matrices to estimate
motion patterns, as a previous step to be refined in more advanced stages by
covariance based methods. The most difficult problems concern to the design of
efficient methods for learning the above issues, which is the main topic of the
fourth section. Next, we remember some basic ideas to motivate this strategy.

Mobile Platforms were originally designed to navigate indoor structured sce-
narios. A later relaxation of initial conditions has allowed to extend some fun-
ctionalities to explore and navigate outdoor scenarios, including exploration or
realization of tasks in hazardous, toxic (including waste clean-up, e.g.) or unac-
cessible environments (planetary exploration, e.g.). To perform these tasks it is
necessary to integrate an accurate odometry along the tasks execution which
involves all sensors and commands. Their first integration is performed in a
“deterministic” framework given by manifolds (i.e. smooth or differentiable va-
rieties) and locally trivial structures defined on them (vector bundles, e.g.).

Hence, we suppose initial models for variation rate of information relative to
signals and commands are smooth maps, i.e. functions or coefficients of distri-
butions describing models superimposed to expected variables are differentiable
ones. Hypotheses about smoothness imply that the first mathematical frame-
work is given by Differentiable Manifolds. Later, we relax these hypotheses and
replace them by other nearer to the discrete information provided by sensors,
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or the uncertainty linked to the interpretation of processed information. In last
case, one can replace ordinary distributions of vector fields by some probabilistic
version (usually given in terms of Markov fields).

By the same reason, first models suppose that the environment is already
known and try of adjusting the fundamental tasks (motion planning, effecti-
ve navigation) to situations where one has a complete information about the
environment in a “deterministic” environment. Later, we introduce several pro-
cedures for uncertainty management arising from sensors, even in differentiable
case. This extension is accomplished in terms of a probabilistic version of ma-
nifolds, fields and superimposed structured.

Furthermore, even when the global problem is well-defined, one follows an
incremental strategy consisting of decomposing the global problem in local ones,
and solving local problems separately. Often, local problems are referenced to
previously known landmarks or, alternately, to meaningful “visual features”
(landmarks, beacons, intensity maxima, e.g.) detected from visual sensors. The
connection at different levels involving PeCWA spaces is represented in terms
of relational maps. So, in addition of the informaiton processing and analysia
t each level, it is necessary to design and implement how this information is
reconverted to their use for the next PeCWA spaces in terms of analytical maps
X → Y by minimizing errors and uncertainty at each level.

The computational management is carried out in terms of symbolic repre-
sentation given by analytical graphs G. The usual superimposed structures E(G)
provide the support for multiple purposes on G. In particular, they allow the
design of feasible tasks (compatible withmetric and kinematic constraints and
manoeuvrability capability). Feasible paths are usually approached by PL- or
PQ-trajectories performed by “meaningful” control points of the mobile plat-
form involving C and W .

In addition of feasibility, one must implement algorithms to find near-optimal
trajectories in terms of scalar fields (potential functions, e.g.) vector fields de-
fined on the support G of G (involving flows along the graph), under the co-
rresponding constraints (linked to evolving covectors or differential forms in the
PS context). Kinematic and Dynamic aspects involving the behaviour of the
c.o.g. G) or linked to the end-effector of kinematic chain will be developed in
the modules B33 and B34. From the topological viewpoint, we limit ourselves
to simulate and validate solutions for ideal motion equations.

A coarse approach to the above problems is developed in a PL framework
with two layers, where the semantic map (linked to regional segmentation) is
superimposed to the geometric layer in W corresponding to each perspective
map. In despite of the linear character of primitives, the generation of a pers-
pective map is not a linear problem. In particular, the relative depth is a highly
non-linear function as the inverse of space or time disparity between homologue
elements. Some easier PL models to be estimated are given by weak perspec-
tive and paraperspective models which provide a discrete approach for scene
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representation, relative location and navigation tasks 9.
The intrinsic PS nature of egomotion requires to develop some differential

refinements for the PL-approaches of the initial perspective models. Further-
more the non-linear character of perspective representations (depth as inverse
of disparity) and groups of transformations involving them (classical groups
are manifolds, not vector spaces), motion’s equations are usually non-linear.
Furthermore, there appear non-holonomic effects which is necessary to evalua-
te and correct in an automatic way; typical examples are giving by parking
operations, e.g.. Thus, it is necessary to develop more involved Algebraic and
Differential Topology methods for solving motion planning issues, at least from
a theoretical viewpoint.

