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Previous remark.- The current document is an introduction to a stratified
approach for several relevant problems in Robotics concerning to modeling,
planning, tracking, navigation, kinematic and dynamics issues. They pro-
vide the core models and techniques for applicaitons to Humanoid Robots
and Animats which are developed in the last two modules. These notes are
not a general introduction to Robotics which would include a lot of addi-
tional issues regarding electronic devices, sensors, actuators or distributed
architectures to integrate all of them on complex devices.

The main goal of these notes consists of providing a unified language
for different aspects appearing in the literature, including some AI recent
configurations. Unification is performed in terms of a stratified approach,
the intensive use of different fields and their description in terms of diffe-
rent kinds of (discrete, continuous, infinitesimal) symmetries. I don’t claim
originality about fundamental results, because most of them are well known
in the literature; the main contribution concerns to unification of several
related approaches under a common mathematical umbrella.

The book [Mur94] 1 provides the nearest approach to the developed
here, because it incorporates main tools arising from Differential Geometry
for kinematics and dynamic analysis. Some aspects which are not included
in this book concern to

The use of Lie actions (from algebraic and infinitesimal viewpoints) not
only for motion planning and execution, but for the interplay between
Kinematic and dynamic aspects, including Optimization and Control
issues.

The use of stratified approaches on Semi-analytic spaces denoted as
X = (X,OX) where X is the base space and OX the set of regular
functions. They provide the support for the Perception-Action Cycle
(PAC) in Robotics linking Perception P and Action A spaces, and
their structural relations (in terms of topological fibrations with Con-
figurations (or Joints) space C and the Working space W. The resul-
ting global scheme will be labeled as the PACW (Perception-Action-
Configurations-Working) cycle.

The incorporation of AI based methods along all the stages of the
PACW cycle, by reformulating some basic principles of Machine Lear-
ning in terms of vector and covector fields, and their joint management

1R.M. Murray, Z. Li and S. S.Sastry: A Mathematical Introduction to Robotic Manipu-
lation, CRC Press, 1994.
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in terms of their formal products given by Tensor fields. In particular,
TensorFlow provide the support for computational implementation,
whose estimation is performed by using Tensor Voting procedures.

The above aspects are “transversal” to the six modules of this matter.
They use a simplification of well known notions in Mathematics and Physics,
but with a scarce use in Robotics. Interactions between mathematicians and
engineers in the Robotics field is a hazardous history with summits and va-
lleys. At last decades of the 20th century, most mathematicians considered
that Robotics was not a mathematician field, and most engineers consider
that mathematicians are too theoretical ones to be useful for solving prac-
tical problems.

If one looks to usual practices of both communities, both of them are
partially right .... but the interpenetration is a reality which has given to an
increasing acknowledgement from the late nineties. A symptom of this mu-
tual recognition is the acknowledgement of Robotics and Computer Vision
as areas of Mathematics performed by the Mathematical Society of France
along the early years of the 21st century. Luckily, things have changed from
the last years of the 20th century.

Some aspects of the interplay between Mathematics and Robotics con-
cern to effective numerical solutions of equations, local and global topolo-
gical methods for solving motion planning problems, geometric models for
design, dynamical aspects for stability, attraction and interpolation issues,
analytical aspects for prolongation of solutions (including singular cases),
and so on. Lie groups and associated structures (principal bundles, mainly)
were already introduced in Robotics at the early 1990s. In ther same way
as for Physics, they provide a unification for modeling and interacting at
different levels.

Currently, there are computational tools (models and algorithms) for
all of them. In practice, it is necessary to solve interoperability issues bet-
ween different computational tools (models and software), but this is a hard
problem which in beyond the reaching of these notes. Our more modest
proposal consists of developing the Geometry and its mechanical extensions
to Kinematics and Dynamics to provide the initial framework to unify all
the above approaches. Hence, these notes are focused towards mathemati-
cians with interest in Robotics and mechanical engineers with a reasonably
good formation in maths, wishing to know how connect different approaches
under a geometric umbrella.

There are several excellent books which are focused from a geometrical
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viewpoint, but some of them are too theoretical, others use a mathematical
formalism which can be applied only to a very limited cases of use, and most
of them include a very limited use of algebraic properties (symmetries (as
unifying principle), analytical structures (to improve adaptive behaviors) or
a lower use of Machine Learning approches (for self-learning and adaptation
ot changing environments).

Nevertheless remarkable advances in Geometric approaches (arising from
Bundles and Geometric Algebra, mainly), their extension to optimization
and Controlissues in Robot Kinematics and Dynamics is still scarce. Usual
approaches are restricted to the regular case, by ignpring possible changes of
state or phase transitions; they can be considered as “singularities” on the
base manifold M or their extension to Phase space P = TM and TP . Their
completion by using “limits of tangent data” in stratified spaces provides a
support for managing critical situations and solve related problems appea-
ring in Automatic Navigation in Kinematics or under-actuated Control in
Dynamics.

In all the above issues, “stratification” play a fundamental role, since
they involve the introdudction of “natural hierarchies” between Geometric,
Kinematic and Dynamic levels of Mechanics.

Stratifications can be adapted to Perception P, Action A, Configura-
tions C and Working Wspaces appearing in the PACW cycle can be
described as (semi)analytic spaces, i.e. as pairs (X,OX), where OX are
the corresponding regular functions on X. This representations unifies
morphological and functional aspects for each X , and relate properties
of spaces by means stratified maps Φ : X → Y for each pair of spaces.

Furthermore maps between the support for morphological properties,
the formulation of functional properties is performed in terms Jets spa-
ces (as extensions of maps linking the spaces appearing in the PACW).
This formulation allows the recovery of structural connections between
differential and integral approaches in terms of motion’s equations and
variational principles (by using Jets spaces for functional aspects).

In addition, due to the existence of topological fibrations X → Y
for each pair of spaces appearing in the PACW cycle, a simultaneous
treatment of trajectories and constraints can be described in terms
of distributions D of vector fields and systems S of differential forms,
whose product gives tensor fields (r and covector fields. This refor-
mulation can be easily adapted to TensorFlow appearing in the DNN
framework under PyTorch.
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Formally, a stratification is a decomposition of a topological space in
a disjoint union of subsets (“cells” or topological varieties with boundary,
usually) verifying “good incidence conditions” w.r.t. the adherence of ad-
jacent subsets which are “topologically trivial”. stratifications can be given
for spaces having in account properties w.r..t elements of refernce involving
static or evolving environments. Thus, they can involve not only the support
X and maps X → Y, but succesive extensions to be formulated in terms of
jets spaces, e.g.

A typical example is given by the decomposition of (n × p)-matrices A
by the rank rk(A), where the global space is a vector space which contains
a singular locus given by non-regular matrices, i.e. matrices A with rank
rk(A) < min(n, p). Stratifications can be absolute or relative, i.e. w.r.t. a
map. The most relevant decompositions for robot dynamics are relative stra-
tifications which are defined w.r.t. to transfer maps between configurations
and working spaces, and their “extensions”.

The introduction of G-actions invovling the structure or the motion,
induces G-stratification principles involve also to symmetries in a two-fold
way, involving

Structural hierarchies between groups induce a decomposition between
G-orbits and their topological closures; typical examples appear in
regard to rigid motions SE(n) = SO(n) n Rn (Euclidean Group),
affine transformations A(n) = GL(n) n Rn or more general projecti-
ve transformations (for scene representations), symplectic transforma-
tions (preserving motion’s equations) or contact transformations (for
interaction with the environments), and their corresponding infinite-
simal versions for Kinematics and Dynamics.

Equivariant bifurcations appearing in changes of state for geometric
aspects in X or phase transitions for Kinematics on PX = TX can
be explained in terms of breaking (local or infinitesimal) symmetries.
In this case, breaking symmetries require an exxtension of traditional
formulations (where the group is fixed). This extension is well know
in Dynamical Systems and their applications in Engineering; from the
1980s it has been extended to much more general situations in Theo-
retical Physics (labeled as super-geometry)2

Both ideas are easily translated to optimization and control issues, and
their reformulation in terms of multivectors which provide a more compact

2See the module A24 (Geometric Topology) for more details.
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presentation of phenomena linked to the management of robot kinematics
and dynamics.

The compatibility with algebraic or infinitesimal symmetries (arising
from relation between Lie groups G and their Lie algebras g = TeG), and
the introduction of symmetries for conservation laws (linked to Classical
Mechanics and Variational Principles) suggests to develop a more systema-
tical approach for Robotics modeling which is based on Equivariant Stra-
tifications. Roughly speaking, they can be understood as some “symmetric
space” superimposed to configurations and working spaces which is locally
given by a finite collection of homogeneous space with dense orbits by the
algebraic or infinitesimal action.

The “dense character” of generic orbits concerns to “regular behaviors”,
but some generic singularities are allowed in the adherence of orbits which
provide a support for “phase transitions”. In this framework, phase transi-
tions are controlled by subgroups or subalgebras represented as symmetries
breaking linked to equivariant bifurcation phenomena. This idea is developed
at last two modules of the Course in regard to some phenomena involving
humanoid robots and animats, respectively.

According to the above remarks, materials of the current introduction
are organized as follows:

1. We start with a general introduction where we develop a triply articu-
lated approach around algebraic transformations (Klein, Lie, Cartan),
semi-analytical framework (as an extension of the smooth case) and
a multivector approach (in the vein of Geometric Algebra as natural
extension of the well-known quaternionic calculus commonly used in
geometric reformulations of Robotics).

2. Second section is devoted to display how to perform an integration of
geometric, kinematic and dynamic aspects in a common mechanical
framework. This integration is performed in a double sense (which
could be labeled as geometric-topological and analytical approaches),
in terms of morphological and functional aspects, according to the
classical distinction for live beings.

3. Next, we develop an articulation between deterministic and probabilis-
tic models, in terms of differential (or more generally, semi-analytic)
approach and statistical approach. Instead of posing the accent on
stochastic approach, we adopt a probabilistic approach which allows
to incorporate different kinds of (scalar, vector, tensor) fields. This
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choice eases the presentation of a feedback between deterministic and
uncertainty principles for this knowledge field. The approach based
on variants of sample consensus allow to incorporate learning proces-
ses and provide a natural feedback with expert systems, which allow
the design of more efficient tools for learning and provide structural
models for estimation issues.

4. The fourth section is devoted to some recent mathematical develop-
ments which are considered as relevant ones for Robotics. This section
has a more advanced character, but it opens the door for a mutual
collaboration in regard to the above topics. Furthermore, they con-
tribute to a better understanding of distributed robotics in all their
aspects relative to architecture, shape and function.

5. Last section displays the overall structure of all these materials in an
enlarged course which is organized in six modules involving anchored
robots, mobile platforms, kinematics, dynamics, humanoid robots and
animats. The two first modules have a descriptive character and allow
to understand the role of sensors and commands to ease the interaction
with itself and the environment. The hard kernel is composed by an
extended geometric approach to kinematics and dynamics which are
developed along the central modules. Finally, last modules illustrate
some of the most outstanding applications linked to humanoid robots
(very focused towards assistance to disabled persons) and animats (in
strong relation with biologically inspired animation in Computer Grap-
hics and simulation of embedded collective intelligence).

Most of these materials have been developed and presented in different
meetings, courses and invited talks along late nineties and the early years
of 21st century. These presentations have a fragmentary character. Thus
and due to some external requirements, I have reunified related materials
in a common draft, by connecting several approaches which were initially
sketched, only
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1. Introduction

Following the Lagrange’s line of thought at the early years of the 19th
century, Mechanics can be understood as an extension of Geometry. Along
these notes, any Geometry is understood in the Klein’s sense, i.e., is charac-
terized by a group G as follows: A Geometry linked to a group G is given
as the set of properties (relative to objets and functionals) which remain
invariant by the action of the group G. This description was originally in-
troduced by F.Klein (Erlangen’s Program 1873) for classical linear groups,
i.e., for linear subgroups of the general linear group preserving a quadratic
or a bilinear form.

Successive extensions of this description for Geometry linked to classical
groups are relative to

Algebra of Classical Groups or, equivalently, to geometries linked to
finite-dimensional groups following the Erlangen’s Program.

Differential Analysis on Manifodls in terms of G-invariant differentia
forms (evolving constraints) a la Cartan, or their dual G-invariant
vecotr fields (for trajectories performed by control points).

Topology by replacing linear or geometric groups by ∞-dimensional
groups of homeormophisms on a PS-manifold M as base space,

Kinematics in terms of diffeomorphisms forthe Phase space P = TM
to include variation rates of geometric “quantities”.

Dynamics where symmetries are linked to forces and moments on TP
to explain interactions, or reformulating control issues in geometric
terms, e.g.

Each one of the above extensions is meaningful for a G-equivariant approach
to Robotics. Foudnations for Their corresponding computational versions
have bneen developed in the modules B1k for 1 ≤ k ≤ 6 of the matter
B1 (Computational Mechanics of Continuous Media). Some of the most
relevant inputs for signals arise from digital image and video, whose basic
elements have been developed in the module B21 (Image Processing and
Analysis). Along the modules of B3, we will adapt all of them (expanding
when necessary) to some Robotic applications.

To achieve these goals, it is necessary to introduce hierarchies (involving
morphological and functionals aspects), which cna be described in terms of
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cell decompositions (for the support) and their dual (evaluation of linear
functionals). The incorporation of kinematic and dynamic aspects requires
an additional PS-structure (PS: Piecewise Smooht) which generalizes the no-
tion of tangent space (or their “join” in the tangent bundle τM of a manifold
M) to incorporate “events” such as changes of state or phase changes, e.g.
Hence, one needs extend tangent and cotangante bundles to “stratificiation”
with “good incidence conditions” for “confluent strata” at singualrities.

The notion of stratification is the organizer principle which appears in all
contexts in a recurrent way. Roughly speaking, a stratification of a variety V
is a decomposition of V given as a disjoint union of k-dimensional “cells” cki
(subsets topologically equivalent to open sets of a cartesian space Rk) which
are called strata verifying “good” incidence conditions for their “frontiers”
or adherences. Similarly, a stratified map f : V → W is a map between
stratified spaces such that each stratum of W is the union of the images of
strata of V . 3

Different notions of stratification appear in multiple contexts (some of
them with a wrong meaning in matehamtical terms). The notion used here
is ubiquitous and crosses transversally the three main innovations of the
approach developed along these notes:

Algebraic stratification: It involves to natural hierarchies between Groups
G (or their infinitesimal version in terms of algebras) with their corres-
ponding Geometries. It induces a decomposition of spaces or superim-
posed structures (fiber bundles or principal bundles, e.g.) as a union
of G-orbits; a typical example is linked to the orbital structure for the
moment map which provides the core for the invariant reformulation
of analytical mechanics in terms of symplectic or contact geometries.

Analytic stratification: It involves to decomposition of eventually sin-
gular spaces of the complementary of regular locus, the relative de-
composition w.r.t. a scalar function f : M → R (or more generally a
functional linked to optimization issues, e.g.), or w.r.t a map such as
the transference map τ : C → W given locally by a vector map. In
all cases, the key is given by the differential map or its formal version
given by the first order jet and their extensions. In all cases, stratifi-
cations are given by rank deficiency loci of involved maps such as the
Jacobian map for robot kinematics, e.g.

3More refined versions of this notion will be introduced along the different modules
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Cliffordian stratification: An intrinsic representation of the rank defi-
ciency loci can be locally described as the dependency locus of subsets
of lines (columns or rows) of matrices representing multivectors linked
to the Robot Dynamics; they are linked to the differential of transfer
map (between robotic configurations and end-effectors) or their suc-
cessive extensions.

A stratified approach allows not only to integrate precedent approaches,
but incorporate the behavior at singularities, including optimization and
control issues. In particular, reachability and controllability issues can be
formulated in terms of rank conditions Additionally, the underlying analy-
tic structure allows to extend control strategies from regular case to generic
singularities. Thus, the stratified approach takes advantage of locally symme-
tric structures (associated to groups, symmetries breaking and equivariant
bifurcations), linked to extrinsic properties (related to action functionals,
e.g.) and/or intrinsic formulations (linked to the dependency loci in terms
of contraction operators applied to multivectors).

To overcome the limitations of classical approaches (with a lot of swit-
ching procedures for different phases of tasks due to the lack of differentia-
bility, mainly) and motivate the stratified models from the beginning, the
draft follows an increasing complexity relative to robots and tasks to be
performed. So, we start with the simplest models linked to planar or spatial
anchored robots, evolving next towards mobile platforms and ending with
multibody systems, including legged robots. From a mathematical view-
point, there appears a natural hierarchy between

geometric aspects related to constraints linked to robotic architecture
(reaching, e.g.) and task-adapted design constraints, between others;

kinematic aspects including velocities and accelerations at joints and
end-effectors, generation of impulses at joints,m and transmission phe-
nomena along the whole body (in terms of propagation models, e.g.);
and

dynamic aspects involving voluntary movements, inertial effects, anti-
cipation and compensation strategies, correction of errors, attenuation
of vibrations, e.g.) and all issues related to control and optimization
procedures.

From Classical Mechanics it is well known the existence of a natural
hierarchy between Geometry, Kinematics and Dynamics which is translated
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in a natural way to the Robotics. Firt fomrulations are dfue to Lagrange
and Legendre in terms of relations between generalized coordinates (q, p, r),
where p = q̇ and r = ṗ = q̈- A problem to be solved is how to develop a
unified framework able of integrating the space-time evolution of morpholo-
gicla and functional aspects in Robotics. To accomplish this goal, we have
developed several complementary approaches which are based on:

Algebraic Lie formalism which is formulated in terms of some Classical
Groups linked initially given by the Euclidean group for rigid motions
(rotations and translations) in Geometry, and Symplectic Groups pre-
serfing ideal motion’s equations, and extended to more general groups
to include visualization of scenes (affine, projective, conformal groups),
and structural models for interactions arising from motions. Its infi-
nitesimal version provides some tools to represent small motions at
joints, and to obtain motion integrals.

Analytic formalism which is formulated in terms of jets-formalism to
display how functionals involving kinematics (resp. dynamics) are an
extension of functionals involving geometric (kinematic) quantities.
This approach allows to incorporate singularities appearing at geome-
tric, kinematic and dynamic levels, including control and optimization
issues in a contact or symplectic .

Cliffordian formalism (also called, Geometric Algebra) to manage “mi-
xed quantities” (involving scalars and multivectors) and functionals
defined on them. The reformulation of Analytical Mechanics (inclu-
ding phenomena linked to wave fronts) in terms of Clifford analysis
is more sophisticated. To fix ideas, we shall illustrate it with some
examples arising from dexterous manipulation and locomotion tasks.

The precedent formalism is transversal to the six modules of these notes
(see section 5 of this introduction for details). Furthermore, each formalism
sheds light on different aspects of Robotics, extending the homogeneous to a
locally symmetric framework (compatible with analytic stratifications), and
a global treatment in terms of the geometric analysis of multivectors.

The above triply articulated approach is illustrated with increasingly
complex robots starting with planar or anchored robots, continuing with
mobile platforms, till arriving to multilegged robots (humanoids and ani-
mats). Thus, instead of developing a general mathematical formalism from
the beginning (till arriving to sometimes disappointing simple robots), one
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starts from several typical robotic architectures and one applies different
mathematical approaches (linked to the above three items), by displaying
their adaptability or their power to solve kinematic or dynamic problems
linked to tasks to be performed. In a so large scientific domain it is not
possible to claim originality about the materials contained along these no-
tes; the originality arises mainly from the re-organization of materials which
throws new insights on always renewing topics.

The introduction of a geometric language has several advantages which
are related with robust modeling, the reuse of a geometric formulation of
mechanics, the capability of providing an objective and parametric repre-
sentation, of describing the mechanical architecture and articular configura-
tions, motions representations, study of trajectories, analysis of dynamical
effects associated to motions, capabilities for interpreting solutions linked to
optimization procedures and/or the robustness of algorithms, e.g.. Next, we
display some of these advantages in a more detailed and structured way.

1.1. Some basic notions

1.1.1. Notion of a robot

Following the old definition given by the Robot Institute of America
(1979), a robot is a multi-functional reprogramable manipulator which is
designed to move materials, pieces or specialized devices, through variable
programmed movements for the realization of different tasks.

In particular, a robot includes mechanical components (acting as a ske-
leton), sensors and actuators (for capturing information and generating res-
ponses), and mechatronic devices (for optimization and control). All of them
are managed by expert systems with reflex and supervised components for
reactive or supervised tasks execution. Tasks supervision is performed by
a central unit and distributed systems along the architecture, which are in
charge of coordinating and generating semi-automatic responses (including
reflex and voluntary movements).

The interaction with environment is a difficult task which is organized
by following different kinds of constraints. Usual industrial robots operate
in very controlled closed environments with a security perimeter for a more
safe operation mode. The development of robots for operating in open en-
vironments is a hard challenge to solve; nevertheless spectacular advances
from the nineties, we are still some far of achieving satisfactory solutions for
complex open environments in presence of intelligent agents. Hence, we shall
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restrict ourselves to robots operating in (partially) structured environments.

1.1.2. Architecture of a robot

A kinematic chain is a finite connected collection of segments which are
sequentially connected by joints. The support for the mechanical architecture
of a robot is given by a finite collection of articulated kinematic chains which
are connected to a fixed or mobile planar components (labeled as plats) by
means of joints. A robotic arm has once a kinematic chain, which can be
(hyper)redundant to provide several ways of executing a task (in regard to
assisted surgery, e.g.). When several kinematic chains are connected to one
or more “bodies”, we shall say that one has a multibody parallel robot.

The introduction of sensors 4 and actuators 5 enlarge the interaction ca-
pabilities of robots in semi-structured environments. Jointly with the above
mechanical architecture, they provide the mechatronic architecture of the
robot.

Sensors are designed to capture the information of an eventually chan-
ging environment; very often they go farther from the limitations of
human perception. From the static viewpoint, they involve to acoustic
(including ultrasounds, e.g.), tactile (including proximity and contact
devices, e.g.) and visual information (including non-visible spectrum,
e.g.). From a kinematic viewpoint they involve to different kinds of
dead reckoning (including classical odometry, e.g.) or energy (acous-
tic, electromagnetic). From a dynamic viewpoint, they involve to force
sensors, evaluation of phase-shift, frequency modulation and specific
devices (magnetic compasses, gyroscopes, e.g.)

Actuators are designed to transform signals in commands according to
a system of rules managed by expert systems. Commands are specific
of tasks to be developed and involve to an integration of the avai-
lable information according to the planned tasks. Tasks can include
self-localization (position and orientation), follow paths (according to
ultrasonic, tactile or visual information, e.g.), or other aspects invol-
ving machines (detection of vibrations, e.g.) or unexpected phenomena
in hostile or unaccessible environments (presence of gas, e.g.)

4A sensor is a device that measures some attribute of the world
5Actuators are the motors responsible for motion in the robot acting at joints.
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Nevertheless the different nature of signals, the Fourier analysis provides
a common formalism which is independent of the dimension and range of
signals. The availability of direct and inverse Fourier transforms allows to
reference all available information to a spatial domain, where the fusion
of information is performed. In other words, the existence of a geometric
support for the whole architecture and the environment provides a support
to integrate the information arising from 1D, 2D and 3D signals. This simple
feature will be exploited along the second module (mobile platforms) to
provide an overall representation of the environment to ease the interaction.

1.1.3. Main types of mechanical architectures

The most important types are the following ones:

sequential robot, as an articulated arm, e.g.;

parallel robot as flight simulators, e.g.;

multibody robot as multilegged robots, e.g.:

hybrid robot as wheeled and legged robots, e.g.

Beyond the almost trivial 2R or 3R planar robots, the simplest mobile
robots are based on wheeled platforms. In presence of irregular terrains
or when the robot must cross through environments with obstacles (pipes,
stairs, e.g.) it is necessary to consider legged-based robots. This kind of
robots are specially useful in hazardous, toxic or unaccessible environments
for human beings.

The most complex ones are the humanoid robots, because they incor-
porate the character of multilegged robots with inherent unstability along
complex tasks linked to grasping-manipulation of weighted objects and/or
complex locomotion tasks (including walking, running, jumping, e.g.) or
even the interaction with other (human or artificial) agents. The simulation
of like-insect and like-mammals robots poses interesting challenges for simu-
lation and interaction which are being exploited by the multimedia industry.

1.1.4. Configurations and working spaces

By making an abstraction of specific mechanical architectures, a basic
distinction to describe the mechanics is given by configurations (or articular
or joints) space C and working space W of a robot R.

16



The configurations space C describes the state of joints located at con-
trol points of the robot architecture. The most usual joints are prisma-
tic, rotational and spherical joints, in correspondence with translations
and (planar or spatial) rotations which generate the euclidian group
SE(n) for n = 2 or n = 3. All of them are bounded by the allowable
values which can take in terms of interval lengths and allowed angles.
The allowed planar rotations describe a subset (in fact a semi-analytic
variety) of the special orthogonal group SO(2); furthermore, each spa-
tial rotation given by an element of SO(3) can be decomposed in a
product of three planar rotations. Hence, C is a boundary subvariety
of R`×SO(2)r where ` denotes the number of prismatic joints (modif-
ying the length of arms, e.g.) and r denotes the number of rotational
joints (after decomposing spherical joints in product of three rotational
joints).

The working space W describes the state of the end-effector e(Cα) for
each kinematic chain Cα of the robot. Each kinematic chain is com-
posed by a collection of prismatic and rotational joints. Hence, the
localization of e(Cα) can be described by means of an element of the
euclidian group SE(2) (planar case) or SE(3) (spatial case) which is
given by the product of rotations and translations. The physical cons-
traints about mechanisms imply that working spaceW for an anchored
robot is given initially by a bounded region of a finite number of copies
of R3 (one per kinematic chain). Hence, this subset is parameterized
by a subvariety of the product of a finite number of copies of SE(n)

Each small motion at robot joints generates a movement on the end-
effector e(Cα) which is represented by a product of matrices. We shall label
as a transference map (also called, “transfer” map) to this transformation
which will be denoted by

τ : C → W

As each configuration or working spaces can be parameterized by a sub-
set of a product of classical groups, one can describe both spaces in terms
of “locally symmetric spaces” X, i.e. spaces such that each x ∈ X has a
neighborhood U whose points x′ ∈ U are achieved from x by using local
symmetries 6. This description is very useful for design principles, to iden-
tify first integrals for motion (invariant w.r.t. group actions), to generate

6A more formal definition is given in the module 1
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and manage dynamical symmetries (action-reaction principles, first integrals
for variational principles), optimization procedures (defined on Lie groups),
control issues (extensible to singular configurations, also), and so on.

1.2. A hierarchical approach

Following a biological inspiration, hierarchies involve to shape and fun-
ction. Roughly speaking, morphological aspects are modeled in terms of
Analytical Mechanics involving to tasks to be performed, e.g. Functional
aspects involve to higher order reasoning including data clustering or unsu-
pervised learning, e.g. Along this subsection, the focus is put on the former
aspects, leaving functional aspects till subsections §3,4 and §4,4, because
they require additional elements of expert systems (the old AI).

Classical Analytical Mechanics introduces a basic hierarchy (which is
well known from the very beginning of the 19th century) with three basic
steps involving to Geometric, Kinematic and Dynamic aspects, by following
an increasing complexity. In generalized coordinates this hierarchy involves
to

1. characteristic features (position, orientation, e.g.) of meaningful points
which are managed in terms of generalized coordinates (Lagrange, Le-
gendre) with their contact structure;

2. kinematic tracking of control points along trajectories including velo-
cities and accelerations, which are optimized by using corresponding
functionals (work, energy, etc) by following Hamilton-Jacobi approach;
and

3. evaluation of dynamic aspects (forces and moments) of “weighted”
elements which are meaningful for a dynamical approach to motion
analysis which includes forces (Euler-Lagrange) and momenta in an
extended Symplectic framework (Moment Map).

In absence of external forces, ideal motion laws for rigid or articulated
mechanisms are generally described in terms of a Hamilton-Jacobi structural
model which is preserved by the action of the symplectic group. From the
analytical viewpoint, there is a more complete structural model (Newton-
Euler-Lagrange formulation) which incorporates forces.

Dynamic approach is based on the minimization of an action integral
linked to a lagrangian functional (the total energy, e.g.) which can be modi-
fied by incorporating “small perturbations”. By minimizing such functional
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one obtains the Hamilton-Jacobi equations; in the smooth case both formu-
lations (Hamilton-Jacobi vs Lagrange-Euler are equivalent between them.

Anyway, the whole nature of Mechanics (in their geometric, kinematic,
dynamic componentes) and different kinds of “events” (modeled as singula-
rities of fields) induce different kinds of hierarchies involving not only mecha-
nical aspects, but sensors and actuators integration in a common Perception-
Action Cycle (PAC), also. In particular, hierarchies are present to organize
different steps for a structured task (in terms of different kinds of control) or,
more generally, to making decisions in presence of different options (relative
to Optimization Criteria).

A non-trivial problem is how to organize hierarchies described in the
above paragraphs. An intuitive idea consists of using different kinds of (sca-
lar, vector, tensor) fields which is transversal to different matters Bi of these
notes. More specifically, if one has in account materials developed along the
first module (Computational Geometry) of the matter B1 (Computational
Mechanics of Continuous Media), it is easy to see that Voronoi diagrams pro-
vide a general framework for weighted optimization issues involving scalar
fields defined on a “stratified” scene.

The novelty consists of this scheme can be extended to Kinematic and
Dynamic issues; in fact this remark is implicit if one interprets Voronoi
diagrams in terms of a gradient vector field where sites are attractors, ed-
ges support saddle points and vertices are repulsors for a “conservative”
approach. The incorporation of different kinds of interaction between com-
ponentes or with (other agents in) the environment is translated in terms
of coupling between systems. Obviously, for more than two systems, most
couplings give non-integrable systems (in an exact way); in this case our
strategy consists of finding “enough near” integrable systems (with folia-
tions as partial solutions) with “weak coupling” linked to ordinary tangency
conditions.

From a mechanical viewpoint, the accumulative effect of the described
hierarchy for articulated mechanisms poses problems involving to

initial global equilibrium at static configurations which involves to
initialization of dynamical systems (locally given by ODEs);

different kinds of stability , which involves to decoupling and packing
kinematic effects along motion trajectories; and

response capability for the whole mechanisms, including anticipatory
and compensatory controlled movements to maintain a dynamic sta-
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bility of the whole mechanism. Mathematical modeling is performed
in terms of boundary conditions (typical in PDEs)

Algebraic description given in terms of (submanifolds of) classical groups
for configurations C and workingW spaces provides a support for (de)coupling
behaviors for robot kinematics and dynamics in a locally homogeneous fra-
mework which is labeled as a “symmetric” variety 7. To start with, in this
section we shall restrict ourselves to mechanical issues, leaving a more gene-
ral treatment in terms of the Perception-Action Cycle (PAC) for the second
section.

As a first conclusion in the Analytical Mechanics context for Robotics,
hierarchies appear along three main axes relative to Lie actions, transference
map between configurations and working spaces, and multivector approach
to Mechanics.

Lie actions involve to classical groups (for planning and executing
motions), their infinitesimal version in terms of their Lie algebras (for
estimation, optimization and control issues), and their topological ex-
tensions in regard to topological or infinitesimal actions linked to the
study and resolution of non-linear systems of (algebraic, differential,
analytical) equations. Algebraic hierarchies between groups and alge-
bras induce natural hierarchies between invariants and relations bet-
ween covariants. Breaking of symmetries linked to bifurcation pro-
blems provides new insights to ease the control of robots along phase
transitions. 8

Small motions at joints are transferred into movements at control
points (such as c.o.g. or end-effector for each kinematic chain, e.g.).
This transference is represented by the transfer map τ : C → W bet-
ween configurations C and workingW. A small motion on a joint of the
configurations space is initially represented by a path γ : I → C with
I = [0, 1], whereas each constraint on the working space is represented
by a function W → R; several simultaneous motions are represented
by a multipath Γ : In → C given by (γ1, . . . , γn). Hence small motions

7There are different kinds of discrete, continuous and infinitesimal symmetries.
8I have developed this approach along late nineties and it is strongly influenced by

the work of J.Burdick and J.Ostrowski. Some subsequent developments were integrated
for locomotion tasks in cooperation with G.Belforte (Politecnico di Torino, Italy) for reci-
procators (assistance to paraplegic persons), and P.Gorce (Ecole Polytechnique, Cachan,
France) for control models in regard to humanoid robots.
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involving n joints submitted to p constraints are represented by means
of a composition of maps

In → C →W → Rp

where kinematic and dynamic effects are interpreted as k-th formal
analytical prolongations defined on the k-jets spaces. The analytic sup-
port allows to incorporate contact structure, extend the analysis from
regular to singular behavior, provides natural stratifications for spaces
and maps, including a simultaneous treatment of equivariant pheno-
mena which are crucial for optimization and control issues. 9

A unified and more compact treatment is performed in terms of multi-
vector calculus in the Geometric Algebra framework, which is an exten-
sion of quaternionic computations which is well known in Mechanics.
The resurgence of Geometric Algebra from the mid eighties (under the
leadership of D.Hestenes in USA and the Cambridge group in Europe)
has been extended to Robotics and Computer Vision at late nineties.
It provides an intrinsic framework for cumbersome differential for-
mulations including motion laws, contact structure, transmission and
propagation phenomena, natural incorporation of non-preserved quan-
tities (energy or momentum) linked to the apparition of non-holonomic
constraints, etc. 10

The triple (algebraic, analytical, differential) distinction is ubiquitous,
and it crosses transversally all the six modules of these notes. The aforemen-
tioned approaches display a complementary character from the algebraic,
analytical and differential viewpoint, with a predominance of local, infinite-
simal and global character, respectively. They provide multiple articulations
at different levels, and shed a new insight on some central issues involving
coordination, control and optimization which will be explored along these
notes. In the next paragraphs we give some snapshots of these ideas.

9I have developed this approach in regard to the invitation by Prof. González-Sprinberg
to give a course about these topics in the Fourier Institute (Grenoble, France) along
March’2000; applications to eye-hand coordination have been motivated by joint develop-
ments with the team of P.Dario (SSSA, Pisa, Italy)

10A preliminary version inspired by locomotion models developed with Prof. Belforte
(Politecnico ti Torino, Italy) was presented in AGACSE’01 (Cambridge, UK)
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1.2.1. Generalized coordinates and bivectors

In the lagrangian and/or legendrian framework, geometric, kinematic
and dynamic aspects are modeled in terms of generalized coordinate q =
(qi)i∈I and their first order and second order variations.

By following the Lagrangian notation, qi are used to denote generalized
coordinates, pi for first order variation and ri for second order variation of
generalized coordinates. An adaptation of Legendre’s approach motivates
the structural contact relations given by 1-forms:

pidt− dqi , ridt− dpi
for first and second order variations of generalized coordinates. These rela-
tions provide structural contact constraints which must be verified by ex-
tended functionals defined on the successive prolongations of the ambient
space. Thus, they are used to describe kinematics and dynamics in terms of
generalized coordinates q, p and r, respectively.

There is also a multivector version of generalized coordinates which is
expressed in terms of bivectors corresponding to screws s, twists t and wren-
ches w, playing a similar role to generalized coordinates q, p and r, respecti-
vely. In this framework, the differential operator is the natural extension of
the exterior differential of usual Exterior Calculus to the Geometric Algebra
framework (see below).

1.2.2. Transfer map and its extensions

This viewpoint is extended in a natural way to articular, joints or con-
figurations space C (a product of classical groups, usually) and working
space C (a cartesian space k-dimensional for 2 ≤ k ≤ 4, usually) which are
meaningful for Robotics. These structural constraints are compatible with
transformations acting on both spaces and operators in charge of control
and/or optimization of trajectories.

Definition.- We shall denote by means τ : C → W the transference map
which transforms small impulses at joints in motions of end effector along
the set of kinematic chains and the behavior of central components of the
whole multibody.

Each path in articular or configurations space (small motions at joints)
is topologically represented as a map γ : I → C on the configurations space
C, which are naturally extended to trajectories τ ◦ γ : I → W for each
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control point (an end-effector, e.g.). For hyperredundant robot arms or for
multilegged robots with n control points one must consider multipaths γ :
In → W representing feasible trajectories at control points belonging to
W which must be lifted to multipaths on the configurations space C. This
analysis is more involved and requires to analyze the homotopy linked to
the topological fibration τ : C → W linked to the transference map.

Every function f :W → R on the working spaceWb (corresponding to a
constraint, e.g.) induces a function f∗ := f ◦τ : C → R on the configurations
space C; typical examples are linked to control and optimization issues. This
construction is naturally extended to successive formal prolongations or k-
jets of any function f defined on both spaces or the transference map, even.

The k-th jet jkf of a function (germ) is the formal Taylor polynomial
of f truncated at order k, which can be represented (up to coefficients) at
each point by means of

(x , f(x) , f(x) , . . . , dkf(x)) for k ≥ 0

Hence, given a function f : W → R and by using the chain’s rule, their
k-jets jkf induce τ∗(jkf) := jk(f ◦τ). This construction can be encapsulated
as

jkτ∗ : JkW → JkC k ≥ 0

where successive prolongations jkτ∗ of transference map τ are formally re-
presented in terms of k-jets jk(f ◦τ) of sections corresponding to “structural
sheaves” O for configurations C and working W spaces. Thus, JkW or JkC
is an abuse of notation, because JkE involves to the k-jets os sections of a
fiber bundle or, more generally, a sheaf F . However, one has preserved the
original notation because it has a more intuitive character.

An unexpected advantage of this notation consists of any ODE or PDE
used to describe kinematic or dynamic models, can be reformulated as a mul-
tilinear form (with variable coefficients in a coordinate ring) in the space of
k-jets, which provides a formal simplification of the original context. Usually,
coefficients are algebraic functions and thus, such functions are represented
by algebraic equations in an abstract space JkE which provides the support
for geometric, kinematic and dynamic aspects in a common framework.