As always, the most difficult challenges concern to semi-automatic learning
of all the above issues, which require advanced elements of Deep Learning. A
classical approach to evaluate space-time evolution use RNN (Recurrent Neural
Networks), initially introduced in the ninetiees. Transformers are an extension
of RNN which incorporates basic features of dynamical systems. However, even
if we forget semantic aspects (involving mainly to changes in radiometric pro-
perties of RoI), there are a lot of qualitative problems to be solved involving
topological aspects of PeCWA spaces. Some of them are the following ones:

1. Complete information arising from sensors, by removing noise and lowering
uncertainty in P (t).

2. Select, track and predict the most meaningful “evolving features” in C(t).

3. Reproject the available information on evolving coarse-to-fine representa-
tions of W (t).

4. Select the near-optimal action to be accomplished in A(t) according to
constraints.

All these issues require and efficient design for Optimization criteria, and the
incorporation of Expert Systems to reduce information for each PeCWA space.
Furthermore, it is necessary to evaluate how constraints are propagated along
the “transfer map” X → Y between the base spaces of semi-analytic fibrations
X → Y. To simplify, we suppose the corresponding distributions D of vector
fields and systems S of covector fiedls are integrable (or “very near” to one
integrable). Even so, the topology of integrable distributions or systems is far
from being trivial, and one must be careful with the validity of perturbations.

0.2.3. Data Analysis for Navigation

Along the first chapter B321 o this module a collection of sensors have been
introduced to capture evolving information about a changing scene. Roughly
speaking, the most relevant ones are labelled as image- or range-based sensors.

9 Details in the two first chapters of B22 (Three-Dimensional Reconstruction)
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The former ones have a “passive” character (conventional video cameras, e.g.),
whereas the latest ones have an “active” character (infrared, laser, lidar, acous-
tic, RFID, etc), i.e. sensors capture a response of the environment w.r.t. the
emitted signal. Evovling data are stored in terms of multivariable time series.

A non-trivial problem is how integrate all this information in a common
framework. As all of them are given by different types of signals, the most im-
mediate answer would be in some variant of the 2D or 3D Fourier domain.
However, their interpretation is very difficult, data structures in the frequency
domain are difficult to manage. Indeed, discrimination capability is very low and
their real-time updating in regard to motion issues display a lot of unsolved pro-
blems, still. Roughly speaking, we prior different data structures in terms of lists
for P , tables for C, connected lists for W , and simulation of their overlapping
for their joint management in A.

Thus, to ease the visualization and interaction, we reconvert frequency-
domain information a space-time domain in P which is nearer to human vi-
sual perception of an evolving environment. This choice implies to reinforce the
role of geometrical information for “features” in C(t), and their “translation”
to topological representations for objects and scenes in W (t). The functional
approach is recovered again in regard to Decision Making strategies in A(t) for
near-optimal action to be performed.

Multivariable time series are the key for the data treatment for all PeCWA
spaces appearing in the Basic Aanlytical Pipeline (BAP). At raw data level, a
general strategy is based on ARMA (Auto-Regressive Mean Average) models
and its variants 10. Their joint management uses perturbation methods applied
to matrix representations. To simplify, we restrict ourselves to basic models of
parametric statistics given by multivariate normal distributions. In this way, one
obtains more robust models for TIT (Topological Information Theory), before
extending it to KIT (Kinematic Information Theory).

Distributions D of r vector fields corresponding to structural elements provi-
de a support for self-organization, which must be compatible with “occasional”
elements corresponding to “events”. Their joint management can be visualized
as a r′-dimensional flow, with r′ ≤ r to be “integrated” (to ease its interpreta-
tion). In the simplest linear cases, one selects the “most relevant” components
(by using SVD or PCA).

(*) In absence of reliable information, different relevance is managed in terms
of ImpSaC (Importance Sampling Consensus) strategies for distributions which
have been introduced in the module B23 (Motion Analysis) of B2 (Computer
vision). A “statistical relaxation” of this method is MLESac (Maximum Like-
lihood Estimation Sampling Consensus). Their computational management will
be performed in symbolic terms by using Petri nets; see the section 4 of the
chapter B324 for more details.

In a complementary way, systems S of covectors (given by differential forms

10 A more structured approach for packaged data will be performed by using different va-
riants of Kalman filters in the chapteer 6 of B33 (Computational Kinematics).
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in thee PS context) provide the support for evolving constraints. In a similar
way to the precedent case, the simultaneous management of the above s cons-
traints can be thought as en “evaluation” of the volume form corresponding to
their formal product (the wedge product in the PS framework). Ideal fluids are
characterized by the preservation of volume forms (Liouville).

(*) In particular, if Si := supp(ωi) is the support of a constraint (visuali-
zable as a one-form differential ωi), successive constraints are set-theoretically
supported by ∩ki=1Si; in the PS framework, it can be interpreted as the dual
of the exterior products ω1 ∧ . . . ∧ ωk. Similarly to the case of distributions of
vectors, one can apply ImpSaC and MLESaC methods for their estimation.

0.2.4. Joint motion of clusters

The approach performed at the end of the precedent paragraph has an ideal
character. usually, one has not an accurate representation of vector and/or co-
vector fields. The information flow for each PeCWA space appearing in the
BAP (Basic Aanlytica Pipeline) displays a lot of irregularities involving diffe-
rent kinds of signals in the Perception space P , optical flow in Configurations
space C, and scene flow in the Working space W . All of them lower the reliability
of the decision to be made in the Action space A.

It is necessary minimize noise in P , remove outliers in C, and improve the
robustness of packaged information in W . All these issues involve to indivi-
dual clustering for each type of signal in P , grouping criteria in C, shape and
behaviour characterization in W , and the corresponding remapping on A under
constraints involving the mobile device and the scene.

Individual motion planning for once a mobile device in structured scenes is
a classical topic which is well understood from the eighties; a good reference
is [Lat91] 11 The increasing availability of low-cost mobile robotic devices po-
ses several challenges involving groups composed by k agents. To fix ideas, we
limit ourselves to collaborative models, where different agents share their own
information to achieve a better understanding of themselves, their environment
and actions to be undertaken. Some commonly used strategies to improve th
information for each PeCWA space are the following ones:

Interpolation of signals in P . Structural models for expected eigenvectors
are crucial to obtain more robust models.

PL-propagation under uncertainty of initial configurations in C from the
current localization. The use of conoids for each cluster with similar motion
characteristics provides natural bounds.

completion of information relative to objects or bahaviours in the Wor-
king psace by using enhancement or restoration techniques under partial
information.

11 J.Latombe: Robot Motion Planning (2nd ed), Kluwer, 1991.
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Expert systems to assist Decision Making based on systems of logical ru-
les, acccording to the usual hierarchy for logical rules (logic of classes,
propositional, descriptive).

In more advanced settings one must introduce competitive behaviours ins-
tead of looking only to the collaborative ones. In both cases, one can have a
“predominant” leader Li for each cluster, and several followers Fij (with simi-
lar behaviour to its leader Li). Their identification includes the development
of clustering strategies by following evolving patterns. From a more practical
viewpoint, it is necessary to work at different levels going from automatic iden-
tification of coarse regions (by using windowing and/or sector decomposition of
images, according to coarse motion characteristics) till the estimation of kine-
matic features of each evolving cluster.

As always, the hardest problem concerns to the design of a semi-automatic
strategy for learning, based on “enough” cases-of-use. To lower the cost of trai-
ning the corresponding Neural Networks, it is convenient to develop software
tools for interactive simulation of scenarios with multiple agents and their co-
rresponding behaviours. These issues will be developed in the chapter 6 of this
module.

0.3. References for this introduction

References introduced here are not exhaustive nor the most recent ones.
They must be understood as an invitation to the reader to acquire a deeper
understanding of the subjects which have been sketched above. Each reader
must be able of constructing his/her own knowledge representation according
to the specific problem to be solved.

0.3.1. Basic references

We include only classical textbooks. More detailed references can be found at
the end of the chapter. As suaul, each chapter ends with a fifth section devoted
to recapitulation including conclusions, practices, challenges and more detailed
references.

[Fan23] R.Fan, S.Guo and M.Junaid Bocus (eds): Autonomous Driving Per-
ceptio: Fundamentals and Applications, Springer, 2023.

[Goo16] I.Goodfellow, Y.Bengio and A.Courville: Deep Learning, The MIT
Press, 2016

[Koh97] T.Kohonen: Self-Organizing Maps (2nd ed),Springer-Verrlag, 1997.
[Lat91] J.C.Latombe; “Robot Motion Planning”, Kluwer, 1991.
[Sic08] B.Siciliano and O.Khatib (eds): Handbook of Robotics, Springer-Verlag,

2008.
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0.3.2. Software resources

In deterministic frameworks, the A∗ provides the first robust algorithm, with
efficient implementations at the end of xisties and early seventies. However, these
hypotheses are not realistic for usual environments where mobile robots must
operate.

An efficient implementation of solvers for Multiple Traveling Salesmen Pro-
blem (MTSP) is necessary for k agents operating in a common environment.

Low-dimensional problems can be solved with grid-based algorithms that
overlay a grid on top of configuration space, or geometric algorithms that com-
pute the shape and connectivity of Cfree.

Exact motion planning for high-dimensional systems under complex cons-
traints is computationally intractable. Potential-field algorithms are efficient,
but fall prey to local minima (an exception is the harmonic potential fields).
Sampling-based algorithms avoid the problem of local minima, and solve many
problems quite quickly. They are unable to determine that no path exists, but
they have a probability of failure that decreases to zero as more time is spent.

Sampling-based algorithms are currently considered state-of-the-art for mo-
tion planning in high-dimensional spaces, and have been applied to problems
which have dozens or even hundreds of dimensions (robotic manipulators, bio-
logical molecules, animated digital characters, and legged robots).

Final remark: Readers which are interested in a more complete presentation
of this chapter or some chapter of this module B32 (Automatic Navigation), plea-
se write a message to javier.finat@gmail.com or to zhicheng.hou@gpnu.edu.cn.