So, in particular if we work with a planar robot with local coordinates
(x, y) for the end-efector, and we wish to represent its motion in the working
space W, then every PDE can be represented as an algebraic relation bet-
ween the coordinates corresponding to k-jets of a function f :W = R2 → R
given by
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(x, y , f(x, y) , fx, fy , fxx, fxy, fyy , fxxx, fxxy, fxyy, fyyy , . . .)

where generalized coordinates are submitted to structural constraints in
terms of contact geometry, also 11.

As conclusion, morphisms between k-th Jet Bundle of Fiber Bundles
ξ = (E;π,X) or more generally a sheaf F provides a general framework
to represent any kind of Kinematic or Dynamic phenomena linked to the
Robot Mechanics. Locally, it is given by maps between k-th order jets of
sections of fiber bundles or, more generally, sheaves.

More generally, let us denote by OX the sheaf of Cr-regular functions on
the base space X representing the configurations C or the working W space.
Then, several systems (inter)acting in a simultaneous way with a robot R
can be represented by means of Jk(E) where E denotes a formal product
(locally given by tensor fields) representing distributions of fields or systems
of differential forms with coefficients belonging to the “structural sheaf” OX .

In particular, this notation provides a compact notation for an analytic
representation of inverse geometric, kinematic and dynamical aspects in-
volving the mechanics of robotic devices. Obviously, this notation can be
applied also to the analytic spaces representing the Perception P and Ac-
tion A spaces linked to the Perception-Action Cycle, because all information
about these issues is represented in terms of functions, and their k-th or-
der “changes” are represented by vector or tensor fields defined on JkX for
X = P or X = A, respectively.

According to the general approach performed above 12, from a formal
viewpoint, Jk(E) provide a general framework for a geometric reformulation
of analytical aspects concerning to any kind of differential equations, opti-
mization procedures and all kinds of control. This construction is extended
in a natural way to any kind of morphisms (i.e. maps not everywhere defi-
ned), incorporates different kinds of hierarchies and is compatible with the
presence of singularities involving spaces and morphisms between spaces X .

In regard to robotic applications, the global management conditions
relative to control of trajectories and incorporation of constraints is per-
formed in terms of the Main Analytical Diagram (MAD). More formally,

11Let us remark that the 0-jet of a function f represents the graph Γf of f , and the
1-jet can be represented by the gradient vector field onto the graph

12For additional details see the module 4 (Computational Kinematics) of the matter B1

(Computational Mechanics for Continuous Media)
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it is constructed by adding to the transfer map τ the information rela-
tive to paths or trajectories γi(t) for each control point (including end-
effectors) and different kinds of constraints gk defined on ambient spaces
X representing the configurations space C or the working space W. The 0-
jet of a (scalar or vector) function f : X → Y is by definition the graph
Γf := {(x, y) ∈ X×Y | y = f(x)} of the function f ; one has two canonical
projections onto the first and second component.

To fix ideas, let us denote by j0τ the 0-th extension of τ : C → W re-
presenting the graph which provides a “structural constraint” linking small
movements at joints and eventually large motions at end-effectors (obtained
as composition). Their k-th extensions given by successive differentials pro-
vide “structural contact constraints” corresponding to relations which are
represented by multilinear forms associated to variation rates of indepen-
dent and dependent variables linked by the components of τ ; in particular,
the local version for k = 1 is given by the Jacobian matrix. In this frame-
work vector and covector fields are represented by local sections of successi-
ve prolongations; their direct and inverse images are computed in terms of
push-down and pull-back procedures according to usual rules for composing
maps. In this way, one obtains a natural representation for usual ODEs and
PDEs, which can be extended to the global case. All this information can
summarized in the Extended Main Analytical Diagram (EMAD) which can
be written (abuse of notation) as

J0In → J0C → J0W → J0Rp
↑ ↑ ↑ ↑

J1In → J1C → J1W → J1Rp
↑ ↑ ↑ ↑

J2In → J2C → J2W → J2Rp

The EMAD provides a geometrical (for k = 0), kinematic (for k = 1)
and dynamical (for k = 2) representation for Robot Mechanics in terms of
k-th prolongations jkτ of the transfer map τ . An advantage of this repre-
sentations consists of the incorporation of a contact structure (Legendre)
to each level, which provides structural constraints for integrating motion
equations. In the left part, we have included the collection of n paths to be
performed at each joint and the number p of control points (end effectors
and center of gravity, at least) which are associated to tasks to be performed
and constraints according to different kinds of functions or functionals.

From an analytic viewpoint, all vertical and horizontal maps are stra-
tified maps by the rank of its differential. In other words, local triviality
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of stratified maps of the EMAD (only true in generic open sets) allows to
construct “descent strategies” by means of integration along the fiber (for
each locally fibration), according to general principles of regular fibrations
(Ehresmann, Thom). Their extension to the singular case displays some
problems which require additional mathematical tools 13

The use of an extended geometric framework allows not only a more
compact treatment of systems of differential equations, but the introduction
of geometric tools for a geometric treatment of solutions (involving Lagran-
gian or Legendrian subvarieties, e.g.) and constraints involving Kinematics
and Dynamics. Nevertheless, not all functions defined on enlarged spaces (a
Lagrangian for kinematics, a Lyapunov control function for dynamic control,
e.g.) arise from functions defined on the ambient space. Additionally, one
can consider n paths performed simultaneously on n control points of con-
figurations space, or p functions acting simultaneously on each meaningful
point of the working space.

An important advantage of the EMAD is the natural extension of geo-
metric constraints to kinematic constraints (by using 1-jets), and the natural
extension of kinematic constraints to dynamic constraints (by using 2-jets).
All dynamical systems involving such extensions are re-formulated in terms
of algebraic subvarieties of the corresponding k-jets spaces. Furthermore,
the existence of a natural “contact structure” on any k-jets space provides
additional constraints for an ideal mechanics. In particular, kinematic and
dynamic aspects of eventually changing trajectories and constraints can be
incorporated in terms of subvarieties which can read in terms of vertical and
horizontal arrows of the EMAD (considered as fibrations), without perfor-
ming additional hypotheses about an unlikelihood linear character.

Additionally, non-holonomic constraints appearing in Robot Mechanics
are incorporated in a natural way to the above scheme, in terms of non-
integrable subvarieties in the successive extensions. In other words, they
appear as subvarieties in JkX which do not descend to give subvarieties
in Jk−1X and which require a special treatment in terms of the enlarged
spaces14 From a more down-to-earth approach they appear in kinematic
spaces (resp. dynamical spaces) from constraints which do not arise from
constraints in the geometric spaces (resp. kinematic spaces).

The simplest integrable example is given by contact constraints invol-

13See the module A45 (Stratifications) of the matter A4 (Topoloǵıa Diferencial) for
details and references.

14This phenomenon was well known in the 19th century and has bee treated in terms
of the Phase Space P (Poincaré) or its co-tangent bundle.
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ving to “new variables” which live in the cotangent space; however, they
give integrability conditions for Legendrian subvarieties which are maximal
dimension subvarieties for contact constraints. Additionally, there are a lot
of kinematic and dynamic effects which are non-integrable, in regard to the
geometry of the space (non-holonomic effects) or the kinematics of actions
(sliding effects, e.g.) or unexpected dynamic effects (friction and correspon-
ding drift effects, e.g.). All of them can be characterized as non-integrable
varieties in the total space representing the kinematics or the dynamics.
Mathematical models are known from the last years of the 19th century,
but they have been incorporated to mathematical models of Robotics along
early years of the 21st century. Obstructions to lift paths or to integrate
distributions can be read directly on the EMAD in topological terms. 15

1.2.3. A multivector approach

From the topological viewpoint, a multipath is given by a finite collection
of paths involving small motions at joints in C or simultaneous evolution of
at least two control points in W. Hence, the analytical description given at
the precedent paragraph can be embedded in a global treatment in terms of
multivector calculus involving the subspace generated by the control points
of mechanism, in regard to the a finite references of the ambient space.
The resulting multivector information can be managed in terms of Clifford
algebras.

If we adopt a (multi)vectorial framework, then geometric, kinematic and
dynamic aspects of meaningful elements for a robot R can be described in
terms of finite collections of points Pi ∈ R ⊂ W, segments < Pi,Pj >
and planar elements < Pi,Pj ,Pk > which are describes as simplices. Their
management can be described in terms of points Pi, lines `ij and planes πijk
verifying incidence conditions such as

Pi ∈ `ij , `ij ⊂ πijk
Every action on a point Pi ∈ R has effects on segments sij and planar
elements πijk to which Pi belongs. Incidence conditions are projectively
invariant and characterize “flags” which provide “universal” models for all
kind of hierarchies between geometric elements (including curved ones).

A complete flag in a 3D space is given by a a collection of subspaces
(p, `, π, . . .) verifying incidence conditions p ∈ ` ⊂ π ⊂ . . .. There exists a

15These aspects will be developed in the module 3 of these notes.
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synthetic description of flag variety in terms of quotients of classical group;
to obtain an intrinsic representation (independent of observer’s viewpoint),
it is convenient to adopt a projective notation. This description is valid not
only for the geometric framework, but for any kind of eventually infinite-
dimensional vector “subspaces” such those appearing in jets spaces. To begin
with, we shall restrict ourselves to the geometric case.

Thesimplest case is given by the complete flag variety in the plane gi-
ven by {(p, `) | p ∈ `}. It provides a support fo configurations of planar
robots given by points and lines verifying incidence or tangency conditions
(projectively invariant and dual conditions) corresponding to pass through
a point (linked to position-force based control) or be tangent to a line (lin-
ked to impedance-based control) for trajectories. Nevertheless its simplicity,
the geometry of planar flags is non-linear: it is a hyperplane section of the
image of the Segre map s2,2 : P2×P2 ↪→ P7. The compactification of feasible
trajectories w.r.t. to the above conditions provides a support for all planar
motions which can be alternately described in multivector terms 16

A more involved case corresponds to complete flags in P3, i.e. triplets of
points p, lines ` and planes π in a projective 3-space P3 verifying incidence
conditions p ∈ ` ⊂ π; an advanced application concerns to the description
of configurations for Stewart platforms (in regard to flight simulators, e.g.)
whose configurations space is not well understood, still. In this case, our hie-
rarchical approach develops some aspects of flag bundles for the analysis of
special configurations (including generic singularities) and control issues. A
general understanding of singularities arises from describing the flag mani-
fold as the projectivized quotient G/B ofG = GL(4;R) by the stabilizer B of
a complete flag. The product of 4 copies of GL(1;R) ' R∗ (a 4-dimensional
torus) parameterizes the hierarchies between closures of orbits (involving to
phase transitions), which is given in this case by the permutations group S4
of 4 elements 17.

The above arguments are easily extended to other flags verifying addi-
tional conditions (orthogonal, unitary, symplectic, etc) and also to “incom-
plete” flags corresponding to robots with external constraints 18.

16See last chapters of the first module for details and applications
17In general the orbits of the complete flag variety of a vector space are parameterized

by the permutations group of n+ 1 elements, where n+ 1 is the dimension of the ordinary
space. Thus, hierarchies can be easily described even the global geometry is much more
involved.

18An incomplete flag is a collection of nested subspaces not necessarily of consecutive
dimensions. Any Grassmannian provides the simplest example of a variety of incomplete
flags.
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The multivector-based approach is common to different architectures
(serial manipulators vs parallel platforms, e.g.), and is more intrinsic than
the more usual Lagrangian-Legendrian approach 19. Furthermore, it provides
a natural geometric support for position-, tasks- and force-based control
in working space (by using points, segments and planar elements), and a
natural feedback between all of them; the use of representations based on flag
varieties provides very simple descriptions for feedback which are compatible
with constraints intrinsically given in terms of cycles in flag varieties.

To begin with, one must specify a general framework to develop this
approach. The leit-motiv is that a multivector reformulation of the Compu-
tational Geometry provides the support for Computational Kinematics and
Dynamics of Robots. The most intuitive multivector reformulation of Compu-
tational Geometry is given by exterior calculus for static configurations and
differential forms to describe dynamic aspects. A little bit more sophisti-
cated approach is given by Clifford Algebra and Clifford Analysis. Both of
them provide a support for non-linear modeling and adaptive control issues.
With more detail:

1. Computational Geometry (module B11) provides models, databases
and algorithms for a semi-automatic treatment of problems which ad-
mit a planar or spatial representation. It uses configurations of simple
geometric 2D (points, segments, triangles, circles) or 3D entities (sim-
plices, cuboids, spheres, generalized cylinders) which can be grouped
in more complex geometric entities and related between them by sim-
ple transformations. By patching together these pieces, it is possible to
develop the study of geometric configurations which can be rigid ones
(most vehicles, mobile platforms), and serial vs parallel manipulators
(arms and legs, vs artificial hands or hips, e.g.). Furthermore, Compu-
tational Geometry provides modeling tools for 3D objects which can
be labeled as structured (triangular vs quadrangular deformable mes-
hes, e.g.) or non-structured (based on dense or sparse clouds of points,
e.g.). It uses linear transformations to represent real or virtual dis-
placements at joints or motions in the ambient space. Computational
Geometry provides a support for robust control methods involving po-
sition and/or orientation, such that reachability and accessibility issues
for end-effectors. Their extension to Piecewise-Linear case (meshes) is
performed in the module B12 (Computational Algebraic Topology or
CAT), whereas its extension to the smooth case (differential manifolds)

19Intrinsic character avoids to update coordinates w.r.t. an initial reference, and avoids
typical errors linked to evaluate localization and information updating
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is performed in the module B13 (Computational Differential Topology
or CDT)

2. Computational Kinematics (module B14) is focused towards evalua-
tion and tracking along time of planar or spatial configurations in the
ambient space and how can be generated from trains of impulses at
joints. Thus, is is the natural extension of Computational Geometry in
configurations and working spaces. In particular, Computational Ki-
nematics provides a structural framework for (eventually non-linear)
oriented tasks programming of robots; each task is represented as a
trajectory in the space-time whose kinematic characteristics (location,
velocity and acceleration at control points) is necessary evaluate and
control, without losing the stability. The simplest strategy consists of
controlling the center of mass around a stable trajectory of the whole
robot. More involved strategies consist of task-oriented programming
which are linked not only to evolution and tracking of a control point
(end-effector, e.g.) as for Computational Geometry, but a finite collec-
tion of segments sij :=< Pi,Pj > which are connected between them
in a skeletal structure. Hence, in this multivector framework Compu-
tational Kinematics and tasks-based control are the natural extension
of Computational Geometry and position-based control.

3. Computational Dynamics (module B15) adds the effects linked to mas-
sive objects in terms of forces and moments which act on the above
described configurations of control points. It is evaluated by reinterpre-
ting second order derivatives, having in account inertial phenomena,
and anticipatory/compensatory effects. They are expressed in terms
of differences of first and second order involving the generalized coor-
dinates. Forces acting on the mechanism are not isolated, and usually
are presented in terms of pairs; furthermore (pairs of) forces, one has
torques acting on articulated mechanisms. All of them determine a
collection of planes along which we must evaluate their dynamical ef-
fects. The geometric hierarchy based on points-lines-planes verifying
incidence conditions p ∈ ` ⊂ π provide a feedback between position-
tasks- and force-based control for complex motions such as locomo-
tion, and/or grasping and manipulation tasks. Hence, Computatio-
nal Dynamics is the natural extension of Computational Kinematics
which has been presented above. A novelty of our approach consists
of incorporating a kinematic-based control which closes the scheme
of position-force control, by contributing to stable configurations and
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avoiding vibrations near to singular configurations.

Hence, Computational Geometry provides a first (static) step with suc-
cessive prolongations given by Computational Kinematics and Dynamics,
which provide a support to different tasks and interactions with environ-
ment 20. This claim is extended in a natural way to the study of trans-
formations (which is modeled in terms of Lie Groups G and Lie Algebras
g := TeG as natural extension of rigid motions in the space), and control
and optimization issues (involving the execution of motions and tasks).

The approach performed in terms of Lie Groups G is justified by the
G-invariance of structural equations w.r.t. the action of a Lie group G and
by the preservation of functionals under ideal conditions. Typical “exam-
ples” for Mechanics of Rigid Solid are given by the Moment Map, but this
approach has been extended to more general situations involving articulated
mechanisms and the mechanics of deformable media in terms of the Moment
Map. This unifying approach can be extended, also, to several aspects of
Computer Vision concerning to 3D Reconstruction and Motion Estimation
in an extended SLAM framework. 21

Thus, invariant functionals and structural equations provide the starting
point to be modified from the interaction with environments and the energy
expenditure, e.g.. Such modifications can be understood as “deformations”
in a stratified equivariant framework, where the algebraic action can be
understood in algebraic, differential or infinitesimal terms. All of them are
related in a more general topological framework. Hurewicz fibrations provide
general models for their interrelations.

In fact, the Lie-based approach has been exploited from the early nine-
ties giving a motivation for the reformulation of Robot Mechanics in terms
of group actions (or their infinitesimal version) and, more generally, in terms
of Principal Bundles; it has been exploited by J.Burdick, J. Ostrowski and
his collaborators, between others. On the other hand, Geometric Algebra
provides a framework for unifying different aspects arising from Robot Me-
chanics; a high-level approach can be read in [Bay01] 22.

20A Spanish version of Computational Mechanics as an extension of Computational
Geometry is available in my web site

21See the introduction to the module 4 (Computational Kinematics) of the matter B1

(Computational Mechanics of Continuous Media) for details and references.
22E.Bayro-Corrochano: Geometric Computing for Perception-Action Systems, Springer-

Verlag, 2001.
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1.2.4. The role of singularities

Roughly speaking, singularities appear in any context as “events” of so-
me static or evolving process. If one models such process in terms of (scalar,
vector, tensor) fields. Thus, events can be characterized as singularities of
fields. If fields were “isolated”, then the classification problem of fields would
be “easy” (already performed from the local viewpoint for the integrable ca-
se).

Unfortunately, things are a little bit more complicated because interac-
ting fields (linked to coupling conditions, e.g.) generate (dis)aparition phe-
nomena linked to evolving singularities. In this matter, one does not intend
to solve the general problem, but to “illustrate” some troubles appearing in
Robotics and give some hints about how to solve them. 23

Usual approach to Robot Mechanics is usually restricted to regular re-
gions. However, singularities are present at the three levels for Mechanics of
Robots:

1. Geometric level : They involve to singular points of functions or more
generally functionals involving joints at configurations space C or con-
trol points at working spaceW. They are responsible of shape changes
(of paramount importance in Biomimetics approach for living beings,
e.g.).

2. Kinematic level : They involve to a rank deficiency for the Jacobian
matrix representing the forward kinematics of the robot. They are
responsible of phase changes in the (co)tangent space.

3. Dynamic level : They involve to (de)coupling between external and/or
internal forces or moments acting onto components or the whole me-
chanism. They are responsible of sudden or qualitative changes in dy-
namics, represented by limit cycles acting as organizers of dynamics.

“Intrinsic singularities” are linked to robot architecture, and appear ty-
pically at the boundary of configurations or working spaces; additionally,
“extrinsic singularities” are linked to rank deficiency locus of maps linked
to tasks, and they can appear inside regular regions also. All of them give
a “segmentation” (decomposition in a disjoint union of regular regions) of
the ambient space X for the Robot Mechanics.

23A more general approach can be read in several modules of the matter A4 (Topoloǵıa
Diferencial).
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Hence, singularities are present at the three levels of Robots Mechanics,
involving geometric, kinematic and dynamic aspects. Furthermore, the na-
tural stratification linked to the transfer map τ : C → W (in terms of jets
spaces) shows how singularities at each level are propagated to other levels
(by means sections of fibrations, e.g.).

Usually, singularities are avoided in Robotics because (following a very
extended belief) traditional methods for control and optimization are no
longer valid outside the regular region. Hence, in the classical regular frame-
work, it is necessary to design and implement different control methods for
different “modes” of complex robots, and switching procedures to exchange
such control methods. This approach is not natural, because not only te-
rrestrial mammals but insects have solved this problem in a more natural
way passing through singularities.

Key features for solving control issues near to singularities are related
to the management of symmetries and their evolution according to brea-
king procedures. Nature has solved this problem from several millions of
years by developing symmetric architectures which are controlled by com-
ponents with opposite functionalities to balance their global effect and res-
tore the equilibrium or, more generally, the stability along the execution of
movements. Some advanced examples are linked to anticipatory and com-
pensatory movements along locomotion tasks, which involve to a combina-
tion of geometric, kinematic and dynamic aspects, with their corresponding
position-, impedance- and force-based control devices. Along the modules 5
and 6, one introduces a more detailed presentation.

In addition of these geometric (axial or central) symmetries, one can find
symmetries involving kinematic aspects (involving behavior of trajectories
performed by control points, e.g.) and dynamic aspects (involving qualitative
changes in transference maps j2τ). They can be represented in terms of
infinitesimal symmetries involving “generic” deformations around each local
type of singularities . This strategy is supported from the mathematical
viewpoint by the introduction of ordinary and infinitesimal symmetries on
the k-th extensions jk : JkC → JkW of the transfer map j0τ = τ .

The key result in our approach is the proof of an equivariant stratified
structure for jkτ which provides the support for equivariant bifurcation lin-
ked to the mechanics of articulated mechanisms. The general framework is
introduced in module 3 (Kinematics) and their treatment involving equi-
variant bifurcation is developed in the fourth module (Dynamics and Con-
trol). Most difficult problems concern to non-linear constraints linked to
non-integrable distributions on the total space for kinematics (the cotan-
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gente space in the classical terminology) and the dynamics spaces.

1.3. Physical-mathematical models

Along the 19th century, Symplectic (Lagrange) and Contact (Legendre)
Geometries have provided the support for the Hamilton-Jacobi formulation
of Classical Mechanics, and geometric-topological properties of solutions for
structural equations of Classical Mechanics. In the smooth case, Symplectic
Geometry provides the support to prove the equivalence between differential
approach (Hamilton-Jacobi) and integral approach (Euler-Newton). A mo-
dern reformulation of lagrangian and legendrian Mechanics with simplectifi-
cation and contactification structures on the phase space has been performed
till the mid eighties by V.I.Arnold and his school (Moscow, Leningrad).

On the other hand, the symplectic geometry of the moment map provides
an invariant decomposition w.r.t. ordinary symmetries in regard to kinema-
tic and dynamic aspects of robot motions. A general and very complete
reformulation for the smooth case can be read in [Mar99] 24. The extension
of this approach to eventually singular varieties and stratified maps linked
to the transference map τ is the next step to be accomplished.

In the stratified case, the first goal is to obtain an equivariant decompo-
sition linked initially to functions (or more generally functionals for optimi-
zation issues) defined on eventually singular varieties 25. All results for the
regular case are still valid in the open general stratum of any stratification.

However, these results can be extended to intrinsic or extrinsic singulari-
ties . A natural topological context for this development is initially given by
Morse Stratified Theory (Goresky and Macpherson, 1986) where one replaces
isolated critical points by “singular cells” which are obtained by matching
Tangential and Normal Morse Data; roughly speaking they support smooth
(TMD) and singular (NMD) information about the system evolution.

An intrinsic formulation from the topological viewpoint requires some
cohomology theory which allows to patch together functions, (distributions
of) vector fields or (systems of) differential forms which are defined locally,
only. However, the mathematical formalism is harder than usual to be de-

24J.E.Marsden and T.Ratiu: Introduction to Mechanics and Symmetry (2nd ed),
Springer-Verlag, 1999

25Mathematical foundations are developed along the matters A3 (Geometŕıa Algebraica)
and A4 (Topoloǵıa Diferencial) in my web site
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veloped in an applied field as the Robotics 26.
Thus, along this introductory chapter one adopts a more down-to-earth

approach which involves to matching locally defined functions or functionals
f linked to Optimization and Control issues. In this framework, the main
tool is the analysis of critical locus of f and the topology linked to such
locus.

Differential calculus on manifolds (regular loci of varieties and maps) is
commonly used to identify behaviors, to evaluate the “transport” of geome-
tric quantities (tensors) in terms of connections, and to identify (curvature)
invariants linked to such connections. Furthermore the explicit resolution of
motion equations, integral calculus on manifolds provides an accumulative
measure of “geometric quantities” linked to the evaluation of functionals on
data distributions.

It is necessary to extend the above functionalities to non-regular loci for
varieties or singularities of maps between manifolds. Our strategy consists
of combining some general principles of stratifications and algebraic actions.
Roughly speaking, algebraic actions are introduced to represent different
kinds of (algebraic, topological, infinitesimal) interaction; but this introduc-
tion modifies the original (differential) stratification. Thus, the notions of
G-equivariant stratification (an extension of locally symmetric space) and
Equivariant Bifurcations play a fundamental role.

From a complementary viewpoint in order to improve the applicability
of models arising from advanced geometric models, they must be compa-
tible with metrical aspects linked to uncertainty about measures, errors in
the execution and unexpected reactions arising from interaction with the
environment. In other words, one must adopt an extension of Riemannian
Geometry as general framework. First of all, there are several sources for
uncertainty which arise from sensors, information processing and analysis,
re-projection on a common space for representation, decision making near to
singular cases, and errors propagation along articulated mechanisms, when
commands are executed.

Some hard mechanical problems to be solved concern to damping of
vibrations and correcting errors which are propagated along articulated me-
chanisms. Usual formulations (based on Lyapunov functions, e.g.) are not
enough to solve this problem. It is required a global analysis based on (distri-

26Some elements are presented in my notes for Algebraic Geometry (for cohomology of
distributions issues), Differential Topology (for Stratified Morse Theory) and Computatio-
nal Mechanics (including advanced visualization issues), whose introductions are available
in my web site (currently in Spanish language, only)
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butions of) fields involving eventually non-linear effects on the whole mecha-
nism. Non-linear phenomena are a source of unstability which is necessary
to control and correct by evaluating local differences between the current
and expected observations.

Proportional-derivative Control is inspired in the differential and integral
calculus for solving ODE linked to stabilization procedures. An identifica-
tion of non-holonomic constraints (linked to real or virtual displacements of
geometric quantities or friction effects, e.g.) allows to design strategies to
correct undesirable effects in order to improve the efficiency of robots.

1.3.1. Applied Classical Mechanics

Two general approaches to Classical Mechanics are based on the met-
hod of forces and moments (Euler, Newton) or the verification of a system of
PDE (Lagrange, Hamilton, Jacobi) for a Hamiltonian function H : TM → R
(initially given by the total energy of a system). Both of them are used in
classical books in Mechanics. In the context of symplectic geometry, both
formulations are equivalent between them in the regular case. Roughly spea-
king and in a modern language, Euler-Newton follows an integral approach
which is based on minimizing an action functional (called Lagrangian); re-
sulting equations arising from variational principles satisfy the Hamilton-
Jacobi. Inversely, if H is the total energy of a system, its minimization gives
the classical Euler-Newton formulation.

The above description can be easily extended to systems including the
presence of external forces, including generalized Lagrangians. This forma-
lism provides a general framework for Differential Kinematics and Dynamics
of Robots, and their applications to Trajectory Planning, Motion Planning
and different kinds of control. A good reference covering all the above topics
is [Sci00] 27

The introduction of Lie groups and their corresponding infinitesimal
version given by Lie algebras provide a general framework to incorpora-
te ordinary symmetries linked to movements of end-effectors, invariance of
structural equations for kinematics and dynamics, and infinitesimal symme-
tries giving integrant factors for structural equations, linked to preservation
of “geometric quantities”. Unfortunately, this scheme is too ideal for more
advanced applications, where equations are non-linear, systems are not con-
servative and there appear non-integrable systems with constraints which

27L.Sciavicco and B.Siciliano: Modelling and Control of Robot Manipulators (2nd ed),
Springer-Verlag, 2000.
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do not arise from the geometry of the base space (configurations or working
space).

A relevant topic which is not covered by the classical approach concerns
to the apparition of holonomy non-trivial, which is linked to the existence
of constraints which do not arise from the geometry of configurations or
working spaces. Some typical examples are the following ones:

kinematic effects linked to drift or sliding effects, or more recently the
self-motion of a hand-held camera for environmental reconstruction of
3D scenes;

dynamic effects linked to different kinds of frictions and non-linear
mechanical vibrations.

Both of them can be represented by means of a non-integrable subbundle
which generates distortions at the level of expected trajectories or forces-
and-moments distributions. Their combination increase the troubles for an
efficient control of robots in complex tasks involving the navigation, at first
instance and/or, grasping and handling tasks which involve to more complex
interactions with the environment.

1.3.2. A functional approach

Description of tasks as trajectories and optimization in the space of paths
requires some additional elements arising from Topology; the identification
of non-contractible paths in surfaces and/or “tunnels” in 3D representations
are important to identify which kind of interpolations can be performed by
preserving the topology 28 .

Furthermore, all feasible paths performed by the end-effector of any ki-
nematic chain must be given by a composition of rotations and translations,
which imposes additional constraints for feasible motions. Hence, smooth
ideal trajectories must be approached by Piecewise Linear (PL) or Piece-
wise Quadratic (PQ) trajectories compatible with mechanical constraints,
even if these objects are not dense in the working space. Thus, it is necessary
to balance the need of accuracy with the real performance of mechatronic
devices, and this goal includes the errors evaluation and their tracking along
the tasks execution.

28A tunnel is a 2-dimensional non-contractible cycle; is the natural extension of the
notion of non-contractible path whose homotopy classes generate the fundamental group
π1(X) of a surface X.
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Functional aspects involve to dynamical optimization (relative to trajec-
tories to be performed, e.g.) and control issues (relativa to different kinds
of stability, e.g.). Both of them can be developed in a joint way by using
variational principles which are ubiquitous in structural models for Robo-
tics. The classical integro-differential formulation is labeled as Newton-Euler
approach, and minimizes a Lagrangian action functional (such as the total
energy of the system, e.g.).

A recent extension based on the minimization of a D’Alembert action
functional allows to incorporate non-holonomic constraints which generate
drift or sliding effects in Robotic mechanisms. Anyway, one has a collection
of infinitesimal symmetries which provide integrant factors, even if the dis-
tribution is not completely integrable; Emmy Noether was the first one in
studying this type of phenomena at the end of the 19th century, which now
are included as gauge transformations in variational problems.

1.3.3. Differential and integral aspects

Differential aspects involve to multiple aspects related to the support for
the kinematics or the dynamics of a robot (given initially by a manifold),
transformations at joints or in the working space (given initially by Lie
groups, i.e. groups with a differentiable structure), tasks (given by integral
curves of vector fields), evaluation of performance (given by differential forms
on evolving geometric quantities), and geometric grouping of data (given by
tensors which are transformed accordingly to covariant transformations and
can include non-linear effects, also).

Smooth boundary manifolds (M,∂M) and their superimposed structures
(fiber bundles or principal bundles, e.g.) provide initial models, but smooth-
ness conditions can not be globally fulfilled due to the apparition of singula-
rities (components alignment, rank default for Jacobian or matrices linked to
Dynamics), discontinuities at interaction (including relocation for grasping,
contact or friction issues for handling, jumping or running, e.g.) . Along the-
se notes, we develop a semi-analytic extension of smooth framework where
differential and integral calculus are still valid, even the notation is a little
bit more complicated.

Some crucial problems to solve from the differential viewpoint involving
to dynamic aspects concern to

Optimization issues given initially by the minimization of a Lagrangian
action functional, which provides a unification of differential (Hamilton-
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Jacobi) and integral (Newton-Euler) approaches for smooth varieties
in the framework of symplectic and/or contact geometries.

Control issues (controllability, stability, reachability). Vector formula-
tion of these issues can be easily reformulated in a more intrinsic terms
by using the Geometric Algebra language.

Some developments from numerical analysis holding along eighties and
nineties have provided methods and solutions for particular problems in Ro-
botics, but approximation methods are of a limited applicability in absence
of a geometric or, more generally, topological approach. Unfortunately, the
scarce development of discrete approaches to Differential Geometry has ac-
ted as a barrier till the beginning of the 21st century. Recent developments of
discrete versions for (distributions of) vector fields and (systems of) differen-
tial forms are providing a more versatile approach from the computational
viewpoint 29

Integral aspects concern primarily to solvability criteria and numerical
solutions of functionals linked to structural motion equations or discrete
versions for the information fusion. More meaningful are the issues related
to integrability of distributions D of vector fields ξ1, . . . , ξk or systems S of
differential forms ω1, . . . , ω` linked to evolving systems superimposed to a
variety. A crucial issue is the integrability of the system which, in the smooth
case, is represented by means of a vector subbundle E of the (co)tangent
bundle of M .

Most realistic systems are not globally integrable and one must take
care with local regions of integrability and the detection of obstructions for
global exact integrability. A source for the non-integrability of distributions
or systems is linked to the existence of non-holonomic constraints on the
(co)tangent bundle, i.e. which do not arise from geometric constraints in
the base space. Typical examples are given by the drift (for kinematics) or
different types of friction (for dynamics).

Partial integrability of systems provides local infinitesimal symmetries
(in the sense of E.Noether) linked to D’Alembertian action functionals which
must be modeled, by adding terms to the original formulation of the dyna-
mics, which allow to control the behavior even for non-linear phenomena.
Their estimation and tracking poses additional changes which are revised in
the next paragraph.

29See my Course on Mecánica Computacional (in Spanish language) for additional de-
tails and references.

39



1.3.4. Managing the uncertainty

Uncertainty is pervasive throughout robotics; it arises from incomple-
te information linked to sensors, high ratio for noise/signal, outliers arising
from information processing and analysis, oscillating behaviors or more ge-
neral unstable phenomena, unexpected vibrations, et cetera. The diversity of
sources and the need of providing robust or adaptive responses (depending
on the context), suggests the development of a hierarchy including mecha-
tronic devices and logical procedures for managing the above problems in
terms of a large diversity of patterns.

Distributed systems provide an articulation between mechatronic devi-
ces and logical procedures. So, in a similar way to superior mammals and
depending on stimuli, some components can react by following reflex mecha-
nisms, whereas other components require more advanced making decision
procedures which involve to different kinds of logical procedures. From a
methodological viewpoint, one can distinguish several tools linked to logic
of classes, propositional logic and descriptive logic:

1. Logic of classes is applied for modeling reflex motions, which require
only appropriate thresholds for decision making relative to the infor-
mation provided by sensors. From the biological viewpoint they co-
rrespond to the lowest level involving the reflex system (useful for
like-insect robots, microbots, etc) and some automated tasks perfor-
med by cerebellum in the case of superior mammals. Optimization
involves to the geometrical design for identifying the most efficient
architectures to perform such reflex motions.

2. Propositional logic must be translated in a planned concatenation of
motions involving different subsystems whose signals must be reinter-
preted in terms of their accumulated effects. It is applied for modeling
complex tasks involving planning, anticipation and/or compensation
of effects. Optimization involves to the kinematical design for identif-
ying the most efficient architectures control mechanisms under com-
plete information arising from the scene or the internal mechanisms.
Tasks can be performed in an unsupervised way, in a similar way to
the programming based on logic of classes.

3. Descriptive logic is applied to making decisions in presence of uncer-
tainty. It is the highest level for programming languages, and requires
fault tolerance solutions to solve problems under incomplete informa-
tion. It can include a dynamical feedback arising from the interaction
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with the environment, and it is applied to modeling the Perception-
Action Cycle (PAC) in complex tasks. Optimization issues involves
a dynamical design to accomplish the fusion of information arising
from different sensors, decision making, and real-time supervised con-
trol of performed tasks. Tasks can be performed in an supervised way,
including the possibility of self-adapting parameters in terms of the
environmental response.

Nevertheless the existence and efficiency of randomized versions of algo-
rithms in Computational Geometry and Kinematics 30, most existing motion
planning and control algorithms in robotics does not take uncertainty into
account. This viewpoint is not compatible with reasoning patterns of supe-
rior mammals which evaluate different choices in their daily behavior.

From the artificial viewpoint, there are a lot of hard problems for which
only NP algorithms are known, which can not be solved by using logic of
classes and/or propositional logic, because last ones analyze all possibilities
before taking a decision. It is necessary to combine deterministic with pro-
babilistic approaches in hybrid models, and to design a feedback between
different models for decision making in a fault-tolerant way.

The probabilistic approach to Computational Geometry has provided a
lot of algorithms which are much more efficient than their deterministic
version. This approach is particularly useful for modeling complex tasks re-
lated to PAC (Perception-Action Cycle). In other words, a proper handling
of uncertainty will almost certainly lead to significantly more robust sys-
tems, along with a better understanding on how to perceive and act in the
physical world. Besides the obvious military applications, the importance of
uncertainty will increase as robots move away from factory floors into increa-
singly unstructured environments, such as consumption or home robotics,
or more advanced animats or humanoid robots.

There are a lot of problems which are characterized by meaningful uncer-
tainty levels, and hence would benefit from better mathematical and compu-
tational tools to make decisions under uncertainty. Next, we provide a list
of meaningful examples which are ordered by following an increasing order
of difficulty:

1. Industrial production involving manufacture and quality control, which
must detect the presence of small imperfections and evaluate its ac-
ceptance or rejection according to previously known standards.

30See my notes on Computational Dynamics for details and references
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2. Civil Engineering in tasks related to drilling, tunneling, maintenance
of hazardous installations and/or consolidation of slopes with climbing
robots, e.g.

3. Robotic exploration in non-accessible for humans (Mars, e.g), hazar-
dous (nuclear central or repositories, e.g.) or difficult environments
(undersea or bathimetric examination, e.g.)

4. Military applications including detection and evaluation of possible
goals for neutralization or elimination, collaboration with human teams,
etc

5. Surgical systems with laparoscopy for internal organs, replacement of
components, Prosthethics and Orthopaedical Surgery, or the assistance
to the most complex operations involving human heart or brain.

Currently, a wide range of complimentary frameworks exist for repre-
senting uncertainty: Probabilistic methods (which include parametric and
non-parametric representations), binary representations, Dempster-Shafer
logic, fuzzy set theory, and others. The choice of the representation influen-
ces the difficulty of crafting models and the computational efficiency of using
these models. Additionally, a range of different problems can be attacked un-
der uncertainty, such as: prediction vs. planning vs. control; worst case vs.
average case; and correctness vs. optimality.

At early nineties several scientific questions that warrant research were
introduced as challenges to be developed along next decades. We include
some general comments relative to each one of these issues:

How can uncertain information be propagated through process models,
and what type of bounds can be obtained? Processes Oriented Architec-
tures (POA) provide a “natural” solution which arises by combining
Software Oriented Architectures (SOA) with two general models (la-
beled as Orchestration and Choreography). It is necessary to identify
thresholds from which different sequences of services are concatenated
between them, and this requires a combination of Expert Systems and
Statistical Learning, which is an active research line.

How can we devise systems that can reason about when and what to
sense? Classical solutions have been developed from Artificial Neu-
ral Networks (ANN) and Fuzzy Systems, by superimposing additional
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structures given by Genetic Algorithms (GAs), Evolutionary Program-
ming (EP) or Self-Organized Maps (SOM)31. Unfortunately, the inter-
action with Fuzzy Systems is low, and it is necessary to go in depth
about their mutual relations with sensitivity analysis, by identifying
critical values for functionals from which there appear qualitative chan-
ges in regard to interaction with the environment.

How can we develop contingency plans that interleave sensing and con-
trol? This issue involves to the coupling with sensors and commands in
the Perception-Action Cycle (PAC). There are some important contri-
butions from different viewpoints going from Gestalt approaches, till
those based on dynamical systems or Clifford Algebras; however, most
of them ignore basic control models. It is necessary to reformulate
the coupling with robust or adaptive models by profiting the advances
performed in hardware components.

How can we reduce the complexity of probabilistic propagation and
planning? Propagation phenomena involves to continuous or discre-
te differential models linked to kinematics and/or dynamics. Different
approaches have been developed along nineties which include Mar-
kov fields and Gibbs distributions (probabilistic modeling of usual
vector fields in Differential Geometry), more general Hidden Markov
Models (in presence of high uncertainty), Boltzman distributions (for
thermodynamical inspired models), structural patterns (for statistical
learning, or feedback with expert systems) etc. The interplay between
differential and probabilistic aspects of the problem is a permanent
source of inspiration for adapting hierarchies involving the reorganiza-
tion of information. Partial observability and/or incomplete informa-
tion suggest complementary approaches involving Markov Distribu-
tions and/or equilibria in environments with incomplete information,
which can be solved by using different probabilistic and/or differential
approaches on granulated or quasi-homogeneous spaces 32.

How can we approximate uncertainty and devise bounds for those ap-
proximations? Furthermore Markov models described in the above

31SOM are specially appropriate for multistage, multilevel and hierarchical approaches;
see specific comments in [Koh97], p.285

32Typical spaces for modeling incomplete information in homogeneous spaces are given
by Grassmannians or, more generally, Flag Varieties. It is necessary to develop Markov
Decision Processes in these spaces in a compatible way with structural PDEs (Riccati
equations, typically) for solving planning under uncertainty conditions
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item, a modern reformulation of entropy is given by Shannon Infor-
mation models which have been revealed as very useful for recognition
systems involving different digital formats. Their application for Ro-
botics issues involves to a knowledge representations which includes
semantic, graphic and symbolic aspects. The interplay between them
requires advances in inter-operability issues which can be referred to
common geometrical, kinematic or dynamic supports. In a complemen-
tary way, this approach must incorporate issues related to sensibility
w.r.t. initial and/or boundary conditions involving temporal and/or
spatial propagation phenomena. These issues concern to solve diffe-
rential operators in charge of representing tasks which are linked to
optimization problems in some of usual differential (Lagrange) or in-
tegral (Newton) frameworks

What problems can be solved in closed form, and which solutions can
be computed efficiently? Non-linear character of most problems has
suggested initially an algebraic approach for which several tools of
computer algebra for modeling objects were developed along the nine-
ties. This approach is not enough flexible to be applied to noised data
or under incomplete information conditions. A differential framework
is much more flexible, including linear approaches to objects (by means
of tangent spaces to manifolds representing working or configurations
spaces, e.g.), maps (by means their differentials, including stratified
approaches), distributions of vector fields (for modeling processes in
terms of eventually random fields), and their dual versions (more na-
tural because they provide a measure of observable effects in terms of
differential forms), etc. All of them are particular cases of tensors (in-
volving a finite number of vector fields and differential forms), where
the uncertainty is managed in terms of voting procedures which have
been adapted to Computer Vision and, subsequently, to Robotics 33.

How can we best represent geometric uncertainty, or shape uncer-
tainty? Classical solutions are given by deformations of original models
for which there are a lot of models and tools in Differential, Algebraic
and Analytic Geometries. Variational Calculus provide a general fra-
mework to solve Optimization issues involving any kind of functionals;
unfortunately, there is no a closed form for their solutions. Even wor-
se: the global structure of the space of deformations is unknown in

33For details about the use of Computer Vision techniques for Navigation and Recog-
nition issues see the modules 3 and 4 of the CEViC.
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most cases. Its description is necessary to design and implement Opti-
mization procedures having in account the proximity between shapes.
In fact, from a pure mathematical viewpoint, only the proximity bet-
ween plane “simple” curves can be measured (Mumford-Shah) 34. It
would be desirable to have a similar result for the 2-dimensional case,
but the management of proximity issues between “simple surfaces” is
much harder than for the 1-dimensional case even if we avoid “exotic
spheres”.

How can we devise planners that employ feedback mechanisms for redu-
cing uncertainty? From the mathematical viewpoint, planning is a pro-
blem in a paths space which is superimposed to an eventually weighted
collection of isolated points (symbolic approach), a planar/volumetric
representation of the working spaceW, or more general representations
of the tasks or the configurations spaces C. Neither of these spaces has
a trivial structure, because it depends on the robot architecture (with
the corresponding constraints involving geometric, kinematic and dy-
namic aspects, e.g.), the complexity of the scene (including obstacles,
e.g.) or the task to be performed. From the topological viewpoint, ce-
llular decompositions provide solutions for the geometric support, but
it is necessary to develop mathematical models (extensions of Morse
Theory) and software tools for solving functionals linked to tasks to
be performed by robots. 35

How can we, on solid mathematical grounds, ascertain which uncer-
tainties can be ignored?. A naive analytical answer could be given in
terms of null measure sets. However, this answer is wrong, because
very often the solution is unique only under unrealistic solutions. It
is necessary to work with multivalued functions (with only local uni-
city conditions), to consider not only isolated equilibrium solutions but
stable regions (with different stability criteria involving Geometrical,
Kinematic and Dynamical issues), evaluate the behavior of functionals
under deformations and identify stable regions where the control can
be efficiently implemented 36

Nevertheless the advances performed along more than twenty years, most

34A plane curve C is simple curve if is connexe and has no self-intersections; hence it is
topologically equivalent to the circle S1

35A visually-based approach to semi-automatic navigation is developed in the module
3 of the CEViC.

36For more details, see my notes on Differential Topology.
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of them have only partial responses which are only valid for structured en-
vironments. In practice, it is quite impossible to treat all these problems
in an introductory Course. Furthermore, the integration of data in a com-
mon framework requires an objective representation which can be provided
by geometry and their natural extensions to kinematics and dynamics. Jets
spaces for maps provides a language for developing and representing these
extensions in a natural way. Computer Vision provides a very general know-
ledge domain for estimating, modeling and adapting information relative
to the above aspects. Thus, it provides a feedback with Robotics has been
present from the early years of both scientific and technological areas.

An important inconvenient is the lack of developments from the pro-
babilistic and/or statistical viewpoint in regard to jets space. Nevertheless,
along the nineties there appear several developments relating the uncer-
tainty of measures in these knowledge areas with some basic aspects of
Vector Bundles and Learning Theory. The geometric version of statistical
learning theory is focused towards “learning varieties” which can be asso-
ciated to different tasks such as localization, grasping and handling objects,
locomotion, etc. Typical strategies consist of reducing the complexity of ob-
jects by means linearization procedures (it involves to a discrete version of
co-tangent bundles). The extension of this quasi-linear approach to mani-
folds to linked kinematics, requires an extrapolation of well known concepts
of differential geometry which is performed in terms of jets spaces with their
structural constraints.

1.4. An outline of topics

The whole Robotics Course is focused towards the development of mat-
hematical methods and applications to Design and Development of tasks
to be performed by the robot. Hence, it does not include very important
aspects which are related with electromechanical devices, sensors and ac-
tuators, or the information fusion arising from different sensors. Both of
them are very dependent of the current state of involved technologies and
related results become obsolete very quickly. The adopted approach is geo-
metric in a broad sense, i.e., includes topological aspects 37 and extensions
to Kinematics/Dynamics as first/second order approach to the Geometric
approach.

37The Topology can be understood as a Geometry with an infinite-dimensional group
of bijective and bicontinuous transformations (homeomorphisms)
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1.4.1. A general overview

Materials of these notes are organized around six modules, which can be
given along two complete Courses. A preliminary version of some parts have
been explained in several centers of France (Fourier Institute of Grenoble,
LASC of Metz) and Italy (SSSA of Pisa and Politecnico di Torino. The
selection of materials depends on the background of students. First module
has an introductory character, but the other ones are partially independent
between them; this organization eases the selection of a basic module and
a more advanced one for a typical semester. Next, one includes a sketch of
contents, jointly with some relevant motivations for each module.

1. Planar and Anchored Robots including serial mechanisms (me-
chanisms of bars, typically) and parallel platforms (such as Stewart
platforms). Some typical problems concern to forward and inverse kine-
matics of end-effectors for serial manipulators; furthermore the study
of optimal configurations along tasks execution, one must evaluate
dynamical effects corresponding to inertial motions performed by the
robot. Resulting dynamical effects are linked to (real or virtual) displa-
cements of the whole architecture; it is absolutely necessary to avoid
those motions which can “unbalance” the robot, by generating da-
mages on the electro-mechanical architecture. Thus, it is necessary to
design and implement strategies combining anticipatory and compen-
satory effects. So, we intend to develop a counter-cyclic approach which
minimizes adverse effects linked to inertial phenomena. The most ad-
vanced part of this module concerns to grasping and manipulation
tasks to be performed by the robot.

2. Mobile Platforms with Free-Collision Motion Planning and semiau-
tomatic Navigation as central topics. To simplify, each mobile platform
is represented by means of a material point (including mass for inertial
phenomena, e.g.) which represents its center of gravity (c.o.g. in the
successive). This representations allows to simplify issues related with
planning, tracking and control of motions. The developed strategies
can be extrapolated to the other three modules. An advanced topic
concerns to the simultaneous management of several mobile platforms
with their corresponding multi-agent systems; from the mid nineties,
these systems have been developed for automatic driving of vehicles
in highways. Some more advanced applications include hybrid systems
which use different kinds of embarked devices for semi-automatic na-
vigation from the feedback between terrestrial and aerial information.
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The interplay between related information require more advanced tools
for kinematic fusion of information arising from different sensors which
is only developed for simplified updatable 2.5D representations.

3. Kinematics of Robots with a special regard to multibody robots
composed by one or more articulated bodies with several devices (wheels,
legs) for displacements or locomotion tasks. The description of the
transfer map τ : C → W provides the starting point to introduce
a natural hierarchy between geometric, kinematic and dynamical is-
sues. This formulation is compatible with quite different architectures
including redundant wheeled large mechanisms for Civil Engineering
(tunneling or railway maintenance, e.g.) or hybrid (multilegged and
wheeled) systems to perform tasks in hostile or unaccessible environ-
ments (planetary exploration, forestry exploitation, undersea research,
nuclear maintenance). Two classical problems concern to Forward and
Inverse Kinematics which is developed in terms of the 1-jet of the
transference map.

4. Robot Dynamics including modeling and simulation of dynamic
behaviors having in account inertial effects and how to compensa-
te them. Some important problems concern to how generated, track
and control forward and inverse dynamics. Again, (a) local and infini-
tesimal symmetries provide organizing criteria for motions execution
according to symmetrical principles involving robot mechatronics; (b)
hierarchies between tasks and involved constraints can be reformula-
ted in terms of a semi-analytic approach; and (c) basic control issues
(accessibility, reachability, controllability) are easier to understand in
terms of multivector calculus.

5. Humanoid Robots which simulate the behavior of some aspects of
the muscle-skeletal system of human body. In this module we include
some advanced biomechanical aspects and pattern recognition of hu-
man gestures and their imitation by artificial systems, including some
aspects of Computational Vision. Furthermore applications to multi-
media production, the imitation-based approach has a growing interest
for applications related to human-machine interaction, including non-
verbal communication. Some elements corresponding to simulation of
body gestures will be displayed in regard to the generation of virtual
characters for real actors. An extension of these topics is displayed in
the fifth module (Dynamical Stereo Vision) of the on-line “Curso de
Especialista en Vision por Computador” (CEViC).
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6. Animats A special attention is paid to robots with a like-insect archi-
tecture and to robots which simulate the behavior of animals, which
are generically called animats. Both of them use advanced resources of
Computer Graphics and are related to applications linked to anima-
tion and special effects inside the production of multimedia contents.
Thus, we include some simulation and computer graphics components.
The most advanced part of this module corresponds to the description
and simulation of biomechanical models for animats related mainly
with locomotion tasks. The increasing availability of biomechanical si-
mulations for motions of animals makes more accessible this subject
with a lot of applications to multimedia industry in strong connection
with Computer Graphics and Advanced Visualization tools.

1.4.2. Computational Mechanics as a general framework

Along these notes, Computational Mechanics is understood as a reformu-
lation of Classical Mechanics of articulated objects in computational terms.
Hence, it has three main components relative to

Mechanical models with the above mentioned levels including geome-
tric, kinematic and dynamic aspects, by following an increasing diffi-
culty order. Furthermore, motion laws and interaction with environ-
ment, it includes Design, Optimization and Control issues for each one
of the three levels.

Data structures including the capture, processing and analysis of ex-
terior and propioceptive information captured from sensors. Further-
more, it includes the conversion of signals, their transduction and re-
presentation on a common space to ease decision making in regard to
commands which are acted by several kinds of electromechanical de-
vices (acoustic, electromagnetic, electronic devices for servomotors).

Algorithms which interpret the information in regard to the tasks to
be developed. They are implemented to ease a hierarchical manage-
ment, and to provide internal and external representations for optimal
making decision processes.

The above scheme is quite general for any kind of robots, but it does
not cover the scope of the whole Computational Mechanics. In particular,
some important topics concerning to computational mechanics of continuous
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media (including the mechanics of fluids, e.g.) or the mechanics of particles
are not considered here, 38

From a methodological viewpoint, a space-temporal representation of
the above three components allows to provide a common support to re-
organize tasks according to different weighted constraints (including variable
weights). Static case is formulated in terms of a reformulation of weighted
Voronoi diagrams which allow to reformulate constraints according to dif-
ferent hierarchies going from ordinal to metric issues. Their extensions to
kinematic and dynamic cases are a challenge to be solved.

1.4.3. Advantages of the geometric approach

The main advantage of geometric approaches is the robustness of models,
and its intrinsic character w.r.t. the observer’s localization. Hence, a geome-
tric formulation for Kinematics and Dynamics has been developed from the
beginning along the 19th century. In presence of complex interactions with
changing environments, a more flexible approach is needed. In this case, the
robustness can be weakened by extending Geometry to Topology (as the
study of properties which remain invariant by the action of a subgroups of
homeomorphisms). Hence Topology provides a structural framework for a
more adaptive approach to eventually changing constraints.

To minimize the casuistic arising from a so large diversity of topics,
the extended geometric approach is performed in a transversal way along
the whole Course. In this way, we intend to provide several threads which
intend to provide a global overview of useful tools arising from geometric and
topological models, and their extension to dynamical systems in Robotics.

To achieve these goals, we use several abstract concepts linked to Dif-
ferential and Integral Calculus on Manifolds (including Lie groups and Lie
Algebras), their extension to stratified varieties, and a collection of super-
imposed structures to describe the Robot Kinematics and Dynamics. Main
geometric superimposed structures are given by vector bundles (to represent
the simplest aspects of kinematics), principal bundles (to incorporate struc-
tural models for symmetries management) and, more generally, topological
fibrations (for the stratified case including singularities).

Basically, a topological varietyM is obtained by matching “pieces” which
are equivalent to cartesian spaces Rn; in the smooth case, one considers

38For an introduction, one can see my notes on Computational Mechanics. An introduc-
tion in Spanish language is included in my web page, also.
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a (pseudo-)riemannian metric, whereas in the algebraic case, one matches
pieces which are algebraically equivalent to affine spaces An. There is a
natural hierarchy between Cr-categories; in particular topological or C0-
category is the coarsest one; it provides the support for smooth or C∞-
category, the analytic or Cω-category, with the algebraic or Crat-category
as a more operative case where functions are described by polynomials or,
more generally, rational functions.

The choice of the most appropriate category is exploited to design coarse-
to-fine strategies depends strongly on the problem to be solved and the
available software tools; often, one can start with simpler PL-structures and
add“more structure” depending on the support and the allowed maps. So for
example, in the category of sets, equivalences are given by bijective maps,
but in the topological category, equivalences are given by homeomorphisms,
i.e. bijective and bi-continuous (continuous and with continuous inverse)
maps.

Thus, some special attention must be paid to topological issues because
they provide the support for successive hierarchies and the integration of
different aspects. The introduction of intermediate Cr-structures provides
additional tools which allows to apply structural results linked to different
geometries as support for a more complex dynamics relative to the environ-
mental interaction. The key is to use any kind of Geometry as the support for
Kinematics or, more generally, Dynamics involving all kinds of interaction
with the environment.

By following the usual hierarchy for Mechanics, an additional trouble ari-
ses from the apparition of non-holonomic constraints linked to robot kinema-
tics (drift effects, e.g.) or dynamics (friction cones, e.g.) linked to navigation
or grasping and handling issues. Their geometric characterization is given
by non-integrable subbundles of the (co)tangent bundle linked to systems of
structural equations. Nevertheless their non-linear and non-integrable cha-
racter, they can be managed in terms of (metric, affine, Ehresmann) connec-
tions which are defined on the “linearization” of configurations and working
spaces.

From a computational viewpoint, it is very important to perform a dis-
crete approach to the above disciplines. Discrete approaches are well known
for design and for solution of structural equations for differential (Hamilton-
Jacobi) or integral (Newton-Euler-Lagrange) formulation of Mechanics. Mo-
re recently, the development of discrete approaches to Differential Geometry
has provided a new stimulus for a unified treatment according to the hierar-
chical approach developed along these notes.
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Finally, the availability of algorithms arising from Computational Geo-
metry (determinist and randomized versions) has provided the initial sup-
port to advance in their extensions to Kinematics and Dynamics, according
to the above scheme. In particular, the use of Lie-based representations for
configurations and working spaces provides a locally symmetric support for
Optimal Control in terms of Sub- or Semi-Riemannian Geometry. A typical
example is obtained by replacing lines of ordinary space by geodesics on
subvarieties of products of Lie groups which reproduce in a more faithful
way motions to be performed by robots.

1.4.4. Some selected applications

Main applications developed by several researchers of the MoBiVAP
Group along the late nineties and the first years of 21st century concern
to visually guided manipulation (grasping and handling), visually guided
navigation of mobile platforms and locomotion tasks for humanoid robots.
All these applications have been focused towards the assistance to disabled
persons including tetraplegic persons (Pisa, Italy), semiautomatic navigation
at home for cerebral palsy patients (Metz, France) and reciprocator-based
devices for paraplegic persons (Paris and Torino). Nevertheless the interest
of all of them, the lack of financial support for all these activities is the main
motivation for my abandon of these research lines.

Most materials are originally dispersed in several talks (given in several
RTD centers of the EU), and specialized Courses given at Spain (Carta-
gena, Murcia), France (Fourier Institute in Grenoble, LASC in Metz) and
Italy (SSSA in Pisa, Politechnic Institute in Torino). First versions arise
as an extension to Computational Kinematics of Computational Geometry
methods (given at High Schools of Industrial Engineering and Informatics
Engineering) from 1996. Several aspects have been included in a collection
of invited conferences and/or courses given in different Robotic Labs. Thus,
most ideas arise from discussions and talks with different experts working
in different RTD Labs. Some of the most meaningful are the following ones:

Robotics and Vision Lab of the University of Oxford with Prof. An-
drew Zisserman as coordinator of a British-Spanish Integrated Ac-
tion, and Prof. Steve Maybank as researcher for the development of
3D reconstruction of scenes from a mobile camera by adapting SLAM
(Simultaneous Localization and Mapping). These activities have obtai-
ned financial support from a British-Spanish Integrated Action along
1996-97.
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Department of Mechanical Engineering of CalTech (Pasadena, CA,
USA) with Prof. Joel Burdick and J.Ostrowski as main researcher.
Their invitation and their encouragement has allowed a first exposition
of methods in autumn 1998 which is based on control based on the use
of ordinary and infinitesimal symmetries for a hierarchical control of
mechatronic devices.

CREARE Lab (Paris VI) with Prof. Yves Bournod as director, whe-
re some modules for simulating learning tasks and motor control by
human brain have been developed along 1998-99 in regard to some
neural deficiencies. The framework for this (non-published) research is
an extension of the tensor approach performed by Pellionisz at eighties
in the SOM framework.

ARTS Lab (SSSA, Pisa) with Prof. Paolo Dario as director, where
several aspects concerning to the feedback between visual information
and grasping have been developed for robotics assistance to tetraple-
gic persons. These activities have obtained financial support from an
Italian-Spanish Integrated Action along 1999-01.

Cachan Lab with Prof. Philippe Gorce as director for control modeling
of humanoid biped robots (shared with Paris), including the modeling
of kinematic control near and through singularities. These activities
have been performed along 2001-03 in the IFRATH framework with
some contributions to the French Handicap Network with MoBiVAP
as temporal external partner.

Mechanical Engineering Department of the Istituto Politecnico di To-
rino (Italy) with Prof. Guido Belforte as director, including the study
and development of artificial muscles (SMA: Shape Memory Alloys)
to be inserted in reciprocators inside a Program of Robotics Assis-
tance to paraplegic persons. These activities have obtained financial
support from an Italian-Spanish Integrated Action on Algebraic Geo-
metry between 2001-03 with Prof. Sylvio Greco as responsible by the
Italian side.

Institute of Industrial Automatics (IAI, CSIC) with Manuel Armada
and Pablo Gonzalez-Santos as main researchers for the development of
a hexapod robot between 2001-03, which has been designed to operate
in hazardous or unaccesible environments (inspection tasks in a nuclear
central). Unfortunately, the robot was never constructed.
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Laboratoire de Systemes Cooperatifs (LASC, Univ. of Metz, France)
with Prof. Alain Prusky as director. The joint activity was focused to
improve the semi-automatic indoor navigation of a wheelchair to be
used by persons with degenerative illness in brain. The main contribu-
tion along 2001-03 concerns to the adaptation of a variant of Kalman
filtering (IEKF) to the real-time generation of quadrilaterals maps ge-
nerated from a mobile camera which is embedded in a wheelchair.

Fourier Institute and INRIA Rhone-Alpes with Profs. Gerard Gonzalez-
Sprinberg and Radu Horaud as the main researchers, respectively. The
financial support of Fourier Institute is acknowledged and has allowed
to perform a cycle of conferences about Geometric Methods in Ro-
botics, where a first version of these notes has been presented. The
encouragement and ideas of Prof. Radu Horaud have been a source of
inspiration for the integration of methods based in the integration of
Robotics and Computer Vision inside the Lie theory.

Anyway, the responsibility for misunderstanding and mistakes in these
notes is only mine. Their encouragement, patience and generosity for sharing
ideas and expend their time around these topics are gratefully acknowledged,
nevertheless sometimes adverse circumstances.

Final remark: After performing the preliminary versions of this Course
between 1998 and 2000, competences linked to the current Robotics Course
have been assumed by other Department. Thus, and due to the lack of
academic assignation in this domain, these notes have no continuity from
the docent viewpoint from 2002. Nevertheless and after several comments of
some colleagues which encourage to me for a larger availability, perhaps some
of these materials have some interest for theoretical aspects of Robotics.
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2. The mechatronic support

The mechatronic support involves to mechanical architecture, electronic
components, control devices and expert systems in charge of managing all
of them. Their integration must guarantee the information exchange and
the compatibility between components relative to perception and action to
provide a feedback able of efficient interaction with the environment.

The integration must be able of managing proprioceptive and external
components in the PAC (Perception-Action Cycle) which characterizes the
behavior of all live beings. Several millions of evolution have generated a lot
of very efficient architectures at different scales which are adapted to quite
different functionalities and environments.

The very quick technological progress able of integrating complex tasks in
hardware devices (which previously have been developed via software) makes
very difficult to perform an update of mechatronic devices. Thus, instead of
a catalogue of sensors and actuators, we shall develop along this section a
functional approach which is biologically inspired. Obviously, we are still far
from achieving the efficiency of specialized mechatronic architectures, but
biological inspiration provides meaningful keys to be modeled and developed.

Roughly speaking, from a biological viewpoint a classical distinction in-
volves to “shape” and “function”, which can be modeled in geometric and
analytic terms, respectively. Microscopic organisms are able of modifying
their shape by using chemical reactions, and to perform different functiona-
lities going from eating to locomotion tasks; in this case, the kinetic energy
is generated from different potential levels.

In more complex mechanisms, going from insects till vertebrate animals,
some key facts arise from reflex or voluntary movements which allow to
generate forces and moments from shape changes linked to articulated com-
ponents. This approach takes advantage of symmetrical principles in geo-
metric design and asynchronous movements between simplest models (such
as oscillators, elastic springs and their mutual interconnections on progres-
sively complex structures), with their corresponding algebraic (space move-
ments) and infinitesimal versions (going from pluricellular till dense repre-
sentations).

From a mathematical viewpoint, the integration of the above models is
performed at different levels which involve to

1. a geometrically inspired Design as the support for all components in
regard to the tasks to pe performed;
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2. an algebraic approach to Statics organized around equilibrium confi-
gurations as attractors for the dynamics;

3. a kinematic analysis for tasks to warrant the adjustment to stable
trajectories along complex motions; and

4. a dynamic integration including optimization and control issues lin-
ked to structural equations of motion, controllability and stability of
solutions.

Along next subsections we will provide some additional details for each one
of the four items.

2.1. Design. A geometric insight

Design includes geometric aspects, i.,e. relative to the whole mechanism
and a representation of the scene, and kinematic aspects, i.e. relative to the
tasks to be performed. Along this subsection, the main attention is paid to
geometric design; in the subsection §2,3, we shall display some aspects of
kinematic design with an additional support arising from computational to-
pology and dynamical systems which are natural extensions of the geometric
approach.

Geometric principles provide robust models, i.e. which are stable un-
der small perturbations or under uncertainty conditions relative to capture,
tracking or propagation phenomena. Thus, robust models for robotics inheri-
tate incorporate basic geometric principles from the beginning. This choice
is motivated by the geometric nature of simplest transformations such as
rotations and translations in low-dimensional cartesian spaces.

Geometric Design can be understood in several ways. Assisted Design
has two paradigms which are labeled as CAD/CAM (Computer Aided De-
sign/Manufacture) and they have a geometric nature from the beginning
including different kinds of

linear and non-linear k-dimensional geometric primitives;

linear transformations usually represented by matrices belonging to a
classical group and topological operations 39

39Quaternions provides a much more precise (multi)vector approach to linear transfor-
mations which is included in the Geometric Algebra framework
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topological operations relative to cutting or culling pieces and/or mat-
ching together basic pieces to compose more complex objects.

Thus, a geometric design is not an original claim. The pioneering work of
Pellionisz and his collaborators along the early eighties introduces tensor cal-
culus to model advanced functionalities for coordination tasks performed by
the cerebellum. The intrinsic character and covariance properties of tensor
representations provide an almost universal support for functional aspects of
any subject, which are still valid independently of environmental conditions.

An inconvenient of this approach involves to its formulation in matri-
cial terms which makes some cumbersome the understanding of underlying
ideas; in particular, matricial calculus must be replaced by a more intrinsic
version of geometric calculus (in the framework of Geometric Algebra), and
“translational effects” of geometric entities must be replaced by the use of
(metric, affine, Ehresmann) connections.

From the mid nineties, the use of varieties (as extension of manifolds) and
superimposed structures (fiber bundles, principal bundles, fibrations) with
their corresponding transformations, is becoming more and more common.
This approach is justified by the apparition of singular configurations or the
acquisition of singularities along the execution of some tasks. Furthermore,
the increasing role of Lie groups (and its infinitesimal version given by Lie
Algebras) has provided a powerful tool to integrate geometric design with
kinematic and dynamic aspects, including a geometric re-formulation control
and optimization issues.

All of them are a natural extension of the original geometric approach
to the design, because manifolds M and varieties X are obtained as the
result of matching together pieces which are equivalent to open sets of the
cartesian space. By taking appropriate embeddings or immersions of such
objects in cartesian spaces, one can consider the restriction of actions to each
object. Furthermore, differential or integral functionals defined on manifolds
or varieties are the natural extension of systems of ODE/PDE or variational
calculus defined originally on objects embedded in cartesian spaces.

2.1.1. A general approach

Symmetries are ubiquitous in any mechanical system, even at the lowest
level of action-reaction principles. Thus, it is natural search some type of
structure for symmetries and their interpretation in different (discrete, al-
gebraic, analytic) contexts. The simplest structure is given by a group of
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transformations which can be discrete (the group of permutations, e.g.) or
continuous; last ones can have finite dimension (some subgroup or quotient
group of regular matrices, e.g.) or infinite dimension (some subgroup of the
group of homeomorphisms, e.g.)

To fix ideas, we shall restrict ourselves to continuous finite-dimensional
groups. Following the Erlangen’s Program of F.Klein (1873), the structural
group G of a Linear Geometry is usually given by a classical group, i.e. a
subgroup or a quotient group of the general lineal group which preserves
a quadratic or a bilinear form. The initial example in Robotics is given by
the Euclidian Geometry which is characterized by transformations leaving
invariant the Euclidian metric, i.e. the (semidirect) product of rotations and
translations in low dimension.

The description of Linear Geometries in terms of subgroups or quotient
groups of Classical Groups can be extended to a more general topological
framework with different superimposed structures which allow to incorpo-
rate usual tools of Analysis. To achieve this goal, it is necessary to replace

the ordinary cartesian space Rm by a base space B given by a (locally
symmetric) manifold M or a variety X, which is obtained by matching
together pieces which are equivalente to open sets of the cartesian
space; and

the classical group (given as a subgroup or a quotient of G = GL(m,R)
of regular linear transformations), by local symmetries (having a regu-
lar inverse) along paths (preferably geodesics) which extend elemen-
tary transformation of the Linear Algebra defined on lines.

General Topology is a natural extension of Geometry which is obtai-
ned by replacing the structural linear finite-dimensional group G linked
to a group G of linear regular transformations by a topological infinite-
dimensional group of bi-continuous regular transformations. In particular,
General Topology is characterized by the set of properties (dimensionality,
separation, connectedness, compactness, etc) which remain invariant by the
action of the group of homeomorphisms 40.

For each additional structure (differentiable, algebraic, analytic) on the
topological space X, one obtains a Cr-equivalence between varieties where
r = ∞ (differentiable clase), r = rat (algebraic case) or r = ω (analytic
case). Superimposed structures on these Cr-varieties must verify compati-
bility conditions between local data which are essentially the same as the

40A homeomorphism between two topological spaces X and Y is a bijective and bi-
continuous map f : X → Y , i.e. f and f−1 are continuous
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given for the base space B; so, it is possible to lift the Cr-structure of the
base space to the total space E of the superimposed structure in a natural
way. The main structures which are useful in Robotics are given by fiber
bundles, principal bundles and topological fibrations (Ehresmann).

Some almost obvious advantages of the topological approach consists of
the following features:

It allows to incorporate regular deformations to the geometric models
which are initially rigid ones; so, one obtains a quite general sup-
port for adaptive strategies relative to paths (linked to trajectories,
e.g.), functions (crucial to evaluate critical phenomena linked to phase
transitions, e.g.) or functionals (variational principles linked to action
functionals or optimization issues, e.g. ).

It provides a support to consider different structures in a simultaneous
way on the same original base space B (in terms of tensorial products,
e.g.), including different behaviors (covariant and contravariant, e.g.).

It integrates propioceptive and stereoceptive behaviors in terms of in-
trinsic data (relative to the variety or its tangent fiber bundle, e.g.)
and extrinsic data (relative to normal bundle, e.g.).

It allows to represent any kind of transport models (in terms of dif-
ferent types of connections) and propagation phenomena, including
integrable and non-integrable behaviors on the same support.

It provides quite general models for hierarchies appearing w.r.t. the
mechatronic architecture (fusion of information) and eventually chan-
ging environments, in terms of flag bundles, as universal model for any
stratified map.

Almost all are well known and they appear in several references which
have appeared from the early nineties. Perhaps, the less known is the last
one, because it involves to the geometry of flags. Roughly speaking, a flag
is a collection

L0 = (0) ⊂ Lk1 ⊂ . . . Lki ⊂ Lki+1 ⊂ . . . V

of nested linear ki-dimensional subspaces Lki of a vector space V . A priori,
the vector space can have arbitrary (even infinite) dimension as it occurs
in Hilbert spaces, e.g. However, to fix ideas, we shall restrict to a finite
collection of ki-dimensional subspaces of a n-dimensional vector space V
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over R. If we denote by means W `i = Lki/Lki−1 the quotient subspaces,
one has a decomposition of V in a direct sum of W `i where `i = ki − ki−1
represents a partition of n := dim(V ). The action of the general linear group
GL(n;V ) on V induces an action on the flags of “nationality” (`1, . . . , `r)
where r is the number of meaningful subspaces. In particular for r = 1 one
obtains the projective space, whereas for r = 2 one obtains a Grassmann
manifold.

In our case, nested subspaces Wki ⊂ Wkj provide a simplified linear
representation of hierarchies involving the fusion of internal (propioceptive)
and external (relative to environmental) information which is included in an
ideal space V to represent the whole Perception-Action Cycle (PAC):

The main goal for Perception is to perform the fusion of the relevant
information in terms of sensor fusion which is performed on a geometric
representation of the whole mechatronic architecture (similar to the
performed by the cerebellum in the human case).

The main goal for Action is to organize, coordinate and execute actions
by following hierarchies subordinated to the task, which represent an
interaction with the environment.

In next two paragraphs, one displays a first approach to both issues and
some snapshots for their integration in a common PAC.

2.1.2. Sensors for Perception

Perception is the ability to sense the internal state (propioceptive sen-
sing) and the environment (extereoceptive sensing) and to interpret these
data. Capture is performed from sensors, whereas interpretation is perfor-
med by some kind of “embedded intelligence”, which can be of reflex type
(already present in insects, e.g.) with partially distributed or, alternately,
centralized architectures. The most difficult part concerns to the design and
implementation of expert systems for different kinds of embedded intelli-
gence, which are introduced in the subsection §3,4. In this paragraph, one
considers only some general aspects relative to the capture and the fusion
of information from sensors.

Neverthelss the advances of last years, we are still far from achieving
a sensorial system as complete as of invertebrates. To fix ideas, we shall
concentrate our attention in sensors relative to the internal state of the
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robot. In [Eve95] one can find a very explicit description of sensors for ro-
bots which are commonly used in advanced manipulators and/or mobile
platforms, and which have been extended and improved along next twenty
years. The most appropriate description of sensors for our approach makes
a mechanical description involving to localization (position and orientation)
transducers, (linear and angular) velocity transducers and force sensors (see
[Sic01], chapter 8, e.g.). This description provides a unified treatment in
terms of propioceptive information which is updated in terms of motions or
interaction with the environment.

The frequency domain for any kind of 1D/2D/3D signals can be transfor-
med in the spatial domain with a similar formalism. Hence, nevertheless the
initial nature of signals, all the available information can be reformulated in
mechanical terms with involve to the kinematic and dynamic extensions of
the original geometry. The paradigm for this kind of transformations is given
by the two-fold approach to Computer Vision which can be formulated in
frequency- and domain-based terms. Thus, the Fourier analysis provides the
general framework to convert different kinds of signals in a representation
of image from which a scene representation can be obtained.

The first module of CEViC (Curso de Especialista en Vision por Compu-
tador) is devoted to Image Processing and Analysis; in particular, chapter
6 shows this equivalence and chapter 7 displays some more recent develop-
ments in terms of wavelets. Moreover, 3D Reconstruction tools provide a
representation of the ambient space (module 2 of CEViC), Motion estima-
tion and related topics (image and scene flows) provide a representation for
kinematics (module 3 of CEViC) and the Recognition tools (module 4 of
CEViC) provide the key for interaction in complex environments.

Classical approach to flows is based on visual information, where flows
appear associated to vector fields linked to real or apparent motion. The
need of integrating information arising from scalar fields or more general
tensor fields involving quite different information (arising from different sen-
sors e.g.), suggests the development of tensor flows with their corresponding
computational tools for an efficient management. This goal requires an in-
teraction with more advanced Visualization tools which are presented in the
module 6 of Computational Mechanics. 41

41In https://www.tensorflow.org/ one can find related models and software tools.
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2.1.3. Actuators for Action

All mechanical devices produced by the man can be represented as a
combination of rigid transformations involving rotations and translations.
However, the appearance is distorted by sensors, the transmission generated
instabilities and vibrations, and it is necessary to correct trajectories along
the tasks execution by balancing forces to be applied and their generated
moments.

Biomechanical models provide a permanent source of inspiration to im-
prove the pipeline associated to the above remarks, and it is exploited in an
intensive way along the module 5 (Humanoid Robots) and module 6 (Ani-
mats) of this matter. However, all biomechanical models are redundant:
several muscles can be combined to perform the same task and each muscle
can contribute to different motions. Any redundant mechanism requires the
design and implementation of advanced optimization procedures for tasks
execution.

To avoid troubles linked to optimization procedures, we shall suppose
that mechanisms are not redundant ones. In this case, usual approach to
actuators in Robotics is performed in terms of different kinds of motors ac-
ting on joints to generate small motions, which are propagated along the
kinematic chains to produce the desired movement at the end-effector of
each component. The main elements for joint actuator systems must consi-
der transmission mechanisms, servomotors (including electric and hydraulic
ones), power amplifiers and power supplies 42. Some practical problems to
be solved concern to correct localization, tracking, adapting behavior and
correcting vibrations.

From an algebraic viewpoint, the spatial representation of possible con-
figurations can be geometrically represented in terms of subvarieties of a
product of Lie groups; kinematic and dynamic effects are reformulated in
terms of subbundles of their tangent spaces. Lie groups are parallelizable
and, consequently, their tangent space (Lie algebra) are trivial ones. Howe-
ver, mechanical (geometric, kinematic and dynamic) constraints introduce
subvarieties of the product of Lie groups which are far from being trivial
ones. In particular, there appear non-integrable subbundles which are linked
to non-holonomic constraints for kinematics (drift effects, e.g.) and dyna-
mics (friction cones, e.g.). Thus an extended geometric approach is necessary
to understand the whole mechanical representation for Robotics.

Above, in the paragraph §1,3,3 we have reasoned the need of replacing

42See Chapter 8 of [Sic01] for more details
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usual smooth framework by a semianalytic framework to include a collection
of behaviors for legged robots. By the same reason, it is necessary to extend
usual control devices linked to the feedback between sensors and actuators.
Geometric control devices are organized by following the typical hierarchy in
Advanced visualization which involves to scalar, vector and tensor fields in
correspondence) with position (Lyapunov-Kalman), impedance (Poincaré-
Thom-Brocket) and force-based (Newton-Euler-Sussman) control.

The main novelty of the approach performed along these notes in regard
to these issues is linked to the use of symmetries (algebraic, infinitesimal,
dynamic) to design and implement a feedback between all of them. Let us
remark that algebraic hierarchies linked to symmetries can be extended to
the integration of information arising from sensors in a shared representa-
tion of the evolving environment. In particular and in regard to Computer
Vision techniques (which the most relevant information for navigation of
autonomous robots), (a) scalar fields involve to errors minimization w.r.t. a
goal function (for any kind of distance or min-max optimization procedures);
(b) vector fields involve to motion estimation (concerning to flow image and
flow scene, e.g.); and (c) tensor fields involve to the estimation of complex
representations relative to mechanical quantities (energy, work, etc) linked
to a finite number of vectors and co-vectors.

2.1.4. Smart devices for the PAC

Beyond mechatronics architecture, it is necessary to incorporate a com-
bination of robust and adaptive models for managing expert systems. The
lowest level does correspond to reflex motions which are managed in a de-
centralized way and are located along some kinematic chains. We are more
interested in voluntary movements which depend on centralized architectu-
res, where some tasks have been automatized along several millions of evolu-
tion years by following a hierarchy going from reflex to voluntary behaviors.
The incorporation of uncertainty relative to signals and commands and their
feedback, requires to introduce a probabilistic approach.

At least from the eighties, Artificial Neural Networks (ANN in the suc-
cessive) are commonly used as support for modeling different functionalities
linked to expert systems under uncertainty conditions. Roughly speaking,
ANNs have a multilayered structure with at least three (input, hidden, out-
put) layers and a system of variable weights for nodes or “neurons”. They
are organized by following a regular planar distribution which are intercon-
nected by following regular patterns; learning procedures modify weights
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according to the tasks to be developed. Convergence rate (linked to learning
procedures) to a task and the lack of adaptability are two serious inconve-
nients which require additional structures. 43

Design and implementation of Expert Systems require to introduce a
stratification between different kinds of logic which allow to manage the
responses. A typical scheme is given by three successive steps corresponding
to logic of classes, logic of (first and second order) predicates and descriptive
logic (managed by Fuzzy Algorithms), by following an increasing order of
difficulty. Its computer implementation eases an interaction corresponding to
reflex motions, learned behaviors and reflective procedures linked to decision
making in complex environments.

To ease more complex interactions with humans, it is convenient to consi-
der the above three levels and adopt a biological inspiration based on Central
Nervous Systems (CNS in the successive) of higher mammals. Furthermo-
re the spinal chord, the CNS has three main components corresponding to
basal ganglia, cerebellum and brain which constitute the encephalous:

Basal ganglia are in charge of generating an appropriate balance of
neurotransmitters to avoid unstability, maintaining equilibrium and
stability along trajectories.

The Cerebellum displays an almost perfectly homogenous structure:
All cells are “identical” between them and the relative disposition is
designed on a cubical web. This reticular structure reproduces at a
symbolic level the relative distribution of different organs whose beha-
vior is automatized along the gestation or the first stages of life. It
plays a role as coordinator and regulator of complex tasks which, after
learning, are performed in an automatic way.

The Brain is the most complex organ because it is in charge of pro-
cessing, analyzing and matching the information arising from different
sensors; evaluation of fusion, planning and executing tasks in a volun-
tary way. It has five layers (with jumps in their interconnections), with
a lot of distinct cells whose functionalities are unknown, still.

Currently, it is not viable to try of imitating the hug morphological and
functional complexity of brain. Thus, the main challenge concerns to the

43The most relevant solutions are given by Genetic Algorithms (GAs), Evolutionary
Programming (EP) and Self-Organized Maps (SOM) which are commented in the §3,4
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brain modeling from a functional viewpoint 44. To accomplish this goal,
at the late eighties M.Pellionisz introduces an almost forgotten geometric
structure which is based on tensor calculus.

The justification for the use of tensors is very simple: If we wish to per-
form a simultaneous tracking of evolving vector quantities and an evaluation
of their effects on different components, we need to introduce s vector fields
for tracking and r differential forms to evaluate its joint effects, which are
formally represented by a (r, s)-tensor on a variety supporting the multiply
ramified cerebral structure. A multivector reformulation has been recove-
red in the Geometric Algebra framework. Differential aspects are linked to
different kinds of connections which are explored in the third module.

2.2. Objects and transformations for Statics

A geometric approach provides a general framework for static issues
involving to the scene or initial configurations of each robot. Its main ad-
vantage is given by the objective character of geometry, independently of
the use of coordinates systems (cartesian, spherical, cylindrical, e.g.) or vec-
torial representation (ordinary vectors, multivectors, Geometric Algebra).
The management of each geometry is performed in terms of groups of trans-
formations (given usually by groups) and operators defined on geometric
objects (for optimization issues, e.g.).

There are two complementary strategies to describe a geometry which
are labeled as top-down and bottom-up:

Top-down approach which supposes the geometric framework is al-
ready given. It is appropriate for representing structured scenes, known
configurations and pre-determined motions to be accomplished by the
robot. It uses known geometric models which have been previously
described from the design phase. Usual motions are a composition of
linear transformation involving the robot mechanisms or, alternately,
a representation of the scene linked to a virtual camera representing
an ideal observer.

Bottom approach with a higher uncertainty level for the scene or the
task to be developed. It is appropriate for exploration, navigation in

44Morphological aspects are too complicated, and one ignores the role played by internal
layers, different cells and irregular distribution of connections between non-necessarily
consecutive layers
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open scenes, feedback under uncertainty. It uses different types of va-
rieties which must be constructed by matching together small pieces of
increasing degree. So, we have PL, PQ or more generally PS-varieties
(Piecewise Linear, Quadratic or Smooth varieties) which provide ap-
proaches to more general and ideal solutions given by algebraic or
analytic varieties.

Hybrid methods are based on a feedback between both approaches, and in
non-structured scenarios are the most efficient ones. One needs to introduce
symmetrical principles going from the simplest reactive models to the most
complex reconfigurable behaviors, including self-adaptation to chainging en-
vironments. Along this subsection we insert some general comments about
(linear vs non-linear) geometries, and functional aspects with two illustra-
tions concerning to Optimization issues and algebraic inequalities.

2.2.1. Linear Geometries

Linear Geometries are characterized by a linear group of transforma-
tions, i.e. subgroups G of the general linear group GL(n;R) which preserve
some bilinear or quadratic form defined on the ambient space or the tangent
space. In some cases, these groups are considered up to scale. i.e. we consider
their superimposed projective structure 45.

According to the Erlangen’s Program of Klein, there exists a natural hie-
rarchy between groups which is translated to a natural hierarchy between
Linear Geometries. This remark is very useful because it allows to design
coarse-to-fine approaches by increasing the number of parameters to be es-
timated depending on the task to be performed by the robot. The most
common geometries used in Robotics correspond to the following groups

Special Orthogonal Group SO(m) = {A ∈ GL(m;R) | TA.A = Im}
which corresponds to rotations in the ordinary space for m = 2 or
m = 3. Its semidirect product with the translations group Rm provides
the euclidian group GE which is characterized by the preservation of
euclidian distance and allows to consider the euclidian space Em as
the cartesian space Rm with the euclidian norm as the distance.

The group of similarities is the quotient of the euclidian group by the
homotheties, i.e., the multiplicative group of units R∗ := {λIm | λ 6= 0}

45Typical applications concern to the application of Computer Vision techniques for
navigation, visual servoing and interaction in complex environments
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where Im is the diagonal identity matrix.

The affine group which is the semidirect product of the general linear
group GL(m;R) by the group of translations Rm, i.e. it is represented
by (m+1)× (m+1) whose first m×m box is an element of GL(m;R),
last column is equivalente to a translation vector (v, 1)T las last row is
the vector (0, . . . , 0, 1). Some important subcases correspond to replace
the general linear group by the special linear group or the conformal
group:

• The Special linear group which preserves the volume form.

• The Conformal group which preserves angles between lines.

The symplectic group on R2m which is characterized by the preserva-
tion of the anti-involutive matrix J verifying J2 = −I (the natural
extension of the condition i2 = −1 in matricial terms). It preserves
the structural equations of the Analytical Mechanics in the formula-
tion given by Hamilton. The contact geometry is the analogue for odd
dimension, and it is very appropriate to analyze Analytical Mechanics
linked to each constraint appearing in Optimization or control issues.

Each structural group is a subgroup of the general linear group of regular
transformations. Furthermore, it has a natural differential structure, i.e. is a
Lie group whose smooth structure is compatible with the group action and
the inverse (as continuous operations defined onto the group). Its tangent
space TeG at the neutral element e (the identity matrix in the above ca-
ses) defines the Lie algebra which is denoted as g. The direct estimation of
group transformations is a veri difficult problem; however, the estimation of
generators of Lie algebras is very easy. Hence, the natural strategy consists
of estimating generators of Lie algebra, and compute its exponential by the
map exp : g→ G which is a local diffeomorphism.

2.2.2. Nonlinear Geometries

Nonlinear Geometries involve to curved objects -given by inequalities de-
fined by a finite number of non-linear functions fi(x)- and their transforma-
tions -given Cr-equivalences-. The “simplest” case corresponds to functions
given by polynomials pi(x) defined usually on R or C; one can consider
different types of Cr-equivalences including the following cases:
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the Algebraic equivalence (also called birrational) r = alg corresponds
to take transformations given by the group of birational functions (to
warrant their invertibility) fi(x) = pi(x)/qi(x) which are not everyw-
here defined (the vanishing of denominator gives an indeterminacy
region); usually, we shall take pi(x) and gi(x) as rational functions,
with snakes and splines as typical examples;

the Differential equivalence (also called smooth) r =∞ corresponds to
take transformations given by the group of (local) diffeomorphisms, i.e.
homeomorphisms h(x) which are differentiable or smooth with inverse
differentiable. Let us remember that a homeomorphism is a bijective
and bicontinuous map, whereas a smooth map has all derivatives of
any order continuous and derivable. The generation of homeomorphism
is very easy: It suffices to integrate an ODE or, from a more global
viewpoint, a vector field. The condition of being a diffeomorphism is
much more difficult to verify. Thus, very often we shall work with
different kinds of (scalar, vector, tensor) fields, by incorporating only
a piecewise smoothness (PS) condition for practical solutions.

the Analytical equivalence (also called holomorphic in the complex
case) r = ω corresponds to take transformations given by the group of
(local) bianalytic functions. Let us remember that an analytic function
at a point x is characterized by a convergent series development at such
point. Their incorporation allows to treat any kind of singularities,
including non-isolated singularities.

Each type of Cr-transformations is used for different proposals, accor-
dingly with the chosen geometric framework. All of them have relevant ap-
plications in Robotics including the following ones:

Algebraic Geometry is the natural extension of the Geometry of low de-
gree curves and surfaces (quadrics, cubics, quartics). They have been
applied to solve kinematic problems in the joints or configurations
space C (by using symbolic algebra for trigonometric functions, e.g.),
accessibility issues for the end-effector of each kinematic chain in the
working spaceW, effective computations for the composition of move-
ments under low-degree constraints, resolution of algebraic transforms
of differential systems (by means the Laplace transform, typically), or
to identify singular configurations 46.

46Geometric singularities are linked to components alignement, whereas kinematic sin-
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Differential Geometry including the study of any kind of (scalar, vec-
tor, tensor) fields and their solutions on differentiable manifolds M ;
hence, they can be applied to any Lie group G and its Lie algebra
g = TeG. In particular, this kind of tools eases the tracking of control
points, the integrability of dynamical systems (given by distributions
of vector fields or systems of differential forms), piecewise smooth inter-
polations (between varieties or functions, including their applications
to Lie groups), non-holonomic effects in the non-integrable case (linked
to kinematic drifts or dynamic frictions, e.g.), optimization linked to
different kinds of functionals (energy, curvature) appearing in the reso-
lution of variational problems, robust vs adaptive control of any kind
of devices, modeling of cooperative (realization of a task, e.g.) vs com-
petitive (occupied space, propagation phenomena, e.g.) for multiagent
systems, etc.

Analytic Geometry for prolongation issues involving paths or trajec-
tories performed by control points, local analysis near to (geometric,
kinematic, dynamic) singularities, stratifications of configurations C or
working W spaces linked to a task to be performed (represented by
means a transfer function τ : C → W ) and their prolongations (en
terms of k-jets spaces), information fusion on an eventually singular
support (by means different kinds of Cr-transformations, preserving
or not symplectic or contact structures), regularization of signals (in
terms of activation-inhibition patterns depending on thresholds, p.e.)
in regard with the sensor fusion, stabilization in presence of eventually
non-linear vibrations, etc.

Hence, one can find a very large range of applications which is necessary
to reorganize in terms of Global Analysis involving manifolds as support
for non-linear geometries and non-linear operators or systems defined onto
them.

The use of non-linear geometries is not new in Robotics 47, but the-
re is no a systematic treatment from the geometric viewpoint including an
efficient management of singularities. To organize the large range of appli-
cations, we shall consider methods of Algebraic Geometry and Geometric
Algebra (please, do not mix them) along the first part including the two

gularities are linked to default rank of Jacobian matrices and their dynamical extensions.
Anyway, all of the are linked to default rank matrices, and this description eases an unified
treatment in terms of Geometric Algebra

47Some explicit mentions to Algebraic and Differential Geometry appears in [Sel95]
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first modules. In a complementary way, methods of (semi-)Analytic Geo-
metry will be developed in the third module (Robot Kinematics), whereas
methods of (an extension of classical) Differential Geometry will be develo-
ped in the fourth module (Robot Dynamics).Their integration for the most
advanced cases are developed in fifth (Humanoid Robots) and sixth modules
(Animats), including some connections with external areas.

The performed stratified approach does not intend to develop an illus-
tration of geometric techniques. It is just the contrary. My goal is to prove
how the geometries provide the natural language for a stratified approach
to the Robotics, where stratifications represent the different kinds of hie-
rarchies between systems accordingly to the tasks to be developed. Lie ac-
tions provide algebraic support for a more compact presentation which eases
propagation phenomena, whereas Geometric Algebra provides an intrinsic
representation which allows to unify precedent approaches.

2.2.3. Optimization algorithms

Robotic system design and many problems in robot task planning can be
formulated as optimization problems. In most cases, optimization consists of
minimizing a functional or a set of functionals; more precisely, a minimiza-
tion problem is defined by a pair (L, f) where L is a set of feasible solutions
and f : L → R is a cost function where x∗ ∈ L is an optimal solution if
f(x∗) ≤ f(x) for all x ∈ L. There are a lot of strategies for optimization
issues; usual prerequisites in Robotics are linked to real-time execution and
their robust vs adaptive behavior.

Linear programming use convex hulls for solving linear optimization pro-
blems which are the simplest ones with convex regions where optimal so-
lutions are usually located at the boundaries. Quadratic programming (or
more generally, Dynamic Programming) poses additional problems, because
regions are not necessarily convex ones, nor optimal solutions are necessa-
rily unique. In general, one introduces (eventually augmented) lagrangians
which minimize the difference linked to desirable equalities, and incorporate
additional constraints linked to the minimization of additional constraints
linked to momenta, energy, work or any kind of mechanical constraints.

From a general viewpoint, the presence of a large number of non-linear
constraints for the set L of feasible solutions makes harder optimization
problems in Robotics and require more advanced tools. Constraints for op-
timization problems can be relative to external or internal conditions; they
can involve to geometric, kinematic or dynamic aspects, in terms of (scalar,
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vector, tensor) fields by following an increasing difficulty. Jets spaces provi-
de a general framework to manage hybrid constraints which can involve to
several “levels” of k-jets extension.

Furthermore, in some cases one has non-holonomic constraints, i.e. they
involve to kinematic (resp. dynamical) variables or functionals which do
not arise from geometric (resp. kinematic) properties. Two typical exam-
ples concern to drift effects in Dynamics or friction effects in Dynamic. In
the classical framework (fiber bundles or principal bundles), non-holonomic
constraints introduces non-integrability along subbundles which must be
modeled and solved at least in an approximate way.

Some tractable cases can be described in terms of default rank matrices
linked to kinematics and dynamics which can be formulated in terms of
Geometric Algebra.

Some extremal (discrete vs smooth, respectively) cases concern to

Optimization on graphs linked to paths which minimize some scalar
(such as length, e.g.) or maximize the cardinality of matching (in iso-
morphism subgraph problem, e.g.).

Optimization of fields or functionals, including several subcases such
as:

• Optimization of scalar fields linked to isolated functions defined
on a manifold such as height, depth, distance, etc. It is solved by
computing critical values of functions.

• Optimization of vector fields such as flow maximization, which is
solved in terms of flow box, e.g.

• Optimization of differential forms (or covectors) such as the work
performed by a system, forces to be applied or torques at joints,
e.g.

• Optimization linked to variational problems defined by an action
functional (Lagrangian) such as the total energy of a system, e.g.

If constraints verify simple conditions (linearity or convexity, typically),
one has deterministic or randomized algorithms (in presence of huge data)
for finding solutions to all of them. However, the apparition of several non-
linear or even non-smooth constraints for the boundary of regions –even for
the simplest cases described above– poses problems which are much harder
to solve.
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A typical strategy for managing multiple constraints which can appear
in a sequential way corresponds to the reformulation of the optimization
problem in terms of weighted Voronoi diagrams. In the geometric case, we
are looking for elements which minimize locally the distance w.r.t. a co-
llection of nodes which are labeled as Voronoi sites 48 From a much more
interesting dynamical viewpoint, Voronoi sites act as attractors and nodes
as repulsors, with saddle points located at the intersections of Voronoi edges
with bisectors.

The radial vector field for each Voronoi site represents the simplest pro-
pagation model linked to (an eventually normalized version of) the gradient
vector field. In this case, each node can represent a milestone to be achie-
ved by an evolving system which is in charge of managing a hierachised
system. The lower envelope of local distances w.r.t. a finite collection of
functions f1, . . . , fn provides the support for global functional to minimize
giving a minimization diagram for the resulting functional representation.
Furthermore, the introduction of indices linked to the lower envelop pro-
vides ordering criteria (managed by sorting lists, e.g.) even in presence of
non-linear constraints eventually linked to modifiable weights.

The problem becomes a little bit more complicated in presence of mobile
data, where the motion can be “absolute” (external to the robot) or relative
(linked to egomotion of a mobile platform). In this case, metric constraints
are much more difficult to evaluate in real-time,, and a hierarchy going from
topological, functional, and metric aspects must be designed with their co-
rresponding feedback procedures, in presence of uncertainty. Again, optimi-
zation procedures on symbolic representations (different kinds of graphs and
trees) provide a first solution for this problem. Some typical problems which
are considered along the module 2 are the following ones:

Development of more general models (beyond the regular case) invol-
ving Duality between Optimization and Control issues in presence of
multi-objective criteria and different control modes.

Optimal control and decision making policies in poorly structured or
mobile environments (traffic scenes, e.g.) under changing environmen-
tal conditions for an individual agent .

Algorithms for simultaneous tracking and scheduling processes, alloca-
ting resources (energy, distribution of forces), and decomposition of

48See the first module of my notes about Computational Mechanics (in Spanish) for
details and references.
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tasks and organization of teams of robots in a wide range of applica-
tions.

Feedback between robust and adaptive methods arising from relations
between fine geometric and coarser topological approaches.

Most these techniques have an almost universal character and they have
been applied to optimal resources allocation relative in static environments;
a typical solution can be developed in terms of weighted Voronoi diagrams
49 and/or some problems in Economic Theory 50

Their applications in Robotics are a little bit more complicated and
interesting, because the incorporation of changing environmental conditions
requires a more dynamical approach to Optimization and Control issues in
regard to dynamical systems under evolving initial and boundary conditions.
A first approach can be designed in terms of constraints given by differential
inequalities. To fix ideas, we restrict ourselves to the algebraic case, which
is considered in the following paragraph from a theoretical viewpoint.

2.2.4. Differential algebraic inequalities

Constraints can involve not only to geometrical issues, but to “kinematic
quantities” which are expressed in terms of vector fields, differential forms,
tensor fields or differential operators in general. However, we can reason
in a geometric way, not only for (scalar, co-vector or tensor) fields, but for
differential operators, also. Indeed, (the orbit of) any k-th order ODEs can be
represented as a subset of the k-jets space. Hence, differential (in)equalities
can be interpreted as constraints in the jets space. A more classical approach
uses the Laplace transform which allows to interpret differential equations
in terms of the linked algebraic symbol given by a polynomial. The interplay
between classical geometric invariant and differential invariant theory is a
research field with a lot of open problems to be solved.

From a more applied viewpoint, discrete and continuum mechanics play
an important role in the modeling of multibody systems in contact, which
in turn are central to robot manipulation. Traditionally, these systems are
governed by differential algebraic equations (DAEs). In order to be able
to model unilateral obstacle constraints and/or more general environmen-
tal changing constraints, these DAEs have to be augmented by inequalities.

49See references in my web page and my publications available in the web.
50See my notes about Métodos Diferenciales en Teoŕıa Económica (in Spanish language).
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Again, the Semi-analytic Geometry 51 provides the right framework for sol-
ving this kind of problems.

The resulting differential algebraic inequalities are special instances of
differential inclusions between subsets verifying additional algebraic pro-
perties (ideals of a ring, e.g.). A typical well-known example is given by
Frobenius integrability conditions for differential systems 52. However, the
apparition of non-holonomic constraints and their global characterization
(as non-integrable subbundles), requires additional theoretical and nume-
rical developments going beyond the classical integrability conditions. In
particular, some required developments involve to

Qualitative behavior which is useful for modeling robustness issues
around stable solutions. The interplay between differential topology
and dynamical systems is an old topic going back to Poincaré, with im-
portant developments from sixties (Arnold and Smale, independently),
but their discrete versions are waiting for more computable solutions.

Simulation under uncertainty with self-adaptive or resilient behaviors;
this issue is related with computational dynamics, and/or dynamic mo-
deling based on materials with some kind of memory for the recovery
of original shape, e.g.

Non-smooth analysis including not only the analytical case which has
been described above, but discrete approaches to differential methods,
also. Discrete or PL-versions for vector fields and discrete differen-
tial forms provide two areas with relevant developments from the late
nineties.

The development of Optimization methods in the PS-framework with
adaptive constraints represented by differential ideals has a lot of open
problems waiting to be solved. In particular, connections with Differential
Theory of Invariants (Olver) display several connections with the main topics
of the approach developed along these notes which is transversally crossed
by Lie groups and algebras, semi-analytic stratifications, Geometric Algebra
for jets spaces

51Semi-Analytic (resp. Algebraic) Geometry is locally defined by a finite set of analytic
(resp. algebraic) inequalities fi(x) ≤ ai

52See the module 4 (Differential Forms) of my notes on Differential Geometry and
references therein, e.g.
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2.3. Tasks. A kinematic approach

A basic taxonomy for topological models concerns to the continuous
nature of models vs discrete nature of data. Discrete aspects involve to
information capture and generation of signals and commands; whereas con-
tinuous models involve to sets and functionals. This remark is valid for the
three steps of Mechanics (Geometry, Kinematics, Dynamics), but in this
subsection we shall paid a special attention to kinematic issues related to
the execution of tasks.

Traditionally, one starts with continuous kinematic models in terms of
(scalar, vector, tensor) fields, and then introduces a discrete version which
allows to connect with the information capture, fusion and tracking. The
simplest continuous model is performed in terms of cartesian space Rn which
provides the support for different linear structures labeled as euclidian En,
affine An or projective Pn structures. Other interesting structures for Me-
chanics which are linked to the preservation of geometric amounts are given
by conformal geometry (preservation of angles), symplectic geometry (pre-
servation of Hamilton-Jacobi equations or the associated 2-form) or contact
geometry (preservation of contact 1-form).

More generally, one can match together such basic pieces given by Rn
plus an additional structure by means of regular (algebraic, differential,
analytic) functions 53 to get non-linear algebraic, differential and/or analytic
varieties X. More realistic models are given by Piecewise Linear/Quadratic
(PL/PQ) or, more generally, Piecewise Algebraic (PA), Piecewise Smooth
(PS) structures. Embedded submanifolds of each geometric structure on a
space inheritate the structural properties of the ambient geometry. In par-
ticular, Cr-constraints require specific developments of each geometric fra-
mework to understand basic issues relatve to the considered Cr-structure.

Matching of any kind of additional structures is performed by using re-
gular applications which preserve some kind of (metric, affine, projective)
linear structure for the support. For arbitrary regular (algebraic, smooth,
analytic) functions one obtains a non-linear structure. Thus, it is necessary
to understand how matching can be performed for basic pieces correspon-
ding to euclidian (i.e. locally equivalente to En spaces) or affine (i.e. locally
equivalente to An spaces) pieces.

et-theoretical topology is usually modeled in terms of sets U of a to-
pological space X verifying “good properties” for set-theoretical operations
(union and intersection), and “regular” functions defined on such open sets.

53Regular functions are invertible with inverse belonging to the same category
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Roughly speaking, sets U represent data collections to be matched, whereas
regular functions represent the evaluation of functionals on such data which
allow to compare, group and classify them. Very often we have only a partial
information about the surrounding space or functions (or transformations or
operators) acting on a topological space. Some typical cases correspond to
regularization of signals, kinematic tracking of trajectories, or optimization
and control issues, where only fragmentary or discontinuous information is
available, usually.

In practice, the robot must take decisions by matching together such
partial information, even when data can not be matched in an exact way
(due to noise or deformations, e.g.) or in presence of uncertainty (partial
or skewed information, biased data, e.g.). Thus, furthermore well-defined
information (which can be described in terms of “deterministic” models), it
is necessary to incorporate a less-defined (which can be described in terms
of “probabilistic” models). Thus, the feedback between deterministic and
probabilistic modeling is present from the beginning, even for the design
and implementation of algorithms and the devices in charge of managing
any kind of kinematic information. In particular, the statistical approach to
Mechanics requires a randomized version of fields (Markov).

Mechanical matching of common (continuous or discrete) data is per-
formed at different levels. The lowest level can be described in terms of
set-theoretical topology which provides mathematical tools for matching da-
ta for constructing models relative to sets and operators with any kind of
structure; initially, one supposes that such data are continuous, but discrete
data can be also matched to construct models. Next step consists of intro-
ducing additional (algebraic, analytic, differential) structures which allow
to guarantee stronger properties for more sophisticated problems involving
feedback procedures appearing in optimization and control issues, e.g. To
solve this problem we have a large diversity of tools. The nearest ones to the
approach performed to Robotics along these notes are the following ones:

Combinatorial topology involving configurations of linear and/or qua-
dratic constraints (geometrically represented as arrangements, e.g.)
which induce a tessellation of spaces which are meaningful for plan-
ning, tracking and executing tasks.

Algebraic topology involving to paths, cell decompositions and fun-
ctionals defined on them to identify geometric and topological changes
(relative to different kinds of scalar, vector or tensor fields) from inva-
riants.
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Differential topology involving to vector fields for trajectories, diffe-
rential forms to represent forces, connections to represent displace-
ments of geometric quantities, and their invariants on configurations
and working spaces. All of them include discrete versions which allow
to connect with the precedent items.

Dynamical Systems Theory involving the resolution of structural equa-
tions linked to robot kinematic and dynamics, with a special regard
to optimization and control issues.

2.3.1. Combinatorial and Discrete Topology

Discrete topology involves not only to (sparse or dense) clouds of isola-
ted elements (usually points), but to mutual relations between them. The
most common representation for such relations is given by symbolic re-
presentations (graphs, e.g.) which are superimposed to the original clouds.
From the 18th century (Euler), symbolic representations are represented by
graphs G (including trees T as graphs without cycles), or more generally
forests F given by a finite union of trees. Basic dynamics is represented not
only by weighted symbolic entities (graphs, trees or forests), but by activa-
tion/inhibition phenomena which modify the original state of each symbolic
entity; its formulation is given in terms of symbolic dynamics, also. Evolving
configurations give planar or spatial configurations where edges or faces are
regrouped to give new shapes.

A computational management of evolving configurations requires to iden-
tify “persistent configurations” to be reinforced, and their topological inva-
riants. Homology Theories provide a support for managing such superim-
posed structures, and compute their invariants by using combinatorial pro-
perties of the associated configurations. Usually, combinatorial topology is
focused towards the estimation of topological invariants linked to discrete or
sparse information which can be irregularly distributed. In particular and in
regard to some topics sketched above, graphs provide a general tool for gene-
ral configurations involving the whole structure or the external space for the
robot, in terms of configurations and working spaces. Very often (in presence
of non-structured data, e.g.) it is necessary to explore different possibilities,
including the worse case associated to all possible combinations.

Data organization requires introduce different optimization criteria in-
volving to ordering criteria (sorting algorithms, e.g.), minimize or at least
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bound some geometric amount (distance or area, e.g.) or kinematic amount
(energy expenditure, work to be performed, e.g.). The presence of local sym-
metries (arising from mechanisms or the external space) simplifies the data
treatment and, consequently, optimization strategies. Thus, it is convenient
to design strategies on locally symmetric spaces to minimize casuistics, and
to reinforce the robustness of algorithms.

The linked low-level strategies are described in terms of combinatorial
topology on the simplest homogeneous (cartesian, euclidian, affine, projecti-
ve) spaces, which considers local combinations of basic elements to generate
intermediate primitives. The static approach is developed along the first mo-
dule (anchored robots), whereas the dynamic approach (evolving graphs)
is developed along the second module (mobile platforms). This reasoning
scheme can be applied to configurations of 0D elements (points, vertices,
intensity maxima, e.g.), 1D elements (segments, arcs, linear or non-linear
arcs) or higher dimensional entities. Independently of dimensions and sha-
pes (even for curved primitives), the combinatorial arguments are always
the same. Some typical examples concern to

States of a system composed by several eventually mobile agents re-
presenting the current state of mobile elements (cars, control points,
etc) of one or several robots.

Configurations of 1D elements (segments/lines or curves, and their
grouping in polygonals/polyarchs or surfaces).

Evaluation of efforts performed by superficial elements (kinematic chains
contained in a plane), including generation of moments and their ef-
fects on the whole structure.

The support for internal (resp. external) spaces can be represented by a
graph whose nodes are points of control (resp. focus of attention, e.g.), whose
edges are links (meaningful segments or lines in the scene, e.g.) and whose
planar elements are planar kinematic chains or plats (resp. Some meaningful
problems involve to influence regions for each element (extensions of Voronoi
diagrams, e.g.) or their relative localization (in terms of arrangements, e.g.)
relative to PL or PQ elements.

There is no a unique strategy for solving all of them. Furthermore, geo-
metric elements can display different weights depending on their relative
importance, or the role which is played along the representation of a task
as a pipeline of subtasks. Thus, it is convenient to develop several com-
binatorially based models for solving this kind of problems. Some typical
applications concern to:
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Modular robots which are built of many identical modules, which can
be replicated in a semi-automatic way. Such devices can reconfigure
themselves to suit their environments. The configuration space of such
robots is inherently discrete.

Discrete actuators: Smoothly actuated robotic arms (and other mani-
pulators) can be replaced by a cheaper network of discrete actuators
(devices that extend or contract into only two positions). Cellular au-
tomata provide some interesting connections which are able of incor-
porating a distributed intelligence.

Discrete sensing: Instead of determining robot position and configu-
ration by a raster image (essentially, a continuous image of the en-
vironment), faster and cheaper robot localization can be achieved by
using a modest number of discrete sensors. Their integration in com-
plex networks eases the search and finding of patterns w.r.t. multiple
criteria.

Anyway, symbolic representations given by graphs (including trees or,
more generally, forests) play an important role to organize tasks, recombine
components and manage information which can be reused in different ways.

2.3.2. Algebraic Topology in Robotics

The main goals of Algebraic Topology are the characterization and classi-
fication of topological spaces by using algebraic properties. To achieve these
goals there are two strategies which consist of

describing classes of paths (corresponding to trajectories to be perfor-
med by control points, .e.g) or more precisely loops, i.e. paths which
are not contractible to a base point (due to the presence of obstacles,
e.g.);

superposing additional PL- or PS-structures (triangular or quadrangu-
lar meshes, e.g.) and study properties of functionals defined on them;
this kind of methods eases the design of mechanisms (in terms of
finite element methods, deformable plates based on B-splines, e.e.)
or the automatic generation of spatial representations (Digital Eleva-
tion/Terrain Maps) from the discrete information arising from sensors,
e.g.;
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combining the two approaches in terms of generalized loops on com-
plexes; in other words, try of extending basic constructions based on
closed loops (topologically equivalent to the circle S1), to higher dimen-
sional spheres in regard to metric constraints, propagation phenomena
and resolution of conflicts linked to the mutual influence between com-
ponents of PL or PS-superimposed structures.

Some meaningful applications of Algebraic Topology are related to

Motion planning from loop spaces for tasks requiring some kind of
displacement in presence of eventually mobile obstacles.

Interpolation models for arbitrary open paths and closed loops for tra-
jectories and mechanisms associated to kinematic chains and platforms
including several kinds of joints and links.

Simplified representations by means of (cubical or simplicial) comple-
xes linked to complicated scenes or objects (mobile entities, .e.g) with
a sparse collection of meaningful key points and/or segments to ease
an optimal control.

Symbolic representations in terms of cellular decomposition of con-
figurations and working spaces compatible with internal constraints
(linked to mechanisms) and external constraints (linked to obstacles
contained in the scene).

2.3.3. Differential Topology in Robotics

Differential Topology studies PS-objects (PS: Piecewise Smooth) X and
differentiable maps f : X → Y relating them from the differential viewpoint.
The condition for a map or a manifold of being smooth is very strong, but
the condition of being piecewise smooth is very commonly fulfilled. It allows
to perform local optimization procedures and, consequently, provides the
support for robust and/or adaptive control.

Differential Topology provides a support to apply the differential and in-
tegral machinery developed on cartesian spaces, including differential analy-
sis of functions, behavior of vector fields (to describe Kinematics on a variety,
e.g.), differential forms (to represent forces and the work performed by com-
ponents in terms of the cotangent space, e.g.), or any kind of geometric
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amounts which are transformed in a covariant way on a manifold, or mo-
re generally, a variety. To accomplish these tasks, it uses different kinds of
(scalar, vector and tensor) fields.

The simplest case does correspond to scalar fields which can be geo-
metrically represented in terms of level (hyper)surfaces linked to functions
f : M → R with “good properties” such as having only non-degenerate
critical points; for a smooth compact variety M , this kind of functions are
dense and they are called Morse functions. Their use allows to reconstruct
M by adjoining “cells” whose dimension is determined in terms of algebraic
invariants of the Hessian matrix Hess(f)(p) at each critical point p ∈ M .
Typical Morse functions are given by height, depth, scalar energy, distan-
ce intensity of a signal, etc. Critical levels correspond to local topological
changes which are expressed in terms of adjunction of cells.

Typical examples for vector fields on manifolds are given by gradient,
curl, divergence, which provide local versions for the (dual of) exterior diffe-
rential. Main related differential operators are given by Laplacian and their
generalizations. The classification of quadratic differential operators provides
the starting point not only for classification of systems, but for topological
analysis for their solutions. Typical tensor fields are linked to different kinds
of curvature, which can be reinterpreted in terms of the external space or
the “troubles to perform a task”.

Along these notes, the approach based in (scalar, vector, and tensor)
fields has been extended to consider more general constraints

defined on eventually singular varieties in the Stratified Morse Theory
framework for configurations and working spaces in Robotics, and their
feedback given by the transference map τ ;

given by dynamical systems in terms of PS-flows (and their integration
given by homeomorphisms, e.g.) with advanced control systems by
following Conley-Morse Theory.

functionals involving different kinds of curvature-energy functionals or
generalized forces acting on meaningful elements;

From a practical viewpoint, it is necessary to unify optimal control stra-
tegies for mechatronic devices, to design and implement efficient algorithms,
and optimal management of information. The development of specific sen-
sors, integration of multisensors on each body, and the development of distri-
buted intelligence between different agents provide solutions with increasing
performance.
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Distributed sensing and actuation systems, such as those made possible
with MEMS (Micro-Electronic Mechanical Systems) and nanotechno-
logy;

High dimension design problems, such as intelligent vehicle-highway,
sea- and air-traffic management systems;

Adaptive and friendly interaction with humans in less-structured en-
vironments by using supervised learning techniques, e.g..

2.3.4. Dynamical Systems aspects

Furthermore Control and Optimization issues which have been conside-
red above, some areas of increasing interplay between experts in Dynamical
Systems and Robotics involve to high complex tasks of humanoid robots
such as locomotion (including walking, running, jumping) and manipulation
tasks (including grasping and handling). Both of them require a feedback
between anticipatory and compensatory phases to stabilize and to improve
their performance.

The apparition of different phases (including open and closed loops, re-
localization, adaptation to changing environments) requires the development
of complex representations which can be recombined and reorganized de-
pending on variable weights. A typical motivation is given by networks of
cooperating robots which can be modeled as dynamical systems on graphs.
Symbolic Dynamics provides some interesting tools going beyond usual Dy-
namical Systems Theory. 54

In all cases, the discrete nature of signals and commands, motivates the
development of discrete versions of traditional approaches corresponding to
the smooth case. From the late nineties, there is an increasing interest in
developing discrete versions of Differential Calculus, including vector fields
(interesting for trajectories, e.g.) and differential forms (interesting for dyna-
mical aspects where forces or the work to be performed is modeled in terms
of differential forms, e.g.). However, some additional developments are re-
quired, specially in regard to the reformulation of classical Morse Theory for
multiple nodes interacting between them.

The changing environmental conditions requires a combination of robust
and adaptive strategies which can be organized around central (attractor vs

54See B.P.Kitchens: Symbolic Dynamics, Springer-Verlag, 1998, for an introduction
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repulsor centers e.g.), organizers for dynamics (saddle points and their ex-
tensions), or structurally stable behaviors (around limit cycles, e.g.). Due to
the uncertainty about initial conditions and the need of self-adaptive stra-
tegies, it is necessary identify invariants of dynamical systems w.r.t. defor-
mations. The Morse-Conley theory provides a support for these additional
requirements.

In the final report which summarizes some conclusions of the Works-
hop about The Interplay between Mathematics and Robotics 55 the authors
call the attention about the “increasing awareness of the hybrid nature of
artificially engineered (and naturally occurring systems) and the fact that
discrete and continuous dynamics interact in complex ways. The mathe-
matics of such hybrid systems is not well developed. Issues like robustness
to modeling uncertainty and to noise, and sensitivity analysis, are not well
understood. There is no systematic approach to developing abstractions of
dynamical systems and to decompose a dynamical system into a multi-scale
hierarchy of subsystems.”

The approach performed along these notes introduce a strategy which
combines some aspects of an extension of Morse Theory and some others
arising from weighted Voronoi diagrams:

Weighted Voronoi Diagrams allow to manage different organizers for
the dynamics according to criteria going from (different kinds of) me-
tric to ordinal criteria. It provides a spatial decomposition which is pri-
marily applied to working space, and next to the configurations space
for solving inverse kinematics and dynamic problems. This approach
allows to coordinate different strategies, and eases a framework for the
communications between different subsystems in terms of propagation
phenomena.

Morse Theory allows to manage critical behaviors linked to the presen-
ce of different functions (in terms of lower envelopes, e.g.) which act in
a sequential way in the working space. Environmental conditions can
be interpreted as different constraints represented by functions. Their
changes are represented by vector fields whose tangential and normal
conditions are controlled in terms of propagation phenomena, again.

Some applications of both issues for interacting robots are displayed in
the modules 5 (Humanoid Robots) and 6 (Animats) of these notes.

55National Science Foundation, Arlington, Virginia, May 2000
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2.4. Towards an dynamic integration

A leit-motiv which is transversal to the six modules of these notes con-
cerns to the role of symmetries along all the mentioned topics. Symmetries
are ubiquitous in Geometry (classical groups, principal bundles, e.g.), Topo-
logy (Cr-equivalences, deformations, e.g.) and Dynamical Systems (automa-
tic generation of homeomorphisms, first integrals, e.g.). More recently, they
have been used to integrate different viewpoints in regard to Differential
Invariant Theory (Olver et al), Equivariante Stratifications beyond the Mo-
ment Map (Marsden et al) and Equivariant Bifurcation Theory (Golubitsky
et al), between others.

The application of Lie groups to the geometry of the Moment Map is
not new (see [Gui90] for a survey), neither its adaptation to Mechanics
of Rigid Bodes [Sat86] or to more complex systems including deformable
objects [Mar94]. In fact, Lie groups and Lie algebras make part of the core
of classical books in Robotics such as [Mur94]. However, there is no a general
reference able of extending the above approaches to the stratified case in the
analytic or multivectorial framework. This absence justifies the development
of these notes, whose preliminary versions have been exposed in different
centers (Caltech in Pasadena, SSSA in Pisa, Politecnico di Torino, LASC de
Metz, Institut Fourier de Grenoble).

Classical Lie Groups are increasingly used for motion planning, control
and optimization issues in Robotics. However, topological symmetries are
less developed and are even more crucial for autonomous robots, because
they involve to different kinds of interction with non-structured or open
environments. A local topological approach allows to model transitions bet-
ween robust and adaptive behaviors, e.g.; indeed, it suffices to take the
compact-open topology which is the natural framework for proximity issues
in jets space 56.

2.4.1. The role of symmetries

There are quite different kinds of symmetries which very often generate
a group G; the most common ones are the following ones:

Finite groups which involve to internal or external configurations of

56Let us remember that, following our approach, jets space provides the general fra-
mework for a hierarchical approach to Mechanics of Robots (see below); this approach is
developed along the third module
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elements, including their applications to tessellations, graphs or repli-
cation at different LoD.

Classical groups which involve to the preservation of a “geometric
amount” which is represented by a quadratic form (the distance or
the kinetic energy, e.g.), a bilinear form (the symplectic or the con-
tact form relative to the moment map, e.g.) or more general tesnors
(volume forms, e.g.). These groups are the structural groups for the
Linear Geometries (Euclidian, Affine, Projective) and their extensions
(Special Linear, Conformal, Symplectic or Contact structures)

Infinite groups which involve to the different kinds of Non-linear Geo-
metries (Algebraic, Differential, Analytic) for non-linear objects.

All of them have an infinitesimal version in the Lie algebra g := TeG
which is very useful for estimation issues; the reason is very clear: compu-
tations in a vector space is much easier in a vector space, rather a topological
space. The exponential map provides a local homeomorphism with a neigh-
borhood of the neutral element, and it allows to recover local properties of
the group.

Furthermore, the inclusion relations between groups induce different hie-
rarchies between linked Geometries which are translated to structural cons-
traints involving the representation of the environment and different ways
of acting onto such space.

On the other hand, all groups of non-linear geometries are subgroups
of the group of homeomorphisms and the first order component of each
homeomorphism is a general linear group GL(n;R) for some n > 0. As
each classical group is a subgroup of GL(n;R), one recovers a structural
connection between Non-linear Geometries and Linear Geometries by means
the linearization of the group action of Cr-equivalences between manifolds.

This approach was extended to dynamical systems, where each solution
(a trajectory through a point with a fixed velocity, e.g.) can be interpreted
of a local homeomorphism acting on an integral curve. Hence, to solve a
dynamical system it suffices to find a complete system of first integrals which
are interpreted as a collection of first integrals with their corresponding Lie-
Poisson structures.

Unfortunately, things are not so simple, and most interesting systems
are not fully integrable. Nor even the operation of car parking is an integra-
ble system. However, the lack of complete integrability has some meaningful
advantages because it allows to act from an external viewpoint to modify
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the original system and to re-drive according to the planned task (car par-
king, e.g.). This lack of complete integrability is labeled as non-holonomic
constraint which is developed along the fourth module of the Course.

2.4.2. Breaking symmetries

The simplest industrial robots develop a repetitive task for which a ro-
bust control can be easily implemented. Up to this case, most robots display
more complex behaviors which require an adaptation to changing environ-
mental conditions. Furthermore, hierarchies between tasks introduce diffe-
rent kinds of symmetries which can be grouped or break-down depending on
the phase. These phenomena involves to geometric, kinematic and dynamic
aspects.

Luckily, one has an almost complete dictionary which allows to exchange
information between different aspects involving Geometries, Topologies and
dynamical systems 57. This local approach has been applied to some aspects
of smooth manifolds, but contributions to stratified maps and relations bet-
ween symmetries involving the natural hierarchy for the Mechanics is less
explored.

Some crucial aspects to be developed consist of identifying which kind
of vector fields can be lifted from the geometry to the kinematics or, even
more, the dynamics involving configurations and working spaces. For simple
singularities, the solution for the local problem is an easy consequence of
some developments performed in the Doctoral Dissertation of T.Perez (non
published, unfortunately). However, the general problem is quite open.

From a global viewpoint, liftable fields are strongly related to the exis-
tence of non-holonomic constraints which have been extensively studied in
[Blo03] 58 and it is extensively commented along the fourth module. Ho-
wever, connections between local and global aspects are unknown, mostly.
Along modules 5 and 6, we shall explore several aspects in regard to loco-
motion tasks in a stratified framework which extends the original approach
performed along the late nineties by I.Stewart et al.

57[Gol88] M.Golubitsky, I.Stewart, D.Schaeffer: Singularities and Groups in Bifurcation
Theory. Volume II, Springer-Verlag, 1988

58A.M. Bloch: Nonholonomic Mechanics and Control, Springer-Verlag, 2003.
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2.4.3. Perception-Action Cycle

The foundation for the hierarchical approach to Mechanics is a feedback
between impulses at joints (performed by torques) and re-localization of end-
effector to improve the execution of tasks. The feedback is represented by
an iteration of the transferencia map τ : C → W and some pseudo-inverse.
Beyond the particular matricial expression of the pseudo-inverse, it existence
is warranted by the structure of τ as stratified map (locally trivial away from
the singular case, i.e. giving a finite set of local sections which allow to find
local inverses). The iteration of τ and its pseudo-inverse is written as

. . .→ C →W → C →W → . . .

Their extensions to jets spaces provides a representation for more advanced
issues concerning to manipulatibility and dexterity in grasping and handling
tasks, or for analyzing the feedback between anticipatory and compensatory
strategies to balance the human body along complex locomotion tasks (in-
cluding jumping and running, e.g.).

More generally, the geometric representation of the information provi-
ded by multisensorial perception allows to construct semi-analytic spaces
to represent different kinds of signals and commands, which provide the in-
puts for Perception and Action modules. Usual description of signals and
commands is given in terms of 1D/2D/3D frequencies which can be trans-
lated to a spatial representation by means Fourier transform going from the
frequency to the spatial domain.

Thus, if we denote by means P (resp. A) the common space for the geo-
metric representation of signals linked to different sensors (resp. actuators),
one has a feedback between both spaces

. . .→ P → A→ P → A→ . . .

which extends the above mechanical feedback, but from a higher viewpoint
which can be formulated in terms of the (spatial version of) Fourier analysis.

2.4.4. Geometric Algebra approach

Roughly speaking, Geometric Algebra approach can be understood as
a multilinear framework which allows to manage any kind of scalar, vector
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and multivector entities by using two kinds of products which extend the
well-known scalar and cross-products 59

From a geometric viewpoint, one can use bivectors for Mechanics which
are described by screws, twists and wrenches involving to the usual mecha-
nical hierarchy in geometric, kinematic and dynamic terms. Each bivector
represents an oriented area element which can evolve along time, according
to mechanical constraints.

The geometry of bivectors is essentially the same as the given by oriented
lines in a three-dimensional projective space, which is classically describen
by Grassmannians. Hence each space of mechanical bivectors (screws, twists
and wrenches) can be describen in terms of oriented Grassmannians. This
simple remark provides a geometric framework for a common treatment of
their properties.

Furthermore the internal duality inside each Grassmannian, one has an
“external duality” which involves to the exchange between position and force
mechanical quantities (i.e. screws and wrenches), and self-dual twists. This
“external duality” allows to develop a feedback between position-based and
force-based control, which is commonly developed in Statics. Furthermore,
the self-duality involving twists can be translated in terms of impedance-
based control.

A reformulation of the Contact Geometry (involving incidence and tan-
gency conditions, which are dual between them in their projective com-
pletions) provides the feedback between position-force based control and
impedance-based control. In this way, one obtains a structural connection
between Dynamics and Kinematics which is a geometric reformulation of
structural contact constraints for k-jets spaces relative to the transference
map τ : C → W

An effective control of these issues requires a geometric reformulation of
basic functionals linked to work and energy which must be rewritten in mul-
tivector language. A first version of these ideas was presented in Agacse’01
(Cambridge, 2001) in regard to human locomotion, and it is developed with
more detail in the fifth module (Humanoid Robotics). Their extension to
much more complex evolving shapes (and their application to animats) is a
challenge to be solved.

59More details are developed in several places along this Course in regard to kinematics
and dynamics approach and their applications to different kinds of robots.
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3. Determinism and uncertainty in Robotics

Data arising from external world are captured by sensors with a high
uncertainty level. Information processing and fusion of noisy discrete data
are initially reprojected on robust continuous models; to begin with, most
of them have a geometric nature. Their kinematic variation along time and
different kinds of dynamic interaction with other intelligent agents in increa-
singly complex environments requires the development of adaptive models
able of managing feedforward strategies.

Most mechanical models have a continuous character, but real-time in-
teraction requires the development of hybrid models able of integrating dis-
crete information arising from sensors. There are a lot of developments which
integrate geometric or functional aspects with statistical or probabilistic mo-
dels; however, there is no enough adaptive strategies for dynamic issues in
presence of uncertainty for real domains.

Strategies to be developed follow a two-way road, with relaxation of
deterministic models (by using Stochastic Differential Equations, e.g.); if
one looks the problem from the other side, it is necessary to incorporate
some kind of structure on sparse data (by using Monte Carlo Methods for
clouds of particles, e.g.). However, to improve the sensitivity w.r.t. small
variations and the capability of response, one needs finer models, able of
incorporating low-order variations of tracked data which are represented by
(discrete vs continuous) fields.

General frameworks based on (scalar, vector, tensor) fields suggests an
approach which is based on Hidden Markov Models (as extension of Markov
Fields), to be estimated by using Gibbs distributions, e.g.. Capability for ta-
king decisions in presence of uncertainty can use observable Markov Decision
Processes which provide a probabilistic approach to classical Optimization
issues, and consequently for adaptive control issues under uncertainty con-
ditions.

In absence of structural mechanical models, the above proposals seem at
first sight “too generic”, and can give an excessive casuistic making impos-
sible a real capability for self-adapting to evolving environments. Thus, the
main emphasis of this section is put on the specification of structural mo-
dels, leaving the development of probabilistic approaches for last chapters of
modules 2 (Navigation), three (Kinematics) and 4 (Dynamics and Control)
of this matter B1 (Robotics. A hierarchical approach).

Initial “deterministic” mathematical models for mechanics try of iden-
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tifying universal motion laws which are translated to rigid and articulated
mechanisms. Ideally, one supposes ideal environmental conditions which are
progressively relaxed, by replacing initial hypotheses relative to mechanical
components (absence of drift, e.g.), sensors (white noise for signals, e.g.),
actuators (linear vibrations, e.g.) or interaction with the environment (fric-
tionless, e.g.) by other more realistic ones.

Along the 19th century there is a very fast development of mathemati-
cal models for the Classical Mechanics which is initially formulated under
ideal conditions in the Lagrangian and Legendrian framework at the early
decades. The framework for these developments makes part of the Diffe-
rential Geometry, and it runs into the Hamilton-Jacobi formulation of the
Analytical Mechanics. The introduction of a dynamics linked to the minimi-
zation of a Lagrangian (the total energy of a system, initially) contributes
to the development of more general variational principles which are linked
to the minimization of action functionals (called lagrangians in the literatu-
re), extending the original formulations given by Newton and Euler in the
framework of Integral Geometry on Manifolds.

In the smooth case, the equivalence between differential (Hamilton-Jacobi)
and integral (Newton-Euler-Lagrange) in the framework of the Symplectic
Geometry was already known at the end of 19th century. Symplectic Geo-
metry is characterized by the preservation of a bilinear form which is repre-
sented by a matrix J verifying J2 = −I (natural extension of the condition
i2 = 1 for the anti-involutive automorphism of complex numbers).

The use of methods arising from Differential Geometry is not new in
Robotics. This use is natural, because Differential Geometry is directly lin-
ked to non-linear constraints involving descriptions of Configurations and
Working Spaces in the whole Design phase, trajectories tracking for control
points in Kinematics, identification and management of forces and moments
in terms of systems of differential forms acting for each component. Further-
more, general principles of Classical Mechanics formulated as conservation
laws (momentum, energy, work to be performed) are easily formulated in dif-
ferential geometric terms as conserved quantities by a field which is linked
to a variational principle in the lagrangian formulation.

The identification of infinitesimal symmetries linked to lagrangian fun-
ctionals was started by E.Noether who underlined their role to find first
integrals for motion. The introduction of the geometry of G-orbits for a
classical group from the sixties provides a new insight in the framework
of equivariant Differential Geometry which culminates in the equivariant
analysis in terms of the moment map [Gui84].
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The unification of the dynamics of articulated multibodies with some
aspects of the Mechanics of Continuous Media was performed by Marsden
and his collaborators at the late eighties [Mar94]. Along these years it begins
a systematic treatment in terms of Lie actions and their applications to
Robotics, with different applications including Optimization and Control
issues. A feedback between kinematic and dynamic aspects in terms of Lie
algebraic actions was started by J.Burdick and J.Ostrowski at the second
half of nineties with very meaningful applications to snake-like robots and
hybrid (wheeled and legged) mechanisms in regard to the Mars exploration.

In most publications one supposes that robot is working in smooth mani-
folds M , and one considers typical linear structures given by vector bundles
(cotangent bundles with its natural symplectic structure) or principal bund-
les (when symmetries groups play a structural role), with their correspon-
ding (metric, affine, Ehresman) connections. In some cases, if singularities
are allowed, they are avoided because control issues are more difficult to
solve near to the singular locus. However, this is not a natural approach
from the biomechanical viewpoint, because most live beings take advantage
of energy exchange with the environment through symmetries appearing at
different (geometric, kinematic, dynamic) levels.

Our approach tries of taking advantage of passing through some simple
singularities; this viewpoint is inspired by biomechanical behaviors, inclu-
ding complex operations (jumping, running) linked to human locomotion.
The initial indeterminacy and inherent unstability linked to simple singu-
larities are solved by introducing infinitesimal symmetries which are linked
to entry trajectories w.r.t. the normal direction to the variety supporting
the kinematics or the dynamics. Some fruitful discussions with J.Burdick
and J.Ostrowski (Caltech) have allowed to shape it in regard to some ap-
plications to human locomotion for disabled persons in cooperation with
G.Belforte (Torino) and P.Gorce (Cachan) and M.Guihard (Paris). The re-
sulting model provides a higher efficiency to perform some complex motions,
provided maintaining stability around the expected trajectories. Furthermo-
re, it provides a natural feedback between control kinematic and dynamics,
which can be restated in terms of impedance-based and force-position based
control.

To implement this program, it is necessary extend some well known re-
sults of Differential Geometry of Manifolds and superimposed structures
(vector bundles, principal bundles, connections) to the framework of Semi-
analytic Geometry. The basic idea consists of using different kinds of (scalar,
vector, tensor) fields to control (in terms of controlled submersions, e.g.) non-
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smooth scalar functionals defined on phase spaces such as the Lagrangian,
PS-trajectories (integral curves of vector fields with corners, e.g.) and surfa-
ces behavior (including deformations, non-linear vibrations, friction effects,
e.g.). From an algebraic-geometric viewpoint, our strategy consists of going
from infinitesimal aspects corresponding to small impulses in Configurations
Space (modeled in terms of Lie algebras or first integrals of motion) to true
motions in working Space (through an extension to the geometry of mo-
ment map) equipped with a natural equivariant structure linked to contact
structures.

Last subsection is devoted to a very short presentation of Expert Sys-
tems in Robotics as a central part of Artificial Intelligence (AI) in Computer
Science. This research area is very large, and by reasons of space we shall
limit ourselves to some of the most known paradigms which are related with
Artificial Neural Networks (ANNs) and their extensions to Genetic Algo-
rithms (GAs), Evolutionary Programming (EP) and Self-Organized Maps
(SOMs). To ease the connection of this area of AI with the geometric ap-
proach which has been displayed below, we reinterpret the above paradigms
in geometric terms, by interpreting a planar ANN as (the discrete version
of) a manifold, and the above paradigms as (discrete versions) of typical
superimposed structures to manifolds (vector bundles, principal bundles,
fibrations, e.g.). This approach provides a natural feedback between mecha-
nical issues (where fiber bundles are ubiquitous) and the Perception-Action
Cycle, which displays a similar structure from the structural viewpoint.

3.1. Modeling the coordination

Coordination tasks in robotics involves to mechanical aspects (relative to
kinematic chains connected to mobile or eventually articulated platforms),
integrated electronic devices (sensors and actuators, mainly) and expert sys-
tems (in charge of capturing, analyzing, interpreting and making decisions).
Additionally, complex interactions with the environment require foresee the
response and, consequently, anticipate and compensate their effects.

Relative to mechanical issues, two important cases for motions coordina-
tion are related to locomotion tasks by one side, and manipulation (including
grasping and handling) tasks by the other side. Both of them requiere a good
initialization (including re-positioning, e.g.), a feedback and integration of
data arising from propioceptive and exteroceptive sensors, and an identi-
fication of hierarchies involving to optimization and control issues for the
execution of motions.
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Their organization makes part of the Perception-Action Cycle (PAC)
which is a hard challenge for the most advanced topics in Robotics. To
perform an efficient fusion of information arising from different sensors, it is
commonly acknowledged that it is necessary to use a robust representation
of space which can be adapted to appearances-based model along the tasks
execution, and an adaptation of sensory-motor devices in terms of tasks
to be performed. Hence, it is necessary to combine the robustness of the
external world, with the adaptability of the mechatronic architecture which
tries of mimifying some functionalities of superior mammals.

Understanding the environment is the hardest challenge and requires
an intensive development of Expert Systems including Cellular Automata
(CA), Artificial Neural Networks (ANN) and their improvements (Genetic
Algorithms, Evolutionary Programming, Self-Organized Maps), and Fuzzy
Systems. All of them reappear in different ways along different chapters,
because they provide some of the most common options to incorporate so-
me kind of “Artificial Intelligence” (AI following the old terminology), and
consequently autonomy on mechatronic devices

Furthermore, the chosen representation for control, analysis and decision
making, must be compatible with kinematics and dynamics. Last compo-
nents of Mechanics can be modeled in different ways according to a modular
structure which can ease the reuse of componentes and routines. Our stra-
tegy for mechanical issues consists of starting with symmetrical principles
(represented by reflection or Lie groups and algebras, e.g.), stratified ap-
proaches (linked to an analytical presentation of tasks) and their synthesis
in multivector terms (Clifford or Geometric Algebra). Surprisingly, all of
them can be incorporated for the design of more efficient Expert Systems in
Robotics. Nevertheless the advances from the nineties, this program is far
from being completed, and there is room for a lot of research to be done.

To fix ideas, we shall restrict ourselves to some preliminary comments
about the above topics , which include some applications for assistance ro-
botics to disabled persons, which has been our main research topic between
1998 and 2003.

3.1.1. Towards an intrinsic representation

Recent formulations for the unification of different interactions in Phy-
sics make use of fields to explain and represent the observed effects. There
are different kinds of fields which are labeled as scalar, vector or tensor
fields, by following an increasing order or difficulty. Scalar fields are linked
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to functionals, vector fields provide a dynamical representation for trajecto-
ries and covector fields (also called differential forms) provide a numerical
evaluation of effects linked to vector fields, such as the work performed by a
system, e.g.. Tensor fields are the natural extension of scalar and (co)vector
fields for giving a compact representation of phenomena involving different
geometric entities or functionals. They are not invariant, but they are cova-
riantly transformed, which eases their tracking along a manifold. However,
the original hyper-matricial notation is very cumbersome, and several more
compact and powerful alternatives haven been developed from the mid of
the 20th century.

Furthermore, as we need to “translate” objects (including eventual mo-
difications), it is necessary to have an intrinsic notion, compatible with abs-
tract representations of configurations and working spaces as manifolds (in
fact, as submanifolds of products of Lie groups). A connection can be descri-
bed as a rule of covariant differentiation for any kind of tensors, and allows
to represent the “transport” of “geometric entities” on a manifold. There
are several types of connections which are labeled as

metric or Riemann connections which preserves the metric and ex-
tends the Riemannian connection to any kind of pseudo-riemannian
variety;

affine or Koszul connections which allow apparent distortions linked to
distortions produced by sensors or linked to relative motion (observer
w.r.t the scene), e.g.; and

Ehresmann connections which allow to incorporate strong non-linearity
dynamical effects linked to the apparition of non-holonomic constraints
on the velocities (drift effect. e.g.) or the accelerations (different types
of frictions, e.g.)

Let us remark that connections allow to transform contravariant in covariant
representations, which extend usual contraction (integration of differential
forms along vector fields) or expansion (external product of differential forms
or vector fields, e.g.) operations in a compact and intrinsic way.

From a complementary viewpoint, one can perform a multivector ap-
proach in terms of Geometric Algebra which can be introduced as an exten-
sion of quaternions introduced by Hamilton and extended by Clifford. The
representation of spatial rotations in terms of quaternions is more intrinsic
(i.e. coordinate-independent), avoids error propagation linked to trigono-
metric functions, is much more compact, understable and easily updatable
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than usual matricial representations. As the formalism of connections is mo-
re complex than the multivector formalism of Geometric Algebra, we adopt
this framewrok for the following paragraphs.

3.1.2. Motor coordination

Biomechanical models are hyperredundant even for the simplest models
of complex organisms such as mammals. In particular, even for a simple
rotation around an axis one has different muscles which can act in an inde-
pendent or joint way to produce different kinds of responses, or contrarily
the same response in regard to the end-effector. Inversely, each muscle can
contribute to different movements in other components.

From a theoretical viewpoint, the above remarks pose some optimization
issues which are not quite elementary. One can have more forces acting
on a joint than the number of degrees of freedom, and some muscles can
contribute along different directions. In this way, the resulting biomechanical
architecture can recombine robustness and adaptiveness in a very efficient
way. and to prevent failures linked to unstable tasks. These aspects display
a high complexity, and because of the first chapters of modules 5 and 6 are
devoted to understand some biomechanical issues related to the main tasks
(locomotion and grasping-handling) to be analyzed.

An intrinsic representation of motor coordination is performed in terms
of the so-called “motors” inside the Geometric Algebra, which we shall des-
cribe next. The Geometric Algebra framework allows to adapt the usual
description of motors to the cases appearing in the following paragraphs.

3.1.3. Interactive navigation

Interactive navigation must go from a source to a target point of a scene
which we shall suppose already known. Navigation must avoid collisions
with obstacles which we shall suppose initially fixed and known; in more
advanced stages, one considers mobile obstacles such those appearing in
real traffic scenes, e.g.

Usual models for real-time interactive navigation follow increasing com-
plex models depending on the scene (structured vs free), available sensors
and reactive behaviors of other agents eventually present in the scene. The
most complete representations of the scene arises from the application of
Computer Vision techniques which combine topics arising from 3D Recons-
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truction, Motion estimation and objects Recognition 60

There are several types of representation for 3D scenes which are labe-
led as sparse and dense (sometimes, semidense is also considered). Roughly
speaking,

Sparse representations are represented by perspective representations
which are described in terms of linear projection matrices M(πC(t))
linked to a central projection πC(t) of the scene on a mobile camera’s
plane ΠC(t) associated to a central projection with center C(t). The
persistence of structural elements (vanishing points, horizon lines) of
the perspective model provides a robust model for an interactive na-
vigation.

Dense representations are represented by mobile clouds of points co-
rresponding to homologue points along a video (temporal stereo vi-
sion) which are matched between them by using an estimation of Fun-
damental (affine model) or the Essential (Euclidian model) Matrix.
The most important extensions of this method started along nineties
include SLAM (Simultaneous Localization and Mapping) methods.

Sparse representations are the most appropriate solutions for structured
environments (indoor scenes or outdoor scenes with beacons, e.g.), whe-
reas dense representations are more appropriate for non-structured or even
unknown environments. A real-time implementation able of incorporating
recognition modules is a challenge of paramount importance for a lot of
applications such as the automatic navigation of cars or trucks, e.g.

Usual approach for RT navigation in structured scenes is based on pers-
pective maps which are managed in terms of space lines and their projections
onto the image plane. An inconvenient of this approach is the indeterminacy
of flow image along perspective lines when similar beacons appear along the
video sequence. To overcome this trouble, we introduce quadrilateral maps
which are are generated from the intersection of pencils of perspective lines.
To fix ideas, let us consider the simplest and more usual perspective maps
generated from a mobile camera in a structured scene:

frontal type i.e. with a vanishing point at finite distance; in this case
the intersection of perspective lines with horizontal or vertical lines
gives a map of trapezoids;

60The above three topics make the core of modules 2, 3 and 4 of the CEViC (Curso
de Especialista en Vision Computacional) in Spanish language which is coordinated and
written by JF
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angular type i.e. with two vanishing points at finite distance; in this
case the intersection of pencils of perspective lines with vertical lines
gives two maps of quadrilaterals;

oblique type i.e. with three vanishing points at finite distance; in this
case the intersection of each pair of pencils of perspective lines gives a
map of arbitrary quadrilaterals.

In fact, each perspective map can be visualized in terms of the contraction of
a map of cuboids along an eventually changing perspective direction which
corresponds to the third vanishing point. Visualization of structured scenes
based on perspective lines is well known from the 15th century, but tracking
based on quadrangular regions is less frequent and much more robust w.r.t
partial occlusions and or sliding effects than lines-based model.

To shape this idea, one introduces a bivector representation q of a qua-
drilateral with edges a,b, c,d (counterclockwise sense) as a pair of bivectors
(a∧b,−c∧d) which have an opposite orientation with a constraint relative
to their extremes. A rectangle is characterized by the anti-diagonal. The
set Q of quadrilaterals is a homogeneous space by the action of two copies
of SL(2) up to scale. Each quadrilateral can be propagated along two di-
rections giving the same bivectors up to scale, in correspondence with each
bivector appearing in the description of each quadrilateral q. Their symme-
trical replication provides a compact representation of the perspective map.
In particular a planar (resp. volumetric) perspective representation can be
represented as a pair (resp. triplet) of lines in the space Q of quadrilaterals.

A relevant feature consists of this representation provides a more com-
pact and stable formulation for Kalman-based filtering in regard to updating
and tracking trajectories linked to the apparent motion arising from cameras
mounted on a mobile platform. Additional details of this formulation appear
in the second module of these notes.

3.1.4. Eye-hand coordination

One of the most outstanding problems in Robotics concerns to the eye-
hand coordination in manipulation tasks, including grasping and handling
subtasks. Visual control of robotic devices needs not only very efficient al-
gorithms for video processing, but a sensor fusion and their reprojection
of anticipated kinematic representations of the scene, also. In particular,
an efficient grasping requires usually a repositioning of the trunk in regard
to the object, with a re-configuration between components and re-shaping
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the whole structure going from the forearm, wrist and fingers which must
be involved along the first stages of this task. A natural hierarchy for this
coordination is performed in terms of hand gestures which support visuo-
mechanic information arising from propioceptive and exteroceptive sensors.

Tasks execution is supported by a representation of hand gestures for
grasping and handling subtasks. Visual information is performed from vi-
deo processing and analysis which is independently developed in the third
module of the CEViC 61. A hand gesture is a space-temporal sequence of
hand postures. To ease their readaptation, a typical strategy consists of
identifying typical postures linked to stable kinematic configurations and in-
terpolate between them. In our case, we adapt some basic notions arising
from the typical representation in Geometric Algebra for oriented oriented
areas in 3D space given by screws, twists and wrenches.

Our experimental work concerns mainly to visual servoing for a three-
fingered artificial hand (available at the SSSA of Pisa, Italy) which is moun-
ted on a mobile platform equipped with a 6R kinematic chain for the arm.
It has a thumb and two additional fingers which are represented by means
three kinematic chains which are anchored on a plat; the base joint for the
thumb is given by a constrained spherical joint to increase versatility and
adaptability to the object. Thus, it is not exactly an anthropomorphic hand,
but it has some basic functionalities of anthropomorphic hands.

1. Grasping tasks are represented by means of typical gestures which
are adapted to each object, by identifying contact points, evaluating
friction effects to avoid slipping effects, and correcting instabilities in
apprehension phase. The dexterity matrix J†J is the key to achieve an
optimal grasping. 62

2. Handling tasks require a careful planning for objects transport, by
avoiding collisions with the augmented architecture (represented as a
Minkowski sum, e.g.) and including a correction of possible instabilities
(with anticipatory and compensatory strategies in presence of weighted
objects, e.g.). The manipulability matrix JJ† is the key to achieve an
optimal handling.

A typical approach is based on updating spatial arrangements of lines as
a linearization of appearances-based model which extend traditional skeletal

61Curso de Especialista en Vision Computacional (on line, in Spanish language,
www.cevic.eu)

62Here, J is the Jacobian matrix representing the kinematics ẋ = Jq̇ and J† is the
Moore-Penrose generalized inverse
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approaches linked to the different components of each kinematic chain (arm,
forearm, wrist, fingers). Visual feedback requires combine a structural ap-
proach (based on skeletal representations) with appearances-based approach
(based on a linearization of visible boundaries).

Articulations at fingers, wrist and elbow generate subdivisions in sim-
plified geometric representations which are treated in terms of quadrilateral
maps for planar representations (similarly in terms of cuboidal maps for
volumetric representations). Anyway, the curved nature of articulations is
translated in non-linear algebraic representations on the quadrilaterals spa-
ce Q, where the simplest ones are given by “pieces” of conics on the space
of quadrilaterals (similarly one would have “pieces” of cubics on the spa-
ce of cuboidal representations). More generally, one has a B-spline of low
degree (two for fingers, three for hand, forearm and arm) to describe each
articulated mechanism. This representation provides a geometric support to
describe configurations in terms of a very low number of low-degree ratio-
nal curves which are defined on the space of quadrilaterals (resp. cuboidal)
maps.

The combinatorics of configurations of low degree algebraic curves is
easily reduced to a combinatorics of lines (it suffices to use “chords” passing
through control points). Hence, the introduction of pieces of conics and
cubics can be understood as a natural extension of geometric arrangements
of lines. furthermore, kinematic effects (described in terms of twists) and
dynamic effects (described in terms of wrenches) can be introduced onto the
original geometric support (given by screws).

The approach performed in the fifth and sixth modules follows the La-
grangian scheme(formulated at the beginning of the 19th century), but adap-
ted to a more intrinsic representation (Geometric Algebra tools) of mecha-
nisms and eventually curved objects in the 3D scene which are described as
low-degree curves defined on the space of quadrilaterals (for planar repre-
sentations) or cuboidal maps (for volumetric representations). In the same
way as in Classical Mechanics, it supports a natural contact structure which
can be compared with the semi-analytic approach performed in terms of jets
spaces linked to configurations and working spaces.

3.2. Elements of Robots Kinematics

The goal of Robots Kinematics is to provide models, develop tools for
analysis of mobile data for control points of the robot, and implement algo-
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rithms for the information fusion which allows to estimate, track and predict
robot behavior. According to the usual hierarchy it involves to low-order va-
riation of localization data (position and orientation) including (linear and
angular) velocities and accelerations. To fix ideas, we shall restrict ourselves
to serial manipulators where it suffices to replace the current values for joint
parameters for each link and propagate along each kinematic chain 63.

Most aspects of Robot Kinematics can be reinterpreted in terms of the
EMAD which has been introduced in the §1,2,2. To fix ideas, we remember
some basic concepts of Mechanics which are related to the description of the
EMAD. The subsection is organized around the following topics:

1. Forward kinematics whose aim is to specify the joint parameters and
compute the configuration of the chain by forward propagation along
each kinematic chain. It can be represented as the differential of the
transfer map τ : C → W which is formally given by the 1-jet with a
contact structure.

2. Inverse kinematics which computes the motions to be performed at
joints in order to achieve a desired localization for the end-effector of
each kinematic chain. Most robots are redundant ones; hence, matri-
ces are not inversible and optimal solutions are not necessarily uni-
que. In more formal terms, the goal is to compute a pseudo-inverse of
j1τ : J1C → J1W whose last component is locally represented by the
Jacobian matrix.

3. Task oriented control which involves to kinematic characteristics (velo-
cities, accelerations) of trajectories to be performed by control points,
with forward and inverse variants. It requires to identify integral curves
which are solutions for distributions of liftable vector fields from the
working to the configurations space. A typical approach uses impedan-
ce control, with a feedback arising from position-force based control
appearing in Robots Dynamics.

4. A geometric reformulation can be given in terms of Geometric Algebra.

In all cases and to illustrate basic ideas, we shall restrict ourselves to serial
manipulators due to the difficulty for parallel manipulators.

63Parallel manipulators (Stewart platforms, e.g. are much more complicated and it re-
quires to solve a set of polynomial constraints involving parameters of the platform; see
last chapter of module 1 for more details
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3.2.1. Forward Kinematics

Roughly speaking, Forward Kinematics corresponds to the calculation
of the velocity and acceleration response of key points (c.o.g., end-effectors,
control points) of a given rigid-body system to a given collection of actions
(forces, moments) at joints.

A simple spatial representation corresponds to a serial manipulator with
prismatic and spherical joints, allowing translations and rotations, with a
matricial representation standardized by J.Denavit and R.Hartenberg (1955)
in terms of joint matrices [Z] and link matrices [X] to represent screw dis-
placements on spatial linkages along the Z-axis. According to their notation,
one has

[Zi] = TransZi(di)RotZi(θi) ,

which positions the link frame given as a screw displacement along the X
axis as

[Xi] = TransXi(ai,i+1)RotXi(αi,i+1) ,

where θi, di, ai,i+1 and αi,i+1 are called the Denavit-Hartenberg parame-
ters. According to the above notation, the general motion of the i-th link is
described as

i−1Ti := [Zi][Xi] = TransZi(di)RotZi(θi)TransXi(ai,i+1)RotXi(αi,i+1)

whose matricial expressions are described in the first module giving a cum-
bersome notation for the computer implementation. The use of vector re-
presentation in the Geometric Algebra framework simplifies the notation
and avoids the use of arguments linked to “special position” for euclidian
transformations (rotations and translations).

Beyond the analytical (in terms of trigonometric functions) or algebraic
(in terms of multivectors) expressions, the ambient space is a subset S of
a product of Lie groups which allow to reproduce locally symmetric mo-
vements in the working space W from small motions in the configurations
space C (both of them are related through the transfer map τ). An advan-
tage of this representation is the availability of a lot of information relative
to differential and integral calculus on Lie groups. Unfortunately and due to
the mechanical constraints in the design, the subset S is a boundary sub-
variety of the product of Lie groups representing both spaces; in particular,
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kinematic singularities (appearing in the boundary ∂S, usually) deserve a
special treatment for control and optimization issues.

3.2.2. Inverse Kinematics

Roughly speaking, the computation of kinematic characteristics (veloci-
ties and accelerations) to be applied at joints to achieve the expected results
along trajectories. From a matricial viewpoint, it requires to invert the Jaco-
bian matrix representing the forward kinematics. As the Jacobian matrix is
not a square matrix, it is necessary to use some kind of pseudo-inverse. See-
mingly, the most robust is the Penrose-Moore pseudo-inverse. Additionally,
the products JT .J and J.JT provide very useful information for dexterity
and manipulability issues which are developed with more detail in the fifth
module.

A more geometric approach consists of identifying the contribution of
vector fields applied at joints in regard to real movements of end-effector for
each kinematic chain. The transposed matrix JT of the Jacobian provides a
criterium for the dual map of j1τ which is very useful for control issues.

Instead of using the classical approach based on Denavit-Hartenberg pa-
rameters, one can use a description of the tangent space to configurations
and working spaces as subvarieties of a product of Lie groups. In the deco-
upled case, the Lie algebra of a direct product of Lie groups is the product of
their Lie algebras, and the exponential map allows to recover true motions
in the working space W from their infinitesimal version which is modeled in
terms of infinitesimal symmetries in the configurations space C through the
differential map dτ : TC → TW at the neutral element (represented by the
identity matrix for each component of the product of Lie groups).

The presence of eventually non-linear coupling between components or
the interaction with the environment introduces some troubles, which do
not affect to the general proposed scheme. Indeed, the transfer map τ : C →
W is generically a submersion; hence, one has that push-forward of vector
fields defined on the configurations space C give vector fields on the working
space W even in presence of singularities. Hence, it suffices to evaluate the
contribution, including redundancy conditions. The evaluation of functionals
is analyzed in the following paragraph.

In the generic case (i.e. away of kinematic singularities), due to the Ja-
cobian regularity, one can find local inverses which are treated in terms of
the tangent space to grassmannian manifolds. Degeneracy locus involves to
lowering dimensions of meaningful subspaces, and requires the introduction
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of intermediate flags to control possible evolutions.

3.2.3. Task-oriented control

Control linked to tasks impose constraints linked to paths to be follo-
wed or the evaluation of mechanical quantities linked to geometry (allowed
motions, e.g.), kinematics (performed work, energy to be supplied, e.g.) or
dynamics (dissipative effects linked to friction, e.g.). The design of efficient
control devices requires a coarse-to-fine approach which is formulated in
topological-to-geometric terms. Along this paragraph, main attention is paid
to topological aspects. To start with, one gives a mathematical description
of a task:

A task can be considered in a two-fold way as a path γ defined on the
configurations or working space, and in a complementary way, in terms of
functions or functionals defined on some of such spaces which evaluate data
along paths or trajectories in the ambient (configurations or working) space.

A path γ : I → C is a continuous map, not necessarily with conti-
nuous derivative, defined on the unit interval I = [0, 1] with a source
configuration c0 := γ(0) and a target configuration c1 := γ(1). Any
path defined on the configurations space C induces a path defined on
the working space W by composition τ ◦ γ with the transfer map. To
evaluate if a path on working space W can be lifted or not to a path
on the configurations space C it is necessary to compute topological
invariants of the fibration τ .

A function f :W → R allows to evaluate different “mechanical quan-
tities” on the working space which are linked to control points of
each kinematic chain (the end-effector, typically). Any such function
f ∈ Cr(W,R for r ≥ 0 can be lifted in a unique way to a a function
τ ◦ f ∈ Cr(C,R. However, the inverse is not necessarily true, because
the transfer map τ is a multiple covering; however, the “direct image”
can be represented as a multiple-valued map. Again, the topology of
the transfer map as a fibration plays a fundamental role.

From the mechanical viewpoint, the above approach is quite general and
it reappears in different ways along the different modules in regard to the
tasks to be performed. Some of the most important tasks to be modeled are
the following ones;
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For anchored robots concern to pick up, perform welding or assembly
operations, by following an increasing order of difficulty. Lyapunov
functions provide a very common and simple strategy for design ope-
rational control.

For mobile robots self-localization, transportation and autonomous
guiding in partially known environments pose some of the most re-
levant issues.

Main tasks to be modeled for humanoid concern to locomotion and
grasping tasks.

All of them display a mixture of geometric, kinematic and dynamic as-
pects which require very often a feedback between position, impedance and
force-based control. In some cases, it suffices with a robust control (typical
for industrial robots in isolated environments, e.g.); in other cases, it is ne-
cessary to perform to sometimes changing environmental conditions which
require an adaptive and more intelligent behavior, including reconfigurable
systems (see below §3,4,4 for additional details).

To be effective, it is necessary to develop a multisensor fusion which pro-
vides additional keys for self-localization and autonomous guiding. Range
sensors (ultrasonic, infrared, laser range finders) are very useful to avoid
collisions, but an interpretation of the environment requires visual feedback.
Thus, it is necessary to perform a coupling between mechanical and visual
aspects which is initially performed at kinematic level. An introduction to
this coupling at kinematic level is performed in the second module of the-
se notes (Navigation of Mobile Platforms); additional details about visual
kinematics are developed in the third module of the CEViC.

3.2.4. A geometric reformulation

At least from the mid of nineties it is very common to reformulate the
Mechanics in geometric terms. This formulation involves not only to the de-
sign of mechanisms, but to the design of advanced tasks such as dexterity or
manipulability, e.g.. In particular, dexterity means the capability of change
the localization (position and orientation) of the manipulated object from
a given reference configuration to a different one, arbitrarily chosen within
the hand workspace. 64

64[Bic96] A.Bicchi: “Hands for Dexterous Manipulation and Powerful Grasping. A dif-
ficult road towards simplicity”, in [Gir96], 2-15
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A non-trivial issue concerns to the discontinuities between contact ele-
ments along the tasks to be performed. Some reasons for discontinuous re-
grasping are linked to non-optimal relative localization of platform/robotic
arm or the object irregularities which impose external constraints for gras-
ping and manipulating objects. In particular, it is necessary to perform a
control of contact conditions and friction cones along eventually rolling con-
tacts, to avoid instabilities along the execution of tasks.

Geometric reformulation is the lowest level for understanding mechanics
on a variety V representing the configurations C or the working W space.
Nevertheless, a geometric description in terms of a variety V provides the
support for constructing the kinematics on the fiber tangent τV or cotangent
bundle τ∗V (dual of the tangent bundle τV ) which is more usually denoted
as Ω1

V .
In particular, the differential of the transference map τ : C → W is

locally represented by the jacobian map which allows to describe the forward
kinematics and identify the most meaningful kinematic relations in terms
of the jacobian matrix. The structure of this fiber map induces a natural
hierarchy between both tangent bundles which can be reformulated in dual
terms to provide a better understanding of the inverse kinematics.

The basic formalism developed in the precedent paragraph for paths and
functions can be extended immediately to any kind of vector fields ξ ∈ ΘC,c
defined on the configurations space C or to any kind of 1-differential forms
ω ∈ Ω1

W,w (i.e. covector fields) defined on the working spaceW, respectively.
Hence, they are valid for distributions D of vector fields defined on C or for
systems S of differential forms defined on W. Thus, ordinary and exterior
differential calculus can be extended in a natural way, at least for the regular
part of each ambient space.

3.3. Elements of Robots Dynamics

Robot Dynamics is a natural extension of Robot Kinematics, which in-
corporates additional effects arising from the exchange of matter, energy
and information with the environment. At mechanical level, information ex-
change is performed in terms of forces and momenta acting at joints and/or
torques. To fix ideas, we shall concentrate our attention in energy exchan-
ge between components or in regard to the environment. Some meaningful
extensions w.r.t. kinematics are related to activation-inhibition phenomena
(w.r.t. critical thresholds for information arising from sensors), anticipa-
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tory/compensatory movements (for locomotion and/or manipulation tasks,
e.g.) or drift and friction effects with the environment (non-holonomic cons-
traints, e.g.).

Classical Mechanics has developed two approaches which are labeled as
differential (Hamilton-Jacobi structural equations) and integral (reformula-
ting Euler-Newton in terms of variational principles), which are sketched
in the two first paragraphs. In the classical case, Symplectic Geometry on
a smooth manifold M provides a framework where differential and inte-
gral formulation for Classical Mechanics are equivalent between them. The
introduction of a moment map linked to the symplectic structure on the
(co(tangent space provides a more general context for a unified treatment
connecting algebraic and analytic aspects in an equivariant framework linked
to orbits of the momentum map.

Next, we remark the role played by different kinds of (algebraic, infinite-
simal, dynamical) symmetries, including some aspects related with total or
partial integrability of Lagrangians (or their associated differential forms in
the Cartan’s sense), and other linked to breaking symmetries in presence of
singularities. Finally, some general remarks about control and optimization
are introduced in terms of an equivariant description of Mechanics having
in account phase transitions as it occurs in complex movements of robots.

Finally, to improve the dynamical balance of the whole mechanism along
complex tasks (locomotion or bimanual grasping, e.g.) it is necessary to
coordinate several kinematic chains which combines anticipation and com-
pensation effects. This coordination introduces additional troubles which are
managed classically along phase transitions by means switching procedures
between different control modes. Some simple algebraic considerations re-
lative to different kinds of symmetries provide a more robust approach to
control and optimization issues. From a mathematical viewpoint, the duality
between both of them allows to re-interpret control problems in geometric
terms, as it is well known from the eighties. A less developed approach
consists of a reformulation of reachability and controllability issues in the
Geometric Algebra framework. Roughly speaking,

Reachability involves to feasible motions, from exploration of the wor-
king space according to constraints of configurations space, motion
planning and simulation for each kinematic chain and/or platform.

Controllability involves to linear independence of columns of a matrix
which represents iterative application of an operator.

Following the classical approach, geometric, kinematic and dynamic sin-

106



gularities must be avoided. Their description can be easily obtained from
controllability issues. These topics are sketched at last paragraph of this
subsection.

3.3.1. A differential approach

Original formulation of kinematics was given by Lagrange for rigid solids
extending the original Newtonian approach. A compact formulation which
is compatible with variational principles (Euler) is obtained by introducing
an operator (now called Lagrangian of a mechanical system) given by the
difference

L = T − U

between the kinetic energy T and the potential energy U , difference to be
minimized in order to perform a transfer between both energies (according
to the energy conservation principle).

The relation with the the newtonian approach is given by taking the
total energy of a system (given by Newton as the sum of both energies),
as the Lagrangian to be preserved. In this case, the total energy can be
understood as a functional on the tangent bundle of a support variety M ,
i.e. is an element of the cotangent bundle, which gives a strong connection
with topological aspects (in terms of critical points or, more generally, the
discriminant locus of the map).

In the symplectic framework, Lagrange’s equations can be obtained by
minimizing the first Lagrangian, and are given by

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Fi 1 ≤ i ≤ m = dim(M)

where Fi represent the generalized forces associated to the generalized coor-
dinates qi for 1 ≤ i ≤ m = dim(M). This approach is extended in a natural
way to articulated mechanisms by decoupling components and composing
their effect along a kinematic chain or, more generally, a multibody system.
If M is the configurations space for a robot, then m = dim(M) denotes the
number of joints; the first case to be studied corresponds to a kinematic
chain. Their coupling is a little bit more complicated and it is developed
along the fifth and sixth modules of these notes.

From a theoretical viewpoint, classical differential approach uses Hamilton-
Jacobi structural equations as structural constraints for motion equations of
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an ideal system composed by N particles. This formulation provides an ideal
framework which is linked to the preservation of a symplectic gradient. Let
us remember that a conservative systems is characterized by the preserva-
tion of a function which is called a “potential”; in our case, the Lagrangian
L is a functional defined on the tangent space TC of the configurations space
(hence, it is represented by a 1-differential form); the symplectic structure
existing on the cotangent space (Darboux) means that the natural gradient
to characterize conservative systems is given by the symplectic gradient,
now.

In practice, it is “very difficult” to have a completely integrable system
on the cotangent space 65. Usually, we have only a distribution D on vector
fields defined on the configurations space which is represented by means of

ẏβ +Aβα(xα, yβ)ẋα = 0 β = 1, . . . , k ≤ m

w.r.t. a decomposition of generalized coordinates q = (xα, yβ). The “sim-
plest” case corresponds to a linear system, i.e. one supposes that entries of
the matrix Aβα are linear forms. Under integrability conditions one finds k-
dimensional integral subvarieties whose solutions are geometrically described
in terms of foliations 66; when k = m one obtains the so-called Lagrangian
subvarieties which can be re-interpreted as m-dimensional subvarieties of the
2m-dimensional phase space TC∗ 67

Along the last modules, one develops an extension of this approach to
the non-linear case for locomotion tasks of biped robots or animats; in the
simplest cases, integrability conditions are theoretically analyzed in terms
of the coupling of non-linear oscillators (inverted triple pendulum) for each
leg. Solutions of this ideal approach display a very interesting quasi-cyclic
behavior along walking tasks (see [Fin01]), which seemingly can be extended
to other more complex locomotion operations (running or jumping, e.g.).

3.3.2. An integral approach

The integral approach is related to the minimization of an integral fun-
ctional linked to the minimization of some “geometric quantity” (length,

65More precisely, integrable systems must fulfill a set of algebraic equations and, conse-
quently, they are a high codimension variety w.r.t. the topology of coefficients

66See the module 4 of my notes on Differential Geometry for details and references
67Its analysis is performed in Algebraic Geometry in terms of the Grassmannian

Grass(m, 2m) which supports again natural symplectic structure (Arnold).
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area) or a “kinematic quantity”. Euler-Newton equations provide a first ap-
proach which was extended by Lagrange to more general action functionals
which are called Lagrangian, currently. To start with, let us remember the
simplest case corresponding to the D’Alembert-Lagrange principle associated
to the minimization

δ

∫ b

a
L(q(t), q̇(t))dt = 0

of a Lagrangian L(q(t), q̇(t)) w.r.t. to a distribution D of vector fields defined
on the configurations space C. In this case, variations δ q of the solution curve
q(t) of the distribution D are chosen in such way that δq(a) = δq(b) = 0
where t ∈ [a, b]. Hence, one has

−δL = (
d

dt

∂L
∂q̇i
− ∂L
∂qi

)δqi = 0

for all variations fulfilling the integrability constraints linked to the distri-
bution D. Decoupling of of generalized coordinates q in terms of (xα, yβ)

provides a transformation Aβα between maximal integral k-dimensional and
(m− k) subspaces in the phase space which can be reinterpreted as a linear
map between Grass(k,m) and Grass(m−k,m), or alternately as an element
of the tangent space to the grassmannian, which is easily re-interpreted in
terms of Geometric Algebra, as natural support for dynamic issues.

The above interpretation is seemingly new, but it poses the problem
of giving an extension for the (eventually singular) non-linear case. Here,
the notion of stratification reappears again to provide a support given by a
collection of nested subspaces associated to kinematics and dynamics, and
along different phases of complex tasks (locomotion and handling, e.g.).
Linearization of a good stratification (such to the corresponding EMAD)
provides a behavior which is locally described by a dynamical flag whose
elements are tangent spaces to the regular strata of such stratification. The
development of this simple idea requires to work on flag bundles which are
the natural extension of grassmannian bundles. This extension is not quite
elementary, but contact constraints appearing in the EMAD are structu-
rally linked to symplectic constraints linked to the cotangent space where
Lagrangians are defined.
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3.3.3. Locally symmetric spaces for dynamics

Symmetries are ubiquitous in geometric models and their extensions. Th-
ree major approaches to the use of symmetries in Robotics are related with
the original work started by F.Klein (equivalence between classical groups
and linear geometries), S.Lie (continuous groups G for ODE and infinite-
simal treatment in terms of their algebras g) and E.Noether (symmetries
linked to variational principles which preserve generalized Lagrangians) at
the end of the 19th century. All of them are subsumed in a more general
treatment performed by E.Cartan who unifies their treatment in terms of
symmetric spaces.

Roughly speaking, each point x ∈ X of a locally symmetric space X has
a neighborhood which is geodetically complete, i.e. each point is reachable
along a path which is a subset of a geodesic. Every Lie group G and any
G-homogeneous space is a symmetric space, but the converse is not true.
Intuitively, one can think of symmetric spaces as if they would be given
by “pieces” of spaces which are homogeneous spaces, not necessarily of the
same dimension. with “good” incidence relations in the boundary. Thus,
the notion of symmetric space is much more general and flexible than the
notion of homogeneous space. Furthermore, a homogeneous space is neces-
sarily regular, but a locally symmetric space can display different kinds of
singularities which are usually contained in the closure of G-orbits. These
“pathologies” are the key to understand phase transitions and model them
in terms of equivariant bifurcations linked to symmetries breaking.

All approaches (Klein, Lie, Noether) are related between them. For ins-
tance, Classical Groups (a la Klein) are more commonly described in terms
of Lie groups, because in this way it is possible to apply the extension of dif-
ferential and integral calculus to manifolds. Additionally, their infinitesimal
version eases the estimation of algebraic transformations (it is much easier
compute in a vector space, instead of a manifold) and allows to obtain addi-
tional infinitesimal symmetries linked to ODE (Lie, himself) or variational
principles (E.Noether).

Furthermore, all of them provide invariants which are linked to conserva-
tion laws by following an increasing order of difficulty: (a) Classical Groups
are characterized by the conservation of a quadratic (a distance, e.g.) or
a bilinear form (symplectic or Poisson structure, e.g.). (b) Lie Groups and
Algebras allow to characterize the conservation of physical amounts (such
as the energy or the momentum, e.g.); (c) infinitesimal symmetries provide
criteria for the conservation of variational principles (linked to a lagran-
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gian, e.g.). Hence, it is natural to consider their extension to Mechanical
Engineering and, in particular, to Robotics.

Modern formulations of Classical Mechanics are based on the conserva-
tion of a geometric or a kinematic “amount” such as the momentum or the
energy (Hamilton). In more down-to-earth terms, the conservation of energy
means that the kinetic energy is balanced by the power generated by forces
and momenta applied at joints and torques, e.g. More generally, infinitesimal
symmetries arising from variational principles provide first integrals which
allow partial resolutions of motions equations. More recently, the above th-
ree approaches (algebraic, infinitesimal, variational or dynamics) have been
included in a Differential Theory of Invariants which requires to develop the
Geometry of Jets Space (see [Olv95]68 for an extensive treatment).

To fix ideas from the homogeneous viewpoint, structural motion equa-
tions (Hamilton-Jacobi) are preserved by the action of symplectic group
which induces a equivariant structure linked to the moment map which is
superimposed to each ambient space. On the other hand, the natural contact
structure linked to the description of k-jets (prolongations of order k for the
transference map τ , introduces additional structural constraints which are
very useful for a right interpretation of captured data by sensors. Additio-
nally, each constraint linked to an optimization procedure can be read in
terms of a contact constraint for the problem to be solved.

The introduction of general conservation principles for articulated me-
chanisms is translated in structural constraints involving now to matrices
which are linked to the ideal formulation of mechanics associated to each
kinematic chain, and consequently the whole multibody for more complex
mechanisms. Structural constraints are very important for estimation of dy-
namic parameters which are necessary for control and optimization issues
(see next‘paragraph). However, mechanical constraints involve to matrices
representing transformations (in Lie groups or algebras) or differential ope-
rators (Poisson algebras) verifying structural constraints linked to their Lie-
Poisson structures.

Obviously, this formulation has an ideal character and in practice, it
is necessary to have in account additional terms (usually non-linear ones)
linked to sliding or dissipation effects, e.g.. From the late years of the 19th
century, these non-linear effects are modeled in terms of non-holonomic cons-
traints, linked to the lack of exact integrability. Non-holonomic constraints
can involve to differential formalism or variational principles (giving the

68P.J.Olver: Equivalence, Invariants and Symmetry, Cambridge Univ. Press, 1995
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also called “vakonomic” constraints), which are no longer equivalent bet-
ween them in this enlarged context w.r.t. the original symplectic context.
Roughly speaking, differential non-holonomic constraints are more useful for
kinematic analysis, whereas vakonomic constraints are more useful for con-
trol issues. A very complete treatment of these issues has appeared recently
in Bloch (2003). 69

3.3.4. Some control issues

From the mathematical viewpoint, the simplest control system on a va-
riety X at a point x ∈ X can be described in two ways:

as ẋ ∈ Vx ⊆ TxX where Vx is a region contained in a subspace of
the tangent space TxX at x ∈ X; this description is used to introduce
linear constraints on velocities for systems propelled by motors, as
rolling constraints, e.g.;

in parametric terms, as a function . . . x = f(x, u) where for each x ∈
X the map u 7→ f(x, u) has Vx as its image; typical examples are
related to the use of actuators which modify the current state in the
configurations space.

In both cases, one can consider linear combinations
∑k

i=1 uiξi(x) of seve-
ral vector fields ξi(x) at x ∈ X which are used for delimitation of regions
where “accessibility” and “controllability” are feasible to stabilize solutions
of dynamical systems. First case to be analyzed corresponds to linear time
invariant systems whose discrete version for the state equation is given by

x(k + 1) = Ax(k) + Bu(k)

where A is a n× n-matrix and B is a n× r involving the parameters of the
system. By iterating the application of this transform, one proves that the
system is controllable (i.e. reachable) if the n× nr matrix

C = [B AB A2B · · · An−1B]

has full row rank, i.e. rk(C) = n. The rank constancy defines an open set,
but degeneracy locus (corresponding to rank default) gives instabilities (ill-
conditioned problem in computational terms) which can require additional

69[Blo03] A.M.Bloch: Nonholonomic Mechanics and Control, Springer-Verlag, 2003.
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strategies based on output controllability or trajectories tracking involving
kinematic aspects which are developed from the third module.

A first example of a controllable system corresponds to a kinematic chain
composed by two links in a plane, where A and B are two column matri-
ces; the controllability condition for C means that the rank of the matrix
[B AB] must be equal to two, i.e. links are not aligned. Next case, shows
that controllability is fulfilled if the resulting (3 × 3r)-matrix has rank 3,
and so on.

Beyond the trivial cases (corresponding to r = 1), it is clear that contro-
llability conditions can be re-interpreted in terms of Grassmann manifolds
Grass(n, nr), with degeneration conditions parameterized by the manifold
of complete flags corresponding to subspaces of dimensión < n. It seems na-
tural to give a more compact description of these issues in terms of ODE on
multivector algebra in the framework of Geometric Algebra, but seemingly
it is not still performed. A theoretical approach to this problem with an
application to control of biped gait was exposed in my talk of Agacse’01
(Cambridge, UK) by adapting some arguments of Riccati’s equations to
matrices representing Grassmannians. The basic idea consists of replacing
optimal solutions by fixed points of maps f : Grass(k,N) → Grass(k,N)
on a Grassmann manifold.

The existence of different dimensions for subspaces appearing even for
each space of the PACW cycle, suggest the introduction of Flag manifolds for
control issues involving “stratified spaces” according to previously specified
mechatronic architecture. A flag of a N -dimensional space V N is a finite
collection of nested subspaces

Lr1+ ⊂ Lr1+r2 ⊂ . . . ⊂ Lr1+...+rk = V N

which are described by their successive quotientsQri = Lr1+...+ri/Lr1+...+ri−1 .
In this way, one obtains flags of “nationality” (r1, . . . , rk) corresponding to
all possible partitions of N = dim(V ) which are related between them by
common refinements of two initial partitions. Two extreme cases corresponds
to Grassmann manifolds corresponding to the partition (k,N −k) and com-
plete flag manifolds corresponding to (1, . . . , 1); both play a fundamental
role in Geometry and our approach to Robotics. They are homogenous ma-
nifolds given initially as GL(N)/[GL(r1)×GL(rk)]. Their tangent space at
each point is given by ⊕1≤i<j≤kHom(Qri , Qrj ) representing the “influen-
ce” or the interaction of the i-th module with the j-th module involving
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geometric, kinematic and dynamic aspects 70.
In this enlarged framework, the basic idea consist of replacing the Grass-

mannian (space of regular rectangular matrices) by a Flag Manifold B(r1, . . . , rk)
associated to the partition (r1, . . . .rk) of N . Its tangent space (support for
Optimization) is represented by upper-block (resp. lower-block) triangular
matrices corresponding to forward (resp. feedback) strategies. Multilinear
control functions extending traditional approaches (a la Lyapunov, e.g.) are
defined on the dual of these Flag Manifolds. This approach solves the pro-
blem at Kinematic level, but not to dynamic level. To avoid undesirable
nonlinear effects appearing along the interaction, we incorporate “nilpotent
operators” in charge dissipating non-linear vibrations, e.g. 71

From the mechanical viewpoint, the most common control strategy in-
volves to position and/or force coordinates acting on joints and torques;
the resulting hybrid control is called position-force based control. A comple-
mentary strategy is the Impedance-based control which is implemented on
manipulators for controlling the environmental interaction linked to inverse
dynamics. It involves to a hybrid formulation of control law in the phase
space in terms of non-linear (scalar, vector, tensor) fields, which allows to
represent non-linear coupling effects linked to contact conditions; in realis-
tic cases, such effects appear as sliding and friction effects which require the
introduction of non-holonomic constraints for advanced dynamic modeling.

Multivector language (introduced at the end of the second section) provi-
des a support for a self-dual representation involving to position-force based
control (involving and “extended duality” between geometric and dynamic
issues) and impedance-based control (involving kinematic issues, properly
said which are formulated in a self-dual Grassmannian of lines). An addi-
tional contribution concerns to the introduction of “complete objects” in-
volving trajectories whose support is geometrically represented by incidence
and tangency conditions which are, not only projectively invariant, but dual
between them in the projective compactification, also.

In this extended bivector framework the lack of controllability is related
to a lack of total integrability; in the non-controllable case, one must com-
pute (infinitesimal) symmetries linked to Lie brackets. Let us start with the
“easy” case: The inclusion of non-linear effects for dynamic controllability
is initially described in terms of a distribution D which is locally given on
the tangent space by a control-affine form

70The reasoning si similar if one replaces the General Linear Group by any other Clas-
sical Group.

71more details in the module B34 (Robot Dynamics).
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ẋ = f(x) +
m∑
i=1

gi(x)ui

with similar controllability conditions which are expressed now in terms
of iterated Lie brackets [adk∇f∇g]. More generally, if ξ, η are two arbitrary
vector fields (not necessarily gradient ones), one defines the iterated Lie-
Poisson bracket as:

ad0ξ(η) = η , adξ(η) = [ξ, η] , · · · , adkξ (η) = [ξ, adk−1ξ (η)]

which are the natural extension of ordinary adjoint representation adX(Y ) =
[X,Y ] by means of iterated Lie brackets for matrices:

ad2X(Y ) = [X, adX(Y )] = [X, [X,Y ]], · · · , adkX(Y ) = [X, adk−1X (Y )] ∀X,Y ∈ g

In particular, for the above linear system ẋ = Ax+Bu with the control

ẋ = f0(x) +
r∑
i=1

uifi(x) with f0(x) = Ax , fi(x) = Bi

being Bi ∈ Rn+1 and B = (B1 . . . Br), the application of the above criterion
(following Kalman) for iterated Lie brackets gives

adkf0fi = (−1)kAkBi

and consequently, the controllability criterium written above corresponds to
the computation of the rank of the subspace generated by adkf0fi at the initial
point. The worse case corresponds to nilpotent operators. Let us remember
that g is a nilpotent Lie algebra iff

[X1, [X2, [· · · [Xn, Y ] · · · ]] = adX1adX2 · · · adXnY ∈ gn = 0

for allX1, X2, . . . , Xn, Y ∈ g. In particular, adX is a nilpotent endomorphism
for any X ∈ g when g is a nilpotent Lie algebra, i.e., adkXY = [X, adk−1X Y ] =
0 for some k > 0. Thus, the lack of controllability is strongly linked with
the geometry of the nilpotent variety. Intuitively, nilpotent fields are the
responsible of rank default, which can be controlled in matricial terms.

From the infinitesimal viewpoint, a recent strategy for classifying finitely
determined singularities (i.e. equivalent to its k-jet) consists of identifying
infinitesimal deformations which transform them in its k-jet. One can prove
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that the responsible for k-determinacy is a nilpotent algebra which charac-
terizes the equivalence class of the k-jet 72.

Along late nineties, we have characterized all “simple” singularities of
polynomials (ADE classification) in terms of nilpotent Lie algebras; these
cases cover all meaningful cases appearing in corank 1 singularities. Hence, to
control the behavior at singularities, it suffices to construct generic nilpotent
vector fields in the neighborhood of the singularity. Nilpotent operators are
useful in Robotics because, between other things, they provide a complete
list of algebraic models for dissipative models.

The specific choice of a control strategy depends on the task to be per-
formed and the capability of measuring and interact with the kinematic
variables. Thus, there is no a universal solution but an analysis linked to
symmetries, analytical stratifications and multi-vectorial formulation pro-
vides complementary criteria to improve the design of control algorithms.
The introduction of a hierarchy linked to the geometry of G-orbits and the
transfer map τ (and their prolongations given by its k-jet jkτ) provide a ge-
neral equivariant framework for a natural feedback between different kinds
of control which are described in terms of the large diagram relating the
stratified maps jkτ .

Our proposal consists of the following strategy: the lack of controllability
can be corrected not only identifying local infinitesimal symmetries (classical
approach which does not closure the iterations), but by introducing some
the control through nilpotent elements which are the responsible to stabilize
orbits linked to singularities. These topics are more advanced than usual and
will be developed from a mathematical viewpoint at the end of the module
4, and applied to humanoid robots and animats along modules 5 and 6.

3.4. Expert Systems in Robotics

Expert systems try of imitating smart functionalities in charge of (a)
information processing and analysis arising from sensors; (b) fusion, eva-
luation and tracking of changing information; and (c) support to decision
making including adaptive interaction with evolving environments. Some of
the most meaningful advances from the late nineties have been performed
in the domain of distributed intelligence in advanced sensor networks, and
their assistance to Decision Making.

72J. W. Bruce, A. A. du Plessis, C. T. C. Wall: “Determinacy and unipotency”, Inven-
tiones Mathematicae, 88 (3), 521–554, 1987
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In the early years of the 21st century, this concept was restricted to
static sensor networks based in RFID (Radiofrequency Identifiers) e.g. with
different standards for communication protocols. More recently, the develop-
ment of ubiquitous support for communications and facilities for integrating
quite different kinds of information in a common suport has allowed the
development of increasingly efficient sensor networks with a wide range of
applications to mobile multiagents. One of the most interesting problems
concerns to automatic driving which is discussed at the end of the module
2.

Some general problems concern to grouping around meaningful values,
clustering around typical shapes (for signals and/or objects), adapting to
expected trajectories by using pattern recognition for signals (accumulation
of sigmoids or Gaussians in the simplest case, e.g.), and reuse of probabilistic
reasoning (fuzzy systems) as support in presence of uncertainty. At the end
of the §3,3,4 one can find a coarse description of ANNs (Artificial Neural
Networks) and some the most frequent extensions given by GAs (Genetic
Algorithms), EP (Evolutionary Programming) and SOMs (Self-Organized
Maps).

Along this subsection, one gives some additional details which are mea-
ningful to introduce an embedded intelligence for increasingly smart robots.
Obviously, ANNs and their variants (GAs, EP and SOMs) do not cover all
the approaches which can be performed to provide a modeling of embedded
intelligence in Robotics. Other relevant approaches develop specific archi-
tectures (such as Cellular Automata or Support Vector Machines, e.g.), or
put the emphasis on estimation (Principal versus Independent Component
Analysis, e.g.) or uncertainty about reasoning (Fuzzy approaches, e.g.). Ho-
wever, all of them can be integrated in the current scheme as weighted linear
or non-linear scalar bounded functions taking values in R.

Beyond the initial description of ANN in terms of elementary linear
algebra, there is a geometric interpretation which allows to think of as a
(discrete) surface given explicitly by a system of weights wij representing
the “weight” at each neuron nij . Several inconvenients are low convergence
rate for learning procedures, sensitivity w.r.t. the initial values, lack of fle-
xibility for adapting results, etc. These inconvenients were already known
in the early nineties. To overcome them, several strategies have been desig-
ned which consist of introducing different kinds of algorithms which intend
to accelerate the convergence, be tolerant with qualitative changes (GAs),
include evolutive behaviior to improve the adaptability (EP) or to propa-
gate locally the current optimal values to small neighborhoods of optimal
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solutions (SOMs) to reinforce the stability and persistence.
The main novelty of our approach to AI consists of all additional su-

perimposed structures can be reinterpreted in terms of discrete versions of
superimposed structures which are commonly used in Differential Geometry
(fiber bundles, principal bundles, equivariant fibrations), and functionals
defined on them.

This reinterpretation provides a natural feedback between Mechanics
(formulated in terms of topological fibrations) and AI tools in charge of
their management. In particular, the Perception-Action Cycle appears as a
propioceptive extension of the mechanical feedback between configurations
and working spaces. Obviously, this proposal requires the development of a
discrete version of differential and integral tools which are commonly used
in Differential Geometry such as vector fields, differential forms, and con-
nections, between others.

This program is still far from being completed, Because of this, some
topics are discussed in next section which is devoted to open research lines
of Mathematics applied to Robotics. In other words, in this section we shall
introduce some basic aspects (most of them are well-known) related to Ex-
pert Systems, but from a geometric viewpoint to ease the transition with
topics which are presented in last section of this introduction.

3.4.1. Artificial Neural Networks

There is no a formal definition for an Artificial Neural Network(ANN
in the successive). Roughly speaking, it is a model inspired in biological
neural network for approximating and estimating any kind of shape or fun-
ction, and consequently, imitating (through different kinds of learning) tasks
which are described in terms of functions. Thus, it includes morphological
and functional aspects. It is specified by an architecture (given by different
layers with topological connections between them), a collection of activity
rules (action-reaction or more involved patterns) and learning rules for the
knowledge acquisition.

Algorithms based in ANN have a lot of applications including analyti-
cal issues (approximation of functions, e.g.), statistical problems (non-linear
regression, e.g.), computer science (machine learning, e.g.), computer vision
(pattern recognition, e.g.) or integral design (environment representations,
e.g.) between others. They are useful to solve information processing, fusion
and analysis arising arising from different sensors, to design and implement
different kinds of data classification and learning, and to assist decision
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making to execute commands relative to tasks to be performed inside the
Perception-Action Cycle. Thus, they appear in almost all areas of Robo-
tics as high-level algorithms; they are developed in the module 2, but their
refinements appear along all these notes.

From the architectural viewpoint, simplest representations consist of th-
ree layers which are labeled as input (corresponding to sensors, e.g.), hidden
(for information processing and analysis, e.g.) and output layers (for the
response which are connected with actuators, e.g.). More interesting ANNs
have at least two hidden layers, but they are more difficult for task-oriented
programming. Often, one supposes that all nodes of two consecutive layers
are connected between them, from which a lot of proofs and simulations
in order to identify the “right” weights for each neuron. Initially, the hid-
den layer acts as a black box, with (initially random) weights which are
modified according to unsupervised learning strategies according to diffe-
rent optimality criteria, including the proximity of obtained results w.r.t.
expected results, e.g..

Usual approach to convergence issues for ANNs is performed in terms of
proximity criteria w.r.t. (pseudo-)euclidian structures superimposed to a dis-
crete version (a regular mesh) of the (pseudo-)euclidian structure which is su-
perimposed to a manifold or, more generally, a variety. Non-linear behaviors
are modeled in functional terms locally described by a system of weights wij
associated to a collection of nodes or neurons nij = (xi, yj). The optimiza-
tion of weights wi assigned to a task can be geometrically interpreted as a
surface wij = f(xi, yj) which is as near as possible to the system of weights.
An optimal approach to a task is nothing else than an optimal adjustment
to a objective goal represented by such a function.

A more general approach is based on Geometric Algebra, where one
considers multivector functionals instead of scalar functions. This approach
seems more natural having in account the overlapping of different signals
and commands which are translated in environmental representatons, small
motions at joints in a 3D architecture, and execution of spatial movements.
This approach has been initially developed by D.Hestenes and his school
from the early nineties; see [Bay00] for an integrated approach 73 This idea
is very suggestive; for higher applicability it is necessary to design and imple-
ment more efficient algorithms for control and optimization issues according
to the last paragraph of the precedent subsection. Due to their more advan-

73[Bay00] E.Bayro-Corrochano: Geometric Computing for Perception-Action Cycle,
Springer-Verlag, 2000.
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ced character from the mathematical viewpoint, these issues are considered
in last section of this introduction.

3.4.2. Some extensions of ANN for Robotics

To overcome the difficulties of original approach to ANN (slow conver-
gence, sensititivity w.r.t. initial values, unability for mutations, evolution of
self-adapting), it is necessary to superimpose different kinds of more flexible
structures able of self-adapting to changing initial conditions or environ-
mental constraints. Roughly speaking, there are three classical options for
superimposed Expert Systems which are compatible with large systems. They
are labeled as

Genetic Algorithms (GAs) which involve to the capability of mutations
(changes of shape, state or phase transitions, e.g.) in the dynamics of
involved systems.

Evolutionary Programming (EP) which involves, between others, to
the capability of reconfiguration of modular systems as a result of
multiple interactions at different scales.

Self-Organized Maps (SOM) which are based on unsupervised competi-
tive learning (instead of minimizing errors) by preserving the topology
of the input space and represent results on a map.

The two first ones provide more robust solutions (but also more rigid ones),
whereas the third option provides more adaptive solutions with eventually
chaining hierarchies. Thus, the choice depends on the problem characte-
ristics. In most treatises, there is no a connection between these approa-
ches. Thus, seemingly it is not possible to transfer results between such
approaches. However, all these procedures can be represented as different
kinds of fields or functionals which can be defined on a generalization of the
(co)tangent bundle (the old phase space of Poincare) given by successive jets
of the transfer map τ : C → W between configurations and working spaces
of a robot. This reformulation provides a structural link between different
mechanical aspects from the analytic viewpoint.

The open character for initial and boundary conditions, gives an even-
tually infinite-dimensional space of solutions as support for Optimization
and Simulation issues, with a weak topological structure. Thus, usual hy-
potheses (convexity, e.g.) about the integration domain are not longer valid;
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consequently, one can not expect an optimal solution, but a collection of
suboptimal solutions which can be considered as possible milestones to be
visited before achieving the final result. Very often, shortening of verification
procedures incorporate a supervised heuristics-based approach.

It is necessary to advance in regard to the design of reconfigurable sys-
tems involving systems with a low number of DOF involving the most mea-
ningful components (principal vs independent component analysis, e.g.).
There are multiple examples arising from biological behaviors or chemical
reactions which provide patterns for distributed networks. Their exploration
and comparison would must provide more robust and adaptive behaviors of
electromechanical devices.

The most relevant recent contributions of Machine Learning for Robotics
arise from Deep Neural Networks (DNN). Their distributed and modular ar-
chitecture incorporates a lot of layers which allow self-learning without wai-
ting a final output. Basic algorithms are shared with traditional approaches
including CNN and RNN (Convolutional and Recurrent Neural Networks)
but with a much higher performance. They have been successfully applied
to Speech and Image classification in the second decade of the 21st century.
Some challenges are related with the automatic labeling and classification
of video sequences for automatic navigation and 3D contents for interaction
in complex environ

Some contributions of these notes concern to a more systematic use of
symmetric principles for learning, the extension of learning subspaces met-
hod (appearing already in SOM along nineties) to nested subspaces (flags),
the use of algebraic (injective vs projective) resolutions of modules (introdu-
ced in the chapter 4 of the module A23), and the construction of “universal”
models for linear approaches to learning problems in terms of maps between
Graded Complexes.

3.4.3. Self-Organizing and Reconfigurable Systems

Self-Organizing Maps (SOM) were developed along the eighties and nine-
ties with a lot of applications to almost knowledge areas. The most complete
reference is [Koh97] 74 where one can find a much more detailed presentations
and an impressive list of references involving different subjects. A commen-
ted list of mathematical developments performed along the nineties can be
read in [Koh97], pp.280-284.

74T.Kohonen: Self-Organizing Maps (2nd ed), Springer-Verlag, 1997.
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An additional mathematical motivation for SOM development (in re-
gard to the applications to Robotics) arises from the need of “inverting” the
correlation matrix involving to an input-output problem, where observed
data are pruned to errors. In this context, SOM can be understood as a
typical optimization problem where one tries of identifying optimal transfer
operator which minimizes residual errors. This generality makes possible to
apply SOM strategies for solving signals transduction in Electronics, clus-
tering data in Computer Science, unsupervised learning in Expert Systems,
or modeling under uncertainty from noisy data in any kind of scientific,
engineering or economic knowledge field.

Kinematic extensions of the SOM-based approach require a probabilistic
approach to vector fields compatible with SOM, which is given by Hidden
Markov Models (HMM). Main problems to be solved concern to non-linear
character, high dimensionality of the parameter space and control at boun-
dary regions. All these problems are considered along the last chapters of
the third module by using probabilistic extensions (in jets spaces) of clas-
sical vector bundles notions whose basic elements (deterministic approach)
are introduced in the second module (Navigation).

From the viewpoint of a computational treatment of Information Theory,
Data Clustering is focused towards Pattern Recognition, which can include
(supervised or not) emergence and learning procedures. The whole design
of algorithms allows to reconfigurate the involved systems according to sta-
bility criteria. Possible transitions between local and global aspects are a
hard problem to be solved which requires additional research. From the
mathematical viewpoint, there exists a hierarchy between topological, dif-
ferential and infinitesimal stability criteria 75. It is required a probabilistic
and computable reformulation of this hierarchy involving different kinds of
stability, compatible with the classical hierarchy (topological, differential,
infinitesimal) for stability issues.

Reconfigurable Systems require a modular design able of identifying not
only stable patterns, but transitions between them. In other words, one re-
quires an adaptation of basic principles of Bifurcation Theory which, in our
case, must be compatible with different kinds of group actions; Golubitsky,
Schaeffer and Stewart have developed a quite general approach, but it is
necessary to perform a computationally implementable adaptation compa-
tible with a probabilistic approach. Contrarily to an extended opinion, the

75See my introductory notes to Differential Topology for additional details and referen-
ces.
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number of DOF is not a problem, because the topological classification of
function germs is performed in terms of codimension, firstly, and corank
of the Hessian matrix, next. The above remarks suggest additional deve-
lopments for SOM which can be adapted to these problems which will be
developed in the module four.

3.4.4. Evolutionary Robotics. Some remarks

Following [Nel09], the main goal of Evolutionary Robotics is the deve-
lopment of methods for automatically synthesis of intelligent autonomous
robot systems 76

Evolutionary Robotics is a knowledge domain where artificial neural net-
works, evolutionary programming, cognitive science, genetic algorithms and
programming are overlapping to create some kind of artificial life. The corres-
ponding behaviors go from the simplest stimulus-response or reflex motions
till the most complex decision making and reflexive-consciousness situations.

From the computational viewpoint, a basic related notion is the Evo-
lutionary Computing or, more specifically Evolutionary Algorithms. Their
goal is to provide a representation of the scene S (as a local representation
of the environment S) and the possible smart eventually mobile objects O
which are embedded in S. This representation must include not only the
shape and observed trajectories, but an estimation of relative trajectories
and possible behaviors depending on these observations.

This goal is too ambitious, currently, and first advances have been fo-
cused towards try of understanding some biological processes, where cons-
traints relative to shape and function can be “more easily” incorporated.
Some extensions to artificial models for colonies of small social insects (ants,
bees) have been developed; in this way, it is possible identify behavior pat-
terns, with simple rules which are individually learned by imitating basic
gestures. To achieve these goals, several adaptations of the above superim-
posed structures (Generic Algorithms, Self-Organized Maps) to ANN have
been developed from the late nineties. 77

76[Nel09] A.L. Nelson, G.J. Barlow, L.Doitsidis: “Fitness functions in evolutionary ro-
botics: A survey and analysis”, Robotics and Autonomous Systems 57, 345-370, 2009

77More details on these issues are provided along last chapters of the modules B21

(Anchored Robots) and B22 (Navigation).

123



3.4.5. Elements of Deep Learning in Robotics

*
Deep Learning strategies for ANN (DLANN in the successive) incor-

porate almost all strategies developed in multilayer ANN from the sixties.
Thus, they are becoming the “new frontier” for the most powerful tools
for all variants of mathematical modeling (differentiable vs discrete), massi-
ve architecture (parallel vs distributed) or learning procedures (supervised
vs unsupervised). Depending on the framework choice (electronic, reaso-
ning patterns, statistical, fuzzy logic), there are several architectures for
DLANN. To fix ideas and by analogy with the approach performed in the
first paragraphs of this subsection, we shall restrict ourselves to those based
in reasoning patterns which are supported by CNN (Convolutional Neural
Networks) 78

Nevertheless the high complexity of the subject, we shall give some
brushtrokes to understand the reaching of DLANN in regard to a theoretical
approach from the functional viewpoint. A basic feature is the use use of
ANN with an almost arbitrary number of layers (old ANN have at most five
layers, i.e. at most three hidden layers furthermore input and output layers).
Batch processing is translated to the internal structure, in such way that the
processing can be performed by using “blocks” having in account the local
information for “near paths”; traditional processing in ordinary ANN was
only performed along individual paths connecting neurons corresponding to
successive layers.

For learning procedures, DLANN can incorporate not only local back-
propagation methods (discrete version of the gradient descent for the dif-
ferentiable case) in a much more efficient way, but feedforward (acyclic)
mechanisms labeled as FANN and recurrent (cyclic) mechanisms labeled as
RANN. They involve to a a sequential or a cyclic treatment of packs of th-
reads. From the mathematical viewpoint, this artificial scheme reproduces
basic behaviors of solutions, but involving to packs of information. Hence, it
allows create and process information corresponding to distributed packs of
inputs, which furthermore being a very interesting contribution, it is a little
bit worrying.

From a theoretical viewpoint, this approach requires an apparently new
evolving spatial representation, which is reformulated in our notes in terms
of a discrete version of integrable systems of degree k differential forms.

78See last chapter (Expert Systems) of the module B21 (Anchored Robots) for more
details and references.
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In this way, it is possible to benefit of the spatial representation by using
convergence criteria not only towards critical values of functions (as in the
old learning procedures linked to traditional ANNs), but towards integral
varieties as solutions of the integrable differential systems. Along the next
section, one sketches some more basic related elements.
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4. Mathematical challenges for Mobile Robotics

In above sections, we have tried of proving the utility of Mathematics for
solving some problems in Robotics; hence it intends to be useful mainly for
Mechanical Engineers and experts in Computer Science and their applica-
tions to Computer Vision, Artificial Intelligence and Computer Graphics. A
common leit-motiv is the interplay between local and global aspects which
use advanced models of the interplay between Analysis and Geometry in
the domain of Global Analysis; obviously, this interplay involves also to the
estimation strategies (feedback between probabilistic vs statistical approa-
ches) and propagation models (ODE- or PDE-based vs Differential Systems
or Jets spaces).

Roughly speaking, all of them can be embedded in different variants of
fiber bundles including vector bundles (for propagation models), principal
bundles (for systems with symmetries), or more general fibrations (to include
reaction capability of artificial systems in regard to interaction in complex
environments). Their locally trivial structure allows to patch together local
models, and propagate their behavior not only for issues involving the in-
ternal structure (principal bundles are commonly used in Robotics from the
nineties), but the interaction with the environment through a reformulation
of Expert Systems. The latter ones is possible thanks to a reformulation of
the basic elements (detectors, descriptors, classifiers) for Artificial Recogni-
tion in terms of basic elements (functions, sections and isomorphism classes,
respectively) defined on fibrations79.

The above remarks justify our choice of the Global Analysis (simulta-
neous extension of Analysis, Algebra, Geometry and Topology) as the theo-
retical framework for mathematical issues in Robotics. Obviously, this fra-
mework must be completed with estimation methodologies (including pro-
babilistic and statistical aspects), and a reformulation of Optimization and
Control issues for their effective application to Robotics. The former ones
are specified along each module, whereas the latter ones are introduced in
the module B24 (Robot Dynamics), where one develops a dual presentation
for Optimization and Control issues.

Along this introductory section, to lower the general formalism of Glo-
bal Analysis, we adopt a more down-to-earth viewpoint by presenting a
collection of problems arising from Robotics of great interest for a more
systematic development in terms of advanced mathematical-physical mo-

79See the last chapter of the module B11 (Anchored robots) for a first presentation.
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dels and the corresponding development of software tools. In the same way
as in precedent sections, the selection is not neutral, and there is a clear
predominance of geometrical and topological methods in detriment of other
analytical or statistical frameworks.

Main mathematical problems for anchored robots concern to high ope-
rational accuracy (in euclidian environments), optimization for hyperredun-
dant robots, and robust control in regard to inspection and manipulation
tasks for robotic arms. Simplest cases correspond to planar robots or non-
redundant spatial robots whose applications to industrial environments are
well known and explained along the first chapters of the first module of the-
se notes. Anyway, they provide the initial framework to integrated models
and tools arising from different areas The most difficult case correspond to
applications of hyperredundant manipulators (to assisted chirurgy), and to
Stewart platforms (useful for flight simulators, e.g.). Both of them display
several open problems which are studied in terms of multicriteria optimiza-
tion and configurations in flag manifolds, respectively.

Mobile Robotics include a very large amount of situations including mo-
bile platforms (Stewart, wheeled robots, wheelchairs, cars and trucks, e.g.)
and multilegged robots (including humanoids and animats, e.g.). Other in-
teresting examples which are not considered along in this section include
terrestrial animals (including snakes-based models for spatial research or for
assisted chirurgy, e.g.), maritime devices (for bathimetry in turbulent zo-
nes or operations in depth sea, e.g.) and aerial devices (fleets of unmanned
vehicles, e.g.). At the end of the module B22 we introduce some remarks
about fleets of terrestrial vehicles in monitored environments. They display
a complex interaction with other agents and the environment in regard to
typical applications concerning to mobile surveying tasks or assistance to
automatic driving; along this course we don’t consider the almost obvious
military applications. To fix ideas, most applications are restricted initially
to kinematic aspects of mobile platforms (module B23) and multilegged ro-
bots (module B26.

Computational geometry (module B11) and Computational topology (mo-
dules B12 and B13)) are focused towards proximity queries and related rigid
or deformable structures, e.g.. They provide a starting point for computatio-
nal kinematics and dynamics which can be understood as successive steps of
a larger Computational Mechanics. The discrete approach to motion equa-
tions is performed in terms of successive differences of motion snapshots
can be applied for motion and manipulation planning, motion generation
and execution. The capture and display of data involving changing envi-
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ronments (visual, haptic and auditory devices) provides crucial materials to
improve the simulation of dynamical systems linked to motions, and ease
the feedback inside increasingly realistic situations.

The very high complexity of problems requires to introduce some orga-
nizer principles (symmetries, stratifications, evolving geometric representa-
tions) to manage all this information in an efficient way by means expert
systems and their corresponding algorithms. Three transversal axes for furt-
her developments are organized around (a) symmetries acting at different
levels (infinitesimal, local, global); (b) hierarchies for complex structures to
ease stability, optimization, and control issues; and (c) interaction capabi-
lity with an evolving environment with changing constraints, including rank
default conditions linked to each layer of Mechanics. All of them provide
structural criteria with their corresponding exceptions. So,

The lack of complete integrability (non-holonomic constraints) for subsys-
tems must prevent us about the possibility of finding a complete system
of first integrals.

The presence of qualitative changes (described initially as phase tran-
sitions) arising from accumulation near to critical levels can generate
jumps which are not foreseen in the most general hierarchical models.

Finally, multivector calculus can describe generic phenomena at “hu-
man scale which are linked to extended matricial representations 80,
but they are not able of describing all pathologies (local singulari-
ties, e.g.) linked to propagation models and different kinds of Cr-
equivalences used for their classification.

In other words, we are not claiming that materials presented along these
notes give a quite general approach to the application of geometrical and/or
topological methods in Robotics. They provide some guidelines which are
useful as organizing principles, and motivate the development of a more
profound collaboration between experts in Mathematics, Physics and (Me-
chanical, Industrial, Communications, Informatics) Engineers with common
interests in Robotics.

According to the above remarks, the comments are organized around th-
ree subsections (containing more advanced developments related to the abo-
ve structural axes), and a fourth subsection with a hybrid character (some
kind of jumble), where we try of re-combining the precedent developments.

80Thom-Boardman singularities are naturally associated to default-rank conditions for
matricial representations, but they do not cover all possible singularities linked to maps
between spaces
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First subsection is devoted to discover symmetries for Mechanical Design,
involving geometric, kinematics and dynamic aspects. The initial framework
for simplest models is given by Discrete and Computational geometry which
are organized around models, data structures and algorithms. This basic
scheme is extended to computational topology , kinematics and dynamics.
Along the first subsection, we sketch some problems in Non-integrable Sys-
tems for Robotics where geometrical techniques are specially useful from a
local viewpoint.

Non-integrability means that some kinematic (resp. dynamic) constraints
can not be described in terms of geometric (resp. kinematic) constraints; in
more geometric terms, their support is contained in the kernel of the pro-
jection map going from the space representing kinematics (resp. dynamics)
onto the space representing the geometry (resp. kinematics); this phenome-
non is well known in Algebraic and Analytic Geometry. The problem is how
to solve controllability issues which require to solve how to lift distributions
of vector fields in presence of uncertainty. Our proposal consists of reintro-
ducing symmetries to replicate the behavior on the kernel of the differential
vertical map.

Second subsection is devoted to a generalization of flag manifolds as
universal models for static stratified models to “flag bundles” for “dyna-
mic stratifications”. A flag bundle has a flag (collection of nested subspa-
ces) as fiber at each point; the main advantage is the existence of splitting
principles which allow to perform decoupling for mechanisms and tasks. A
set-theoretical stratification is a decomposition of a topological variety in a
disjoint union of open subsets which are given as a union of cells of the same
dimension; singularities appear at boundaries.

The execution of tasks generates phase changes giving evolving subva-
rieties, which evolve (appear and disappear) following quasi-cyclic patterns
with their corresponding control modes; a typical examples concerns to loco-
motion or re-grasping tasks, which can display an alternance between open-
and closed-loop systems for control. In these cases, dynamic stratifications
change accordingly to dynamic systems linked to the interaction with the
environment. Hence, the general models for static stratified varieties given
by flag manifolds are not enough on the Dynamics space, and require an
evolving version which is described in terms of flag bundles.

Third subsection is focused towards a better understanding of phase
transitions and qualitative changes from the Geometric Algebra viewpoint.
The initial idea is very simple: such “pathological” phenomena do correspond
to default rank matrices which are linked to vectors representing links, their
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kinematics or the lack of integrability of equations giving the dynamics.
Thom-Boardman singularities provide a general framework to treat any kind
of singularities arising from rank default conditions.

Unfortunately, the problem is a little bit more complicated, because the
successive inclusions between Geometry, Kinematics and Dynamics, and the
obstructions to lift and descent distributions of vector fields (or their dual
in terms of differential forms) require some additional developments of flag
bundles and their tangent “spaces”. The static case is well-known (see third
subsection, below), but the dynamics case deserves still some issues to be
solved which impose additional constraints for Mechanical Design in regard
to embedded constraints. Our strategy use “complete objets” in jets spa-
ces as support for dynamics involving extended configurations and working
spaces.

Seemingly, the above above descriptions quite new and because of this,
all of them remain as a theoretical purpose which has not been experimen-
tally verified. To finish, we shall comment some additional aspects of Ro-
botics which are still waiting for more developments from the mathematical
viewpoint.

4.1. Discovering symmetries for Design

Nature is not necessarily symmetric, and contrarily to the original La-
grange viewpoint, the whole Mechanics can not be explained in terms of
universal Kinematic laws extending the Geometry. There are (a) statisti-
cal aspects involving complex dynamics, (b) matter granularity which are
contrary to the existence of universal laws up to scale, and (c) information
exchange which can be only explained in terms of topological (non-metric)
or even discontinuous models. Some typical examples of Robotics which
do not have a geometric analogous correspond to (a) probabilistic or fuzzy
networks, (b) lack of scalability for motion of insects and mammals, and
(c) shape changes for microscopic organisms or differences of potential for
activation/inhibition phenomena.

Nevertheless, the ubiquitous presence of symmetries, the emergence of
self-organized hierarchies and the geometric representation of mechanical
interactions with the environment, simplify the treatment of a lot of situa-
tions at different scales which can be developed in a common framework,
even being aware of troubles to find universal laws.
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4.1.1. Symmetries, conservation and motion laws

At the most abstract level corresponding to symbolic representations,
one can find symmetrical or anti-symmetrical behaviors involving represen-
tations of tasks or functionals defined on base spaces linked to kinematics
or dynamics. This remark is almost obvious, because in the linear frame-
work any square matrix can be decomposed in a sum of a symmetric and
a anti-symmetric matrix; however, this principle is extended to more ge-
neral operators defined on spaces of functions or discrete representations
(graphs). To detect them, it is necessary to design and implement proximity
and similarity queries involving input signals and output commands.

The extremely large diversity of patterns for grouping and changing
behavior of clusters motivate a simultaneous development of simplified repre-
sentations (paths, simplicial structures) and superimposed structures (ho-
motopy, co-homology theories) able of self-adapting to evolving shapes and
dynamical deformations from a discrete viewpoint. A mathematical treat-
ment of these issues (and more detailed references) can be read in my notes
on Algebraic and/or Differential Topology. A computational approach can
be read in my notes on Computational Mechanics (both in Spanish language
in my web page or the MoBiVAP web site).

One can not expect that patterns or structures appearing at a scale be
present at different scales. Each LoD (level of detail) has its characteristic
features for composition (granularity) and behaviors. So, neural plasticity,
inter-connectivity or capability for generating patterns by firing, can not
be found at the scale of organs. Hence, it is necessary to work at different
resolutions, with different logical patterns and different laws for each LoD.
Furthermore, transitions between discrete and continuous models are very
tiny, and thresholds for different patterns and behaviors are not easy to
identify.

From an historical approach, Geometry appears as a limit case of Topo-
logy, where the group of (local) homeomorphisms fixing a point is replaced
by its linearization, giving the general linear group as a general framework
for all classical geometries. Linear subspaces provide an approach to non-
linear subvarieties, with the same rules for boolean operations between basic
primitives. More generally, the topology of Dynamical Systems provide a na-
tural extension of static topological features by allowing a zoo of different
phenomena relative to deformations, re- or de-composition processes.

Similarly, the discretization of metric properties for a riemannian mani-
fold (M,ds2), are replaced by a collection of isolated control points which
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re-organize the ambient space in terms of distance maps (Voronoi diagrams)
with their corresponding combinatorial structures. This coarse scheme is
extended to arrangements of simple geometric primitivas (lines, planes, sp-
heres) or to a collection of “sites” acting as attractors as self-organizers of
dynamics. This reasoning scheme can be applied to any kind of sites (not
only 0D), allows to manage any kind of constraints (geometrical and dyna-
mical ones), and it involves to quite different aspects going from learning
patterns to motion planning in presence of mobile objects.

Furthermore, even in presence of hundreds of thousand of sites, this
strategy allows to combine deterministic patterns with behaviors under un-
certainty in the proximity of saddle points or repulsors linked to Voronoi
diagrams. Hence, this reasoning scheme provides an assistance to naviga-
tion (module 2) from a finite collection of “sites” in different environments
(indoor vs outdoor scenes, coupling with GIS, internal navigation for assis-
ted chirurgy, e.g.). Additionally, constraints can be incorporated to different
scenarios in different ways involving geometric, kinematic or dynamic res-
trictions given by algebraic or differential inequalities. Hence, queries about
proximity and similarity involve not only to geometric eventually deforma-
ble shapes, but to kinematic trajectories and dynamic behaviors (including
corresponding optimization and control issues). Some typical examples con-
cern to eye-hand coordination, haptic interfaces for dynamic simulation, and
integration of VR/AR for simulation and learning.

4.1.2. Smart environments and Self-Organizing Robots

A smart interaction with monitored environments requires a careful de-
sign for placement of sensors (to avoid dark zones, e.g.), a balance of power
for emitter-receptors, and a coarse representation of the scene to find optimal
solutions along motions execution. All these topics make part of models and
algorithms for motion planning 81. Usual approaches are based on symbolic
representations given by graphs (including trees, as a very interesting case)
or, more generally, forests. The comparison between graphs provides a first
hard kernel of NP-problems, where heuristic and/or probabilistic searches
can be very useful.

In presence of increasingly complex scenes, it is necessary to develop
optimization strategies on graphs, which avoid the examination of all possi-

81An application to the Maritime Museum (Barcelona, Spain) has been designed and
implemented by the MoBiVAP for smart wheelchairs along 2011 in the framework of the
Patrac Project
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bilities, with an inassumable cost. Thus, embedding techniques, isomorphic
subgraphs, automatically balanced graphs, and elimination of redundancy
become central problems for the execution of complex tasks by a robot. A
typical example is given by the generation of an environmental map from an
autonomous vehicle equipped with an omnidirectional camera, e.g. The avai-
lability of an approximated location of structural elements (obtained from
plans or sketches, e.g.) provides qualitative criteria for navigation which will
be examined in the module 2.

At the early nineties, an underlying hypothesis was the unicity of a ro-
bot interacting with the environment. Currently, this hypothesis can not
be maintained, because there can be be different autonomous mechanical
devices able of sharing a space, communications and actions. Thus, it is ne-
cessary to study different kinds of “collective intelligence” which are already
present in populations of insects, invertebrates or small animals from several
millions of years ago. To achieve efficient scalable solutions it is necessary to
perform a right distribution of simple tasks which involves the whole system
architecture. These biologically inspired topics are included in last modu-
le of these notes (animats). More involved issues concern to robots with a
changing shape (as in Transformers) to optimize mechanical complexity (in
regard to the scene or the task to be performed) which will not be considered
here.

4.1.3. Performing tasks in unknown environments

The above paragraph supposes that a representation of the scene is avai-
lable. This hypothesis is not necessarily true and sometimes, one finds si-
tuations where robot must operate under uncertainty or with incomplete in-
formation provided by sensors. Typical examples can concern to navigation
(including locomotion) or manipulation tasks involving hazardous missions
(inspection in nuclear installations or military operations, e.g.) or tasks in
unaccessible environments (deep sea or planetary research, e.g.).

In these cases, it is necessary to complete the available information re-
lative to the scene (VR/AR tools) and the task to be performed (dynamic
simulation from the available kinematic and dynamic models of similar si-
tuations). The development of models and software tools for managing these
situations is a hard challenge. Our proposal uses a combination of dynamical
systems and probabilistic models associated to the different kinds of (scalar,
vector, tensor) fields under uncertainty conditions. Strictly speaking, this
approach is not a novelty because the formulation of dynamics in terms of
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such fields is of common use in Advanced Visualization, and Markov fields
is a well known paradigm for probabilistic formulation of fields.

A specific contribution is linked to the specification of mechanical hierar-
chies (linked to geometric, kinematic and dynamical aspects), and the use
of statistical tools based on Sampling Consensus (sac) which avoid the blind
character of Stochastic Processes. There are a lot of variants for SaC which
include Ransac (Ran for Random), Impsac (linked to importance functions),
MLESac (Maximum Likelihood Estimation), etc. All of them are inspired in
the use of these tools in Computer Vision from the late nineties; variants of
Ransac are explained with more detail in the module 4 of the CEViC. The
most meaningful are introduced and comment in the module 5 on Huma-
noid Robots, where we are trying of imitating human behavior for humanoid
robots.

The introduction of mechanical hierarchies intends to avoid the gap
between higher level programming for tasks (typical in Advanced Control
Theory), by means the introduction of intermediate agents in charge of ma-
naging geometric aspects (relative to allowed shapes and position-force con-
trol, e.g.), kinematic issues (relative to velocities and accelerations at joints,
and impedance-based control for stable trajectories) and dynamical issues
(relative to dynamical balance feedback between anticipation and compensa-
tion effects by means force-based control, e.g.). A crucial issue for unification
is to perform a feedback in terms of different kinds of symmetries.

4.1.4. Motion Planning and Kinematics

A typical issue related to motion planning is the traveling salesman pro-
blem which involves to identify the path with minimal length to be per-
formed by an agent which must visit a collection of “sites” which can be
interpreted as the nodes of a planar graph. 82. From a computational view-
point the TSP is a NP-hard problem, but it can be solved by means a
combination of Minimum Spanning Tree (a subtree of the Delaunay trian-
gulation linked to the set of sites) and a collection of “certificates” which
allow to incorporate the heuristic.

Motion Planning in Robotics is more complex because it involves to
other functionals furthermore the distance (the energy expenditure, e.g.),

82[Law85] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (eds):
The traveling salesman problem. J.Wiley, New York, NY, 1985. is the classical “Bible” for
this subject
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environmental conditions (dangerous or unaccessible environments for hu-
mans, e.g.) or feasibility of tasks in 3D. This problem has been approached
from different perspectives which allow to incorporate logical, metric, topo-
logical, geometric, statistical or heuristic constraints 83.

For once a robot, a complete solution of the problem is guaranteed by
using topological arguments which are based on cellular decompositions of
the configurationsW and/or the working spaceW. The corresponding brute-
force algorithms display an exponential complexity, Hence, this solution is
not useful in practice, and it is convenient to incorporate differential met-
hods (based on attractors vs repulsors) and an appropriate heuristics (based
on certificates, and similar to the TSP described above). To warrant the fea-
sibility of task to be performed it is necessary to maintain bounded related
functionals and assert the connectivity of the graph representing paths to
be followed according to the scene characteristics and robot constraints.

The problem becomes much more sophisticated in presence of several mo-
bile platforms which can display different behaviors. Accordingly to ecosys-
tem modeling, a basic distinction is related to competitive versus cooperative
behaviors which can be clustered; even so, the problem is not elementary, be-
cause there are different strategies for each team of players. A more detailed
analysis of related issues is developed in the Module 2 (Navigation).

4.2. A geometric approach to Distributed Robotics

In the report “The Interplay between Mathematics and Robotics. Sum-
mary of a Workshop”, the author outlines three most important challenges
in distributed robotics, where mathematics is likely to make significant ad-
vances are:

Developing formal models that allow principled comparisons between
distributed robot algorithms and give performance guarantees;

Developing dynamic control for non-smooth systems;

Developing methods to characterize the power of modular robot sys-
tems and of matching structure to task.

The proposal developed along these notes uses different types of hierar-
chies which are represented by flags (i.e. superimposed nested linear subs-

83The most complete reference is still [Lat91] J.C.Latombe; Robot Motion Planning,
Kluwer, 1991
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paces). A typical case which appears in a recurrent way is linked to strata
of stratified maps such as the transference map τ : C → W, their extensions
(given by k-jets) and their local inverses (for inverse Kinematics and Dyna-
mics). This idea is inspired by the systematic use of Grassmannians for the
local case as geometric objects which are naturally linked to integrable dis-
tributions on any of such spaces. Matching of these local data is performed
in terms of Grassmann bundles, or more generally by Flag Bundles which
provide a natural framework for distributed robotics.

Linear reduction of non-linear information to subspaces is a common
strategy in any Engineering problem, including all stages of the PAC (Perception-
Action Cycle), and any kind of mathematical framework including mani-
folds (where appear as co-tangent spaces at each point), signals (spectral
decomposition and data compression in frequency domain for 1D/2D/3D
signals, e.g.) or statistical treatment (Principal or more advanced Indepen-
dent Analysis), between others. From nineties there are a lot of increasingly
efficient algorithms for a computer treatment of all these issues, and their
extension to non-linear cases, including their approach by algebraic varie-
ties. In all cases, Grassmannian varieties provide a classical framework (in
fact a universal space) for the treatment of information relative to subspaces
of fixed (co)dimension of a vector space.

Along nineties, it was necessary a very careful selection of parame-
ters to ease clustering, concentration measures (regression, correlation, co-
variance), projection methods onto appropriate subspaces (SVM initially,
auto-correlation) and stabilization of eventually mobile data (distances bet-
ween distributions, Kalman filtering, e.g.). Recent developments of self-
organization and self-learning from advanced Recognition models provide
more powerful tools. However, the huge amount of data requires the intro-
duction of multiple hierarchies to improve data management. Our proposal
consists of introducing evolving nested subspaces for a simultaneous mana-
gement of subspaces.

4.2.1. Grassmann bundles for Robotics

Elements of a Grassmannian of (k+1)-subspaces L of a (n+1)-dimensional
vector space V are given by points pL. Thus, the introduction of Grassman-
nians allows to consider a collection of a finite (initially constant) amount of
data which evolve in an uncorrelated way. Superimposed structures (different
vector bundles, typically) allow to manage differential systems which invol-
ve to a simultaneous evolution of linearly independent data represented by
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k+ 1-dimensional subspaces. To fix ideas, we remember their set-theoretical
description:

The Grassmann manifold Grass(k + 1, n+ 1) is set-theoretically des-
cribed as the set of (k + 1)-dimensional subspaces Lk+1 of a (n + 1)-
dimensional vector space V . This construction can be projectivized
in a natural way. The simplest non-trivial case is given by the set
Grass(2, 4) of projective lines in a 3-dimensional projective space P3 =
P(V 4) which is a non-degenerate quadric in P5 called the Klein quadric.
Grassmannian of lines are commonly used in Ray Tracing/Casting
(inside Computer Graphics), 3D Reconstruction (inside Computer Vi-
sion) or to represent motions of articulated mechanisms in Robotics
(kinematic chains, e.g.).

A geometric flag is a finite collection of nested subspaces Ldi of a
n-dimensional vector space V for 1 ≤ i ≤ r + 1 with quotient spaces
Qi = Ldi/Ldi−1 being Ld0 = (0) and Ldr+1 = V ; the r-tuple (d1, . . . , dr)
is called the “nationality” of the flag. The direct sum of quotient spaces
Qi gives a decomposition of V in subspaces of dimensions qi = di−di−1
with q1 + . . .+ qi+1 = n, i.e., the (k + 1)-tuple (q1, . . . , qi+1) is a par-
tition of n giving the flag manifold F(q1, . . . , qi+1). In particular the
partition of n linked to the Grassmannian Gass(k + 1, n+ 1) is equal
to (k+ 1, n−k). The set of partitions is a poset (partially ordered set)
which induces a hierarchy inside the set of different types of flag ma-
nifolds. Any flag manifold linked to a partition of n can be embedded
in the complete flag manifold F(1, . . . , 1) associated to the partition
(1, . . . , 1) (the most symmetrical one). Flag manifolds are used at the
end of the first module to describe parallel manipulators (such as Ste-
wart platforms and their generalizations). In fact, the mechanics of
any articulated mechanism can be described in terms of flag mani-
folds or more generally flag bundles; even the inclusion of Geometry in
Kinematics and finally in Dynamics can be represented as flags with
variable “nationality” in the second extension J2X where X denotes
the configurations C or the working space W.

The Grassmannian is a “universal manifold” in the following sense: The
assignation which to each point x ∈ M ⊂ RN assigns the tangent space
TxM induces the so-called Gauss map M → Grass(m,N), which allows
to recover any linear structure (given by a vector bundle, e.g.) on M up
to deformation. More generally, if we consider a vector bundle with total
space E on a variety X (not necessarily a manifold), the Grassmann bundle
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Gk(E) matches the Grassmanniana of k-planes on each fiber Ex for each
base point x ∈ X. Typical meaningful examples concern to k-dimensional
distributions on the base variety which can be integrable or not (as it occurs
for non-holonomic constraints, e.g.).

4.2.2. Flag bundles for Robotics

Similarly, for any stratified variety X (configurations and working spa-
ces, e.g.) with good incidence conditions for strata (this condition is only
generic), one has a generalized Gauss map going which assigns to each base
point x ∈ X a linear description of geometric, kinematic and dynamic as-
pects. All of them can be considered as nested linear subspaces which can
be analytically described (in terms of second order jets) or geometrically
described (in terms of “packs” of multivectors). In the same way as above,
these partial flags can be embedded in the complete flag manifold with a
very high dimensionality, which allows to consider (kinematic or dynamic)
singularities and “degenerations” in terms of lower-dimension subspaces of
the flag.

In the same way as above, one can construct the flag bundleF`(E) linked
to any vector bundle E with total space E a variety X, by matching together
the flags on each vector space Ex by means the transition function of the
fiber bundle. Roughly speaking, morphological aspects of any robot can be
described on an universal flag bundle, where inclusion relations involve to
the architecture or, more generally, to the natural stratification between
geometric, kinematic and dynamical aspects. Similarly, functional aspects
are described in terms of scalar, vector and tensor fields, which display a
similar hierarchical scheme. Furthermore, the flag bundle structure on the
mechanical architecture induces a similar hierarchy for all the above aspects,
which provides a support for distribution, control and optimization of tasks.

Seemingly, the use of flag bundles is new in Robotics. It can be motivated
by parallel robots (such as Stewart platforms, e.g.), by the natural hierarchy
in Mechanics (linked to geometric, kinematic and dynamic aspects) or from
the basic notions of distributed Robotics (where nested subspaces represent
the hierarchy between components or between functionals to be applied,
e.g.). All of them are developed along these notes. A distinctive feature
is that it involves not only to the mechanical architecture, but the whole
Perception-Action Cycle (PAC) such it appears in the following paragraph.
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4.2.3. Formal Models for the PAC

The leit-motiv for this paragraph consists of the framework provided by
flag bundles to integrate mechanical issues in a common model can be adap-
ted to the whole Perception-Action Cycle. Fusion of information arising from
different sensors can be thought in an abstract way in terms of successive
extensions of 1D/2D/3D signals and their spatial representations:

1. Fourier analysis is originally developed for one-dimensional signals.
They are incorporated as acoustic, infrared or laser signals, e.g. They
can be treated in terms of traditional Fourier analysis or in terms
of wavelets. A compact algebraic treatment of the linked Harmonic
Analysis can be developed in terms of representations of s`(2).

2. Two-dimensional signals appear linked to the analysis of isolated ima-
ges or video sequences 84 Typical related processes involve to 3D Re-
construction (module 2 of the CEViC), motion analysis (module 3 of
the CEViC), and recognition (module 4 of the CEViC).

3. Three-dimensional signals can be relative to the dynamic analysis of
video sequences (including kinematic characteristics of motion) or the
propioceptive analysis of the whole evolving configuration of the robot.
In both cases, we use a quaternionic representation arising from the
problem formulation in the Geometric Algebra framework.

The common development of Fourier tools for all of them provides a
hierarchical framework which allows to connect estereoceptive and propio-
ceptive perception before performing any action, and to obtain a natural
feedback in terms of evolving configurations or shapes. Navigation issues
can be understood as a conversion of a flow image in a flow scene, and ma-
king decisions involves their integration which is ideally performed in terms
of representations of SL(2) and SL(3).

In our case, one has a stereoceptive flow (in terms of information fu-
sion relative to the environment) and a propioceptive flow (in terms of the
self-consciousness of evolving shapes in regard to the environment), which
are in feedback through interaction. The management of flows is performed
in terms of fields for which we provide ideal structural relations between
s`(2)- and s`(3)-representations. Unfortunately, in this case one has infinite-
dimensional representations (in consonance with tools of Harmonic Analysis
and their solutions) which are a little bit more complicated to manage.

84See the chapter 6 of module 1 of the CEViC for more details and references.
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A typical “example” is given by the harmonic functions as solutions of
the Laplace operator which is naturally extended to the harmonic forms as
solutions of the generalized Laplacian operator � = dd∗+d∗d. Hodge Theory
provides a general framework for these issues which have been extended to
the singular case along eighties 85. Recent developments of Computational
Conformal Geometry open the door to obtain on-line solutions (at least in
low dimensional case) which will be introduced in the module 6 in regard to
advanced tools for simulation of gestures.

4.2.4. Reconfigurable robots

The main motivation of reconfigurable robots is to create more versati-
le robots by using reconfiguration of systems which have been introduced
at the end of the precedent section (see §3,4,3). This idea is biologically
inspired and intends to develope models where hundreds of small modules
will autonomously organize and reorganize according to hierarchies linked to
evolving geometric or topological structures. Hierarchies are not unique, and
can change according to different phases of a task or according to evolving
environmental conditions. Thus, a modular design is quite necessary.

Modular character involves mainly to the capability of recombining and
self-organizing functionalities, not to the reuse of mechatronic components
which is also allowed, but in the design framework (see next subsection).
Functional modularity follows a scheme which is reminiscent of SOA (Ser-
vices Oriented Architecture) and their recombination in POA (Processes
Oriented Architecture) which appears at the end of nineties. In our case,
tasks to be performed by the robot is a composition of basic units (which
extend the notion of services) as they would be a process.

The main problem to be solved for autonomous robots is the capability
of self-adapting to evolving environmental conditions or to changing sha-
pes, even in presence of incomplete information. A typical and seemingly
“innocent” issue is the automatic resolution of a puzzle by a robot, with
additional troubles arising from lacking or excedentary pieces. This problem
can be considered as an extension of assembly tasks which are introduced
at the end of the first chapter of the first module. Automated detection of
symmetries relative to object and the task simplify the design and imple-
mentation of corresponding algorithms.

85See Chapter 0 of P.Griffiths and J.Harris: Principles of Algebraic Geometry, J.Wiley,
1978 for a geometric approach.
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4.3. Mechanical Design at different LoD

Issues in the design of robotic systems as mechatronic devices, the ki-
nematics and dynamics of their operation, the physics of their interactions
with the surrounding environment, and decision making procedures have
preoccupied robotics researchers and practitioners since the earliest days
of robotics research. Basic problems can be considered as solved from the
electro-mechanical viewpoint.

Nevertheless the impressive advances from the eighties, our ignorance is
still very high about how seemingly more simple organisms are much more
efficient for all kinds of interaction of isolated elements (from invertebra-
tes till superior mammals) with the environment. Furthermore, embedded
intelligence in large populations of microrganisms or social insects display
patterns for distributed architectures which we are not still able of mimif-
ying. The question to be solved is not to introduce more advanced models
(from the physical, mathematical or electronic viewpoint), but to try of un-
derstanding interrelations between components which can be recomposed
in reconfigurable architectures which can be applied from nanostructures
to very large systems (involving intelligent transportation systems at large
scale, e.g.).

From a biological viewpoint, most live beings display a mixture of cen-
tralized and distributed architectures, which allow to combine different fun-
ctionalities and reconfigure partial solutions which can be supervised or not
by a global planner. It is necessary to combine different kinds of logical ru-
les for knowledge, and their spatial and (bio)mechanical representation to
different LoD (Levels of Detail) to assist making decision procedures.

Their full integration involves the most advanced topics of Perception-
Action Cycle, and in view of the very large amount of partial solutions, it
is priority the identification of organizer principles and dynamical systems
which can operate at different LoD. Along this subsection, the attention is
paid to basic principles underlying to mechatronic devices, whereas along
next subsection, we shall concentrate our attention on organizer principles
for the embedded intelligence.

Basic principles involving architecture and function are modularity and
interoperability. To give shape to these principles it is necessary to develop
abstract structures whose specification at each LoD allows to recover already
known “instances” relative to evolving shapes and functionalities. General
mathematical ideas such as symmetries (algebraic, infinitesimal, dynamical),
semi-analytical stratifications (for spaces, maps, functionals) and multivec-
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tor calculus (for scalar, vector, tensor fields) provide ubiquitous tools which
act as organizer principles for the dynamics of complex mechanisms. Some
illustrations of the above ideas as organizer principles are the following ones:

Symmetries can be understood as mathematical tools, but they allow
to generate mechanical behaviors (following action-reaction patterns),
identify invariants or replicate basic patterns on symbolic representa-
tions (graphs) extending the currently available configurations. They
provide growing patterns preserving original shapes or modifying them
by breaking symmetries, e.g.

Semianalytic stratifications allow to visualize feasible configurations
according to mechanical limitations, represent any kind of mecha-
nical constraints involving mechanisms or interaction with the envi-
ronment, provide restrictions for optimization and control issues, and
allow to identify possible behaviors or other agents by replication of
self-restrictions in order to improve the interaction in multiagent en-
vironments.

Multivector calculus allow to manage any kind of geometric quantities
(scalar, vector, multivector), and their evolution along time in terms
of fields and their corresponding flows, incorporates an intrinsic (non-
coordinate) representation of the current state of the robot and its
environment, reduces the number of parameters connecting discrete
and continuous representations, identifies redundancies or pathologies
(instabilities, singularities) in evolving mechanisms.

The introduction of hierarchies linked to the above organizer principles
eases the distributions of processes, and in particular the development of
parallel architectures in regard to complex constrained tasks and possible
responses of the environment or other intelligent agents. Thus, (algebraic,
semi-analytic and multivector) hierarchies reappear along all modules of
these notes under different aspects.

To fix ideas, we develop some of these ideas along four paragraphs in-
volving some aspects relative to design, kinematics, dynamics and their in-
tegration in Optimization and Simulation modules. We are not intending to
give an overview of possible developments in this area, but to shed some
light on some aspects which are not enough developed from the mathemati-
cal viewpoint. The consecution of this goal requires additional contributions
and a reformulation of some concepts which is illustrated at each paragraph.
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4.3.1. Towards a Modular Design Methodology

Nevertheless the quite unrealistic approach developed in the movies of
“Transformers” saga, it poses a very suggestive issue. Is it possible to design
robots which can be deployed and re-composed by changing the original
morphology to perform different tasks?. In some cases, the answer is affir-
mative. It suffices to look at spatial stations which are orbiting around the
Earth, with a lot of “deployable” components. Deployability is understood as
relative to the “capability of folding”; this notion is developed in the second
module in regard to the navigation of spatial platforms. An underlying prin-
ciple is linked to PL-structures which can be recombined in different ways
to recompose different shapes, by extending the old tangram constructions
to mechatronic constructions.

From an opposite side, other micro-organic examples linked to Pharma-
cological Design involve to the re-composition of ligand molecules w.r.t. a
receptor molecule which break down (at least) a link in each molecule, to
generate a coupling between both types of molecules. The idea arising from
molecular design is very suggestive, because a good pharmacological design
must self-adapt to the illness evolution (as it occurs in malaria, e.g.). This
adaptation follows stable arrangements of spheres whose energy levels are
not optimal (in the equilibrium there is no activity), but suboptimal 86.

The goal of a modular design of robots is to ease the assembly of mecha-
tronic pieces to achieve the desired movement. If one adopts a bioinspired
approach, this goal is highly non-trivial because each motion involves to a
extremely complex combination of components of muscle-skeletal architec-
ture. In the same way as for pharmacological design, arrangements of links
and joints are not necessarily always at equilibrium, and they can adopt
suboptimal configurations to allow motions in a stable way, as it occurs with
quadruped or biped gait in regard to locomotion tasks, e.g.. Reconfiguration
involves must involve to mechatronic components and their functionalities
(which are considered in the following paragraph in regard to kinematic
issues).

“Brute-force” approach introduces a “design space” involving all pos-
sible choices for system parameters relative to materials and functions to
be integrated in an optimal way. This approach is quite usefulness because
one can not intend to have artificial devices able of performing any kind of
terrestrial, marine or aerials displacement, e.g. Modularity in robotics con-

86Private communication of Dr.Patarroyo along a Cellular Biology Congress held in
Alicante (Spain, 2002)
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cerns to reduce the number of variants for mechatronic devices, till smart
embedded systems in charge of their management.

Modularity of mechatronic devices involves to automation of design met-
hods including VLSI system design (where Computational Geometry pro-
vides some keys to minimize distances on printed circuits which use Man-
hattan distance, e.g.), their integration in MEMS (MicroElectroMechanical
Systems), capability of reprogramming progressively smart sensors (by using
CMOS devices, e.g.) and microactuators along directions which combine ro-
bustness and adaptability to evolving environmental conditions.

Possible extensions of this approach to multi-functional architectures
requires additional developments linked to a modular approach to tasks
to be accomplished by robots. Some aspects linked to cooperation between
nanorobots are presented in the last module in regard to cooperative models
for animats.

4.3.2. Kinematic Synthesis

Kinematic synthesis is an important enabling technology for robotic sys-
tems. There are obvious opportunities to apply methods from (differential
vs semi-analytic) geometry and (algebraic vs differential) topology to the
kinematic synthesis problem in regard to evolving phenomena represented
by open vs closed chains occurring along the interaction with the environ-
ment. A key feature consists of connections between different components,
involving mechatronic architecture or the embedded intelligence (see next
subsection). Connections are performed at critical points for functionals or
fields; thus, one needs a differential framework to reformulate these princi-
ples which allows an exchange of “mechanical amounts”.

Along these notes, kinematics of robots is understood in terms of suc-
cessive k-jets extensions of a transfer map τ : C → W or their extensions
which include additional maps (multipaths and multiconstraints) and their
local inverses, extensions of original piecewise smooth structures given by
manifolds to semi-analytic varieties; and finally development of superimpo-
sed structures (fiber bundles, principal bundles, equivariant fibrations, e.g.)
and invariant data (connections, e.g.) over them. Hence, our reformulation
of kinematics involves to all of them.

An abstraction of the mechanical strategy described in the above pa-
ragraph can be extended to functionalities represented by different kind of
mathematical objects such as
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Maps which are matched by means OF continuation (or also called,
homotopy) methods extending usual interpolation. This strategy can
be applied to other vector or tensor fields and it can be illustrated
with multipaths linked to different trajectories or control points, with
the corresponding control strategies. Tensor fields are crucial for elasti-
city, plasticity and adaptability in regard to contact, friction or sliding
effects.

Manifolds which can be matched using “chirurgy” techniques in the
PL-framework (by using cellular structures, e.g.) or in the PS-framework
(by using cobordism techniques, e.g.). The introduction of metric cri-
teria (natural for pseudo-riemannian manifolds) allows to compare on
a common geometric representation different systems that solve the
same task using different sensors. Some typical examples concern to
motion planning and other complex tasks such as locomotion or gras-
ping and handling operations modeled on Lie groups

Superimposed structures such as fiber bundles or, more generally, fi-
brations by means formal operations (tensor product) or by enlarging
distributions or systems of differential forms, e.g.

All of them can be recomposed between them to support reconfigurable
functionalities to be applied to sensors and actuators providing the support
for the PAC (Perception Action Cycle). Furthermore, they can be reformula-
ted at different scales involving from minuscule configurations to very large
mechanisms. Additionally, they are compatible with continuous vs discrete
models, deterministic vs random approaches, and support the information
related with any kind of (scalar, vector, tensor) fields and their associated
flows.

4.3.3. Contact and interaction Modeling

Contact modeling continues to be the main problem to be solved for
Advanced Robotics in regard to interaction in partially structured environ-
ments. A classical pipeline is based in

1. the right positioning in regard to the task (grasping, locomotion, e.g.)
to be developed;

2. the evaluation of contact along friction cones (between objects or with
the ground, e.g.) whose axis is ideally given by the the unit normal to
the surface at each contact point;
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3. a modeling and simulation of tasks (grasping, locomotion) to be deve-
loped including collision, contact and friction effects;

4. a kinematic control of velocities at joints which display sudden jumps
at contact or collision points;

5. the application of anticipatory forces to re-balance the architecture
along the planned motion;

6. the motions executions (manipulation of grasped objects, e.g.) in a
safe and stable way;

7. the tracking and evaluation of dynamic effects along monitored trajec-
tories, specially at phase transitions;

8. the application of compensatory forces and moments to adjust the
current to the expected trajectory.

The most difficult parts concern to the control of velocities at phase tran-
sitions, and the evaluation and correction of dynamical effects arising from
the interaction between objects or with the environment. It is necessary to
combine different devices to avoid vibrations linked to jumping velocities
(including switching procedures to maintain almost-uniform accelerations),
and use different kinds of control (robust vs adaptive) in correspondence
with the alternance between closed-loop and open-loop transfer functions.
Furthermore, it is absolutely necessary to validate results from an experi-
mental viewpoint, under different environmental conditions.

4.3.4. Optimization and Simulation:

System design is tightly linked to optimization whose constraints can
involve to the shape, the function (task to be developed) or a combination
of both of them.

Optimization issues relative to the shape are easier and they can be
solved in terms of FEM (Finite Element Method) involving to metric
criteria on products of Lie groups associated to configurations and
working spaces 87.

87Invariant metrics on classical Lie groups are constructed from Maurer-Cartan forms,
but we need a PL- or PQ-approach (PL: Piecewise Linear; PQ: Piecewise Quadratic) to
ease their computational implementation
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Optimization issues relative to the task are more difficult to solve, be-
cause they involve to trajectories to be followed by each component,
which are controlled in terms of a finite number of control points.
Unfortunately, the space of trajectories is not finite-dimensional and
one must introduce effective criteria for solving the corresponding va-
riational principles linked to minimal length, energy, work, power or
any other kind of kinematic quantity (described as Lagrangian actions,
typically).

Classical approach in Mechanical Engineering consists of introducing a
“space of states” which tries of identifying transitions in terms of snaps-
hots linked to the space-temporal evolution of the whole mechanism. So, by
applying a brute-force approach, there appears spaces of states with thou-
sands or even millions of parameters with their corresponding constraints
with are presumably solved with computers more and more powerful. In this
context, numerical techniques for the corresponding optimization problems
would provide the requested solutions for each problem.

Nevertheless the increasing power of computers for increasingly complex
systems, the “brute-force” approach has no sense, because it ignores the
topology of the space of solutions. Most systems are non-integrable in the
ambient space, even if approximate solutions can be computed by using
numerical analysis. However, if a generic small perturbation of a solution is
near to unstable phenomena, solutions corresponding to stable regions are
not longer valid in the vicinity of bifurcation regions.

Thus, previously to this blind machinery, it is necessary to perform a qua-
litative (topological) analysis in order to identify stable vs unstable regions
in terms of bifurcation diagrams linked to the dynamical systems (given lo-
cally by ODE or the PDE) governing the dynamics. A key feature consists
of bifurcations diagrams (concerning kinematics and/or dynamics) inheri-
tate symmetries arising from the highly symmetric architecture of artificial
mechanisms, and elementary motions of articulated mechanisms given as a
composition of planar or spatial rotations and translations. Thus, ordinary
and infinitesimal symmetries reappear again as an organizer principle for
kinematics and dynamics.

The simulation of processes is a crucial step before any fabrication of
mechanical devices. Simulation involves mainly to kinematic and dynamic
aspects which are linked to the structural equations for true movements
in the working space. In the same way as above there is an “force-brute”
approach (based on the systems specification involving to huge spaces of
states) or a more intelligent topological analysis of expected trajectories. In
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both cases, one can use numerical methods (such as interval-based methods,
interval arithmetic, and automatic differentiation tools), but the search must
be guided by some kind of “learning” which allows to identify ideal trajec-
tories in terms of PL- or PQ-approaches linked to the realizable movements
to be performed by the robot. Advanced Visualization techniques provide a
structural framerwork for simulation which is based on flows associated to
(scalar, vector, tensor) fields 88

Usual approaches for learning issues are linked to expert systems. There
is a very large amount of expert systems going from cellular automata, till
ANN (Artificial Neural Networks) or Fuzzy Systems, depending on the type
of logic used for programming; the above description requires a lowering pre-
cision form parameters linked to the tasks to be performed. A strong precc-
sion is an appropriate constraint for industrial environments in bounded and
safe zones. However, the relatively high variability w.r.t. initial conditions
and environmental constraints makes useless the ANN-based approach in
less controlled environments. The introduction of fuzzy logic provides a mo-
re amenable behavior to the descriptive logic which is used by humans and
superior mammals which are used in their daily activities.

4.4. Towards an integration of embedded intelligence

Embedded intelligence for an individual robot involves to a stereoceptive
and propioceptive representation of external world and the whole mechatro-
nic architecture. Its goal is to improve the interaction by means a progressi-
vely well adapted and smart behavior in regard to the tasks to be performed.
External world is modeled in geometric terms which are extended to a re-
formulation of Mechanics. Internal perception is learned from tasks which
are represented as (multi)paths under multiple constraints, which are mo-
deled in topological terms (algebraic, differential, dynamical). Interaction
between them is performed through learning procedures which are based on
manifolds or, more generally, varieties with superimposed structures.

The integration of embedded intelligence is performed at different le-
vels accordingly to a distributed systems which includes from reflex motions
till the most advanced artificial capability of reasoning. Thus, it is strongly
related with different types of logic (classes, propositional, descriptive), dif-
ferent types of expert systems (ANN, self-evolutionary, fuzzy systems) and
a balance between centralized and distributed architectures for control and

88See module 6 of my notes on Computational Mechanics for details and references.
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optimization issues.

It is necessary to introduce hierarchies for clustering actions performed
by devices going from nanoscale to macroscales, able of exchanging informa-
tion at critical points or zones according to different kinds of constraints. A
qualitative version of maps of distances w.r.t. different shapes or functionals
provides a general strategy which can be adapted to quite different situations
appearing at different scales. Following this scheme, coordination is perfor-
med at critical point, making possible phase transitions, re- or de-coupling
between components, and consequently the integration of phenomena ap-
pearing at micro- and macro scales.

Replication phenomena are controlled in terms of symmetries, including
breaking or grouping symmetries at boundary of feasible regions for robots
mechanics. Bounded variation introduces not only criteria for operability
under constrained functionals, but a structural framework (given by Semi-
analytic Geometry) for different kinds of stability (topological, differential,
infinitesimal) relative to tasks to be performed.

Finally, Clifford calculus is not only a trick for representing evolving
multivector quantities, but a context to develop a global intrinsic analy-
sis. Furthermore, it allows to integrate optimization and control issues for
multibodies in a natural way, by treating entities linked to multivectors as
“points” in a “superspace” with higher symmetries than those which are
present in ordinary space. Thus, far from being an irrelevant extension it is
the kernel for an overall integration of all aspects concerning to Mechanics.

The above remarks involve mainly to isolated robots or the interaction of
a particular robot with its environment However, it remains the challenge of
developing a global framework for a multitask robot or, even more difficult
to different robots which can interact between them in increasingly open
environments. It is not necessary thinking of science-fiction films; it suffi-
ces to consider several (terrestrial or aerial) vehicles with semi-automatic
navigation embedded devices in intelligent environments. From Computer
Science viewpoint, this issue involves to the development of multiagent sys-
tems which is a well known topic in Artificial Intelligence. However, the
transition between local and global aspects it is not well understood, still.

A variant of the compact-open topology introduced at the beginning of
the subsection §2,4 of this introduction provides the natural framework for
multiagent systems, but its formulation requires to specify the transition
between local and global issues. For topological objects (any kind of mani-
folds, e.g.) this transition is performed by means atlas of coordinate charts
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(U,ϕ); for functions it is a little more involved, because its compatibility
requires (1) the comparison at each base point b ∈ B by taking the “in-
verse limit” (germ of a function, in more formal terms) w.r.t. open sets U
containing the base point; (2) the matching of superimposed data given by
functions on successive intersections Ui0,...,ik := Ui0 ∩ Ui1 ∩ . . . Uik of open
sects. The same argument is valid for (distributions of) vector fields and
(systems of) differential forms or, more generally, any kind of tensors.

The Čech cohomology allows to know if the resulting system (of any
kind of tensors) is solvable in terms of the vanishing of cohomology groups
on a manifold or variety X. In particular, non-vanishing of some cohomo-
logy group implies that there exists some “obstruction” to the resolution of
system of equations relative to “sections” of some superimposed structure
onto X corresponding to functions, distributions of vector fields, systems of
forms or, more generally, tensors.

At first sight, this topological approach is seemingly too abstract and
useless for Robotic issues, but it is not true. To fix ideas, the open sets Ui
involve to subsets in a space-temporal representation of the configurations
or the working space for the i-th robot Ri; any command can be understood
a s a function defined on an open set Ui linked to the i-th robot which is
“traveling” with Ri supporting task under structural constraints which live
in a compact subset Ki ⊂ Ui (compact-open topology). Geometric interac-
tions between different robots Ri and Rj (semi-automatic vehicles, e.g.) are
described in terms of (classes of) functions defined on non-empty subsets Uij
where the interaction is possible, including possible “holes” or (eventually
mobile) obstacles Bα in the scene which can give obstructions to solvability
of equations linked to commands 89.

Similarly, Kinematic and Dynamical issues can be formulated in terms
of distributions of vector fields or systems of differential forms, or in a more
compact way as sections of k-th order jet bundles for low values of k. Anyway,
solvability of resulting systems is discussed in terms of vanishing of Čech
cohomology groups Ȟk(X,E) where E represents the “sheaf” linked to the
superimposed structure given by distributions Di of vector fields, systems
Si of differential forms or, more generally, any kind of tensors Ti for the i-th
robot Ri. This approach is well known in G.A.G.A. (Algebraic Geometry-
Analytic Geometry in French language) from the sixties, but seemingly it has
not been used in Robotics. We shall illustrate the utility of this approach
for navigation issues of several vehicles at the end of the second module

89Let us remark that obstacles are not necessarily physical ones; they can involve to
opaque zones for communications or to limitations of sensors
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(Navigation of floats), and some more advanced applications along the fourth
module (simultaneous Dynamic Control of several semiautomatic vehicles).

Obviously, the consecution of this program requires a reformulation of
different approaches to ease the information transference between different
approaches. Along this last subsection, one displays some key ideas to re-
organize these materials.

4.4.1. Beyond the Differential Geometry

The approach performed along these notes can be considered as geome-
trically based, where Geometry is understood in a broad sense according
to:

Geometry following Klein, i.e. as the set of invariant properties for the
action of a classical Lie Group, with rotations and translations which
are coded in the euclidian group, e.g.

Geometry following Lie, i.e. in terms of “continuous” groups of analy-
tical transformations, and their infinitesimal versions (Lie algebras), to
ease the estimation of the most common transformations and formal
integration of motion’s equations.

Geometry following Darboux i.e. linked to the preservation of a bilinear
2-form which represents the Hamilton-Jacobi structural equations for
an ideal description of the dynamics of rigid or articulated bodies.

Geometry following Noether i.e. in terms of infinitesimal symmetries
linked to the first integrals of an action functional, such as the total
energy of a system, e.g.

Differential Geometry provides an ideal initial framework for a regular
dynamics on smooth manifolds M ; local homogeneity (given by continuous
or discrete symmetries) are described in terms of Lie groups for algebraic
aspects or Lie algebras for infinitesimal aspects. Global properties can be
described in terms of fiber bundles or, in presence of symmetries, in terms
of principal bundles. Displacements of geometric quantities given by (scalar,
vector or tensor) fields are described in terms of (metric, affine Ehresmann)
connections.

In practice, the support is not smooth because there are (geometric, kine-
matic and dynamic) singularities. Groups are not a priori fixed and actions
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can have a regular orbit, but several sub-regular orbits with singularities at
boundaries. The (dis)apparition of symmetries for solutions of ODE linked
to motion structural equations is represented in terms of equivariant bifurca-
tions which allow to recover phase transitions in complex tasks (re-grasping,
locomotion). These remarks motivate the introduction of the Semi-Analytic
Geometry as a natural extension of the Differential Geometry, whose ob-
jects can be approaches by PL-varieties by making easier a computational
approach 90.

From a kinematic viewpoint the apparition of non-holonomic constraints
(i.e. relative to velocities which can not be deduced from position-orientation
coordinates) extend the classical lagrangian approach. They provide an ex-
planation of rolling or sliding contacts which can not be deduced from dif-
ferential (Hamilton-Jacobi) nor integral (Newton-Euler) equations corres-
ponding to variational principles. Minimization of distance functionals in
the space of trajectories or, more generally, Lagrangian action functionals in
the space of connections requires the introduction of some topological tools
linked to Morse Theory and their extensions to locally symmetric spaces.

Variability of shapes (relative to morphological aspects linked to robot
architectures) and fields (relative to functional aspects linked to tasks) re-
quire a topological approach which displays a more flexible and adapti-
ve behavior than geometrical approach. In abstract terms,Topology can be
understood as a natural extension of the Geometry which is obtained by
replacing a finite-dimensional group by an infinite-dimensional group of Cr-
equivalences which is appropriate for optimal design of tasks. Topological
approach is also hierarchies by following a progressively complex scheme

Set-theoretical topology with homeomorphisms as typical actions which
are locally obtained by integrating vector fields linked to any kind of
motions (proper or external).

Algebraic Topology which provides a PL-approach (PL: Piecewise Li-
near) to set-theoretical topology, with affine maps as the basic tool;
it provides tools for homotopy methods, superposition of meshes and
evaluation of functionals on PL-structures giving invariants for pattern
recognition, e.g.

Differential Topology as a natural extension of Differential Geometry
with diffeomorphisms as actions in regard to the ideal preservation of
“quantities” or functionals linked to actions performed by robots.

90See my notes on Computational Mechanics for additional details and references
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Topology of dynamical systems which provides a quite general connec-
tion between geometry (support where dynamical systems are defined)
and topology (of spaces of solutions). It allows multiple interpretations
in terms of deformations and/or flow, providing key invariants linked
to flows in configurations and working spaces. Finally, it provides some
structural connections between local (ODE, PDE) and global formu-
lations (fiber bundles) of spatial phenomena which are evolving along
time.

Transference of dynamical effects along critical zones is formulated in
terms of Lagrangian Actions which is topologically reinterpreted as an en-
larged version of the old Morse Theory 91. The variational reformulation
for action functionals allows to connect with the old integral version (Euler-
Newton-Lagrange) of Mechanics, identify optimal solutions (extending the
usual geodesics), associate invariants linked to infinitesimal symmetries, eva-
luate topological characteristics of flows in regard to dissipation of some
“quantity” (as symplectic diffeomorphisms in regard to generalized Moment
Map, e.g.) and control the ideal evolution in terms of preserved quantities
or phase transitions in terms of controlled submersions, e.g.

4.4.2. Non-standard Optimization and Control

Classical dynamics is deduced from Hamilton’s principle which is based
on the momentum preservation (in the algebraic framework) or the energy
conservation (in the variational framework). Both of them can be described
in terms of algebraic or infinitesimal symmetries in the Lie framework which
is extended to Principal Bundles in the global framework.

However, the apparition of non-holonomic constraints breaks down the
above scheme. In particular,

Energy is preserved, but not the moment; hence, classical moment map
must be replaced by other kinds of symmetries.

Infinitesimal symmetries can be described in terms of Poisson first
integrals, but the bracket does not satisfy the Jacobi identity.

Furthermore, the volume is not preserved and, consequently, usual
formulation in terms of any subgroup of the special linear group is not
longer valid.

91This idea is reminiscent of the standard model for unification between different inter-
actions which appears in Theoretical Physics
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It is necessary to identify Poisson symmetries (which do not generate a
Lie algebra, necessarily), to estimate the lack of holonomy linked to such
symmetries and to analyze stability properties away from the integrable
regions. The notion of differential closure for related fields must be explored
in regard to controllability issues.

The distinction between integrable E and non-integrable Q subbundles
poses the problem of analyzing complementary behaviors which can assist
control and optimization issues in stable regions of the phase space Ω1

C (co-
tangent bundle of the configurations space, initially). If r = rk(E) and
q = rk(Q) = n−r are the ranks of such subbundles, then the Grassmannian
bundle Grass(k; Ω1

C) provides a support for the design of control and op-
timization issues. An obvious differential first-order relation between both
subbundles can be read in terms of Hom(E,Q) which is nothing else than
the tangent bundle to the grassmannian bundle. This argument is immedia-
tely extended to flag bundles; a coarse description can be read in [Fin99]
92

From the local viewpoint, both of them require to solve dynamical sys-
tems on the total space of the grassmannian which are locally given by
matricial ODE defined on spaces of k× (n−k)-matrices. Riccati’s equations
provide an enough general type for control issues. This idea can be easily
reformulated in terms of k-multivectors which appear in the Geometric Al-
gebra framework. However, we have not still a compact solution for this kind
of problems. From the locally homogeneous viewpoint, one can not expect
a complete system of G-invariant solutions, but one can look at G-stable
regions where the control must be performed. Our proposal develops some
basic facts arising from SOM by their adaptability to formulate local issues.

4.4.3. Computer Graphics and Computer Vision

Computer Graphics has been extensively used in Robotics from the be-
ginning. CAD/CAM tools provide the support for Geometric Design (modu-
le 1). Three-dimensional meshes allow to represent (eventually deformable)
objects and elasticity effects relative to components or interaction of the
robot with the external world. Simulation tools allow to represent evolving
robots or very complex tasks related to tele-operation or assisted surgery
interventions, including VR/AR elements. They are used in the second half
of these notes for simulating dynamical effects (module 3), represent in-

92J.Finat and M.Gonzalo-Tasis: “Lie Techniques in Neurocontrol for Intelligent Hierar-
chised Systems” (CAIP’99, Florida), 1999
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teractions of humanoid robots with the environment (module 5) and for
entertainment industry (module 6).

Computer vision has been applied from the early eighties to all areas
of Robotics including fabrication, quality control, visual feedback, recons-
truction of external world, objects recognition, evaluation of flow scene from
flow image, interactive navigation, learning by imitation, assistance to medi-
cal robotics, teleoperation, augmented reality, image/video based rendering,
between others.

Visual information can be captured from monocameral, bicameral or
multicameral devices; furthermore, omnidirectional cameras provide additio-
nal devices for spherical representations of the whole scene. Typical visible
spectrum devices are complemented by other devices which provide range
information (based on structured light, infrared -IR- or laser devices, e.g.),
which are very useful for interactive navigation of autonomous vehicles.

Some of the most important areas of Computer Vision are

1. Image Processing (focused towards information extraction from seg-
mentation) and Analysis (focused to grouping in geometric or topolo-
gical primitives).

2. Three-Dimensional Reconstruction from stereo devices or mobile ca-
meras.

3. Motion Analysis for an eventually mobile camera with several even-
tually mobile agents in the scene; and

4. Recognition of objects and tasks with description, detection and clas-
sification as the main issues to be solved.

Each one of the above topics is developed in the modules 1-4 of the CEViC.
As always, one needs robust mathematical models, efficient management of
data and real-time algorithms able of providing a response to improve the
interaction in the above mentioned domains.

Almost all advanced robotic systems incorporate some modules of Com-
puter Vision. Originally, it was oriented towards Active Vision, i.e. the search
of a precise object or a well-defined task to be tracked and controlled by ro-
bot. Automatic navigation poses additional challenges which were essentially
solved in structured scenes along the nineties; this approach has been exten-
ded to monitored roads, but a much more hard challenge is its extension to
arbitrarily environments for any kind of vehicles (including subsea naviga-
tion). Perhaps the most difficult challenge concerns to hand-eye coordination
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and learning by imitation, which are commented in last paragraph of this
subsection.

4.4.4. Statistical learning theory

Learning theory is linked to different kinds of logic, which can be labe-
led as logic of classes, propositional and descriptive logic, by following an
increasingly order of difficulty. The most elementary one (logic of classes)
needs to fulfill if parameters describing objects or tasks are identical or not;
hence, it involves only to a metric accuracy which is applied to meaning-
ful control points. Propositional logic implies some kind of reasoning which
can be modeled in terms of Automated Proof of Theorems 93. The most
interesting case corresponds to descriptive logic, where one must introduce
clustering criteria, establish similarity criteria, and develop different kinds
of reasoning (fuzzy logic, e.g.) for supervised or unsupervised learning.

Data flow relative to propioceptive sensing requires efficient algorithms
for clustering, analysis and interpretation. Initial techniques for linear clus-
tering are not enough for complex dynamics. From Expert Systems, Self-
Organized Maps (SOM) provide a general framework for treatment of local
issues which are compatible with the continuity of environmental spaces and
the space of tasks (understood as paths or multivectors linked to multipaths,
e.g.); in addition, they are able of adjusting by themselves to a changing dy-
namics. However, they are not appropriated for learning issues, where vector
quantization can become much more effective.

Statistical approaches to robotics provides an initial framework to repre-
sent uncertainty in Robotics linked to PAC, because it allows to incorporate
the inherent uncertainty linked to advanced learning. As robots move away
from factory floors into environments populated with people, the need to
cope with uncertainty is enormous. Active Vision is not enough to give a
response in complex open environments; it is necessary to implement more
advanced Recognition modules.

Along nineties there has been joint developments which combine metric,
differential and statistical criteria to solve mobile robot localization and
mapping. They provide inputs for structured environments, but in presence
of large volume of data one requires a more flexible approach able of self-
adapting. Probabilistic approaches provide criteria which can be oriented
by structural models (as it occurs in stochastic processes) or by heuristic

93See the module 1 of my notes on Computational Mechanics for details and references
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models (as it occurs with variants of Ransac models) in evolving environ-
ments. Due to an easier connection with perception modeling, we privilege
the development of methods based on Sample Consensus (Ransac, Impsac,
Mlesac, etc)

Additional research (models and algorithms) is needed involving the feed-
back between Recognition and Learning. Representation of uncertainty in
robotics domains is modeled in terms of variants of Ransac, but they re-
quire additional hierarchies able of organizing open models for knowledge,
with fast algorithms for reasoning under uncertainty. Statistical learning on
manifolds has been introduced at the early years of 21st century.

Our proposal is based on a small extension of this approach which de-
velops a probabilistic version of fiber bundles ξ = (E, π,B) on base spaces
which initially correspond to manifolds (or more generally, varieties). Intui-
tively, descriptors and detectors are represented by elements b ∈ B of the
base space B and (sections of) the fiber Fb = π−1(b) ⊂ E.

The introduction of group actions on geometric primitives of B and E
provide classes, and consequently, classification criteria for objects to be re-
cognized and, consequently, learned. As always, one has finite groups (given
by symmetric or alternate groups, e.g.), finite-dimensional groups (given by
a subgroup of the general linear group, e.g.) or infinite-dimensional groups
(given by a subgroup of the homeomorphism group, e.g.). The former ones
are a discretisation of the second ones, which are a linearization of last ones;
hence, one has a natural hierarchy for classification criteria, also 94

94Additional details for this approach are developed in the module 4 of the CEViC.
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5. Scheme of the Course

This Course includes 4 modules with six chapters per module. Each
chapter is explained along two weeks which makes a total of 3 months per
module, according to the usual time distribution. Last month of each period
is focused towards the development of a practical work to be performed by
at most two students. Relative to contents, these notes are organized in two
parts which can be given in two Courses according to the usual organization
in Mechanical Engineering, Applied Mathematics and/or Computer Science:

1. The first part is composed by two modules with a generalist character,
nearer to Mechanical Engineering than Computer Science; theoretical
kernel is given by mathematical formulation of mechanics following
Lagrangian and Newton-Euler paradigms. Problems and challenges to
be solved are nearer to basic research, rather than applications.

2. The second part is more specialized towards artificial models of multi-
bodies with human and animats as main paradigms; theoretical kernel
is given by Biomechanical Engineering for multibodies models and
Computer Vision and Graphics for capture, simulation and advanced
visualization of motions linked to animats (insects, birds, mammals,
humanoids). Problems and challenges to be solved are nearer to ap-
plications in Prosthetics/Orthopaedical surgery or assistance to mul-
timedia production, rather than basic research.

Along this subsection, we display some comments about the contents
of each module, by including the main topics to be developed by chapter.
Contents of each chapter is devoted to present theoretical foundations and
information processing; more details about foundations and more detailed
proofs can be found at the given references.

Each chapter is organized in sections and subsections; at the end of
each paragraph, one includes a very reduced number of exercises which are
written to self-validation of contents understanding. It is not necessary to
solve with detail these exercises; it suffices to sketch a solution, but if the
student has no idea about how to solve them, then he/she would must read
again and/or consult the tutor. Furthermore, at the end of each chapter
there is a collection of problems, which provide some guides to orient the
practice to be developed for each module, according to the tutor.
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5.1. Anchored Robots

The first module has a basic character and provides a support for the
other modules. Along this module, each robot is considered ideally as a ki-
nematic chain which is connected to a fixed body which is anchored at a
fixed platform. Most of industrial robots operating in industrial environ-
ments are anchored robots. Robots for assisted surgery, and parallel robots
for for flight simulators (training pilots) or for entertainment industry are
anchored robots, also. These “examples” justify our terminology.

5.1.1. A description of the module 1

The first module B31 (Anchored Robots) contains the following chapters:

1. Geometric Design of Robots. Basic principles. Degrees of freedom.
Links. Types of joints. Platforms. Control points. Planar and volume-
tric robots. Low DOF chains for generating forces. High DOF chains
for generating moments at torques. Redundant and hyperredundant
robots. Microbots. Nanorobots.

2. The planar case: Simplest robots are planar, i.e., they are composed
by a finite collection of components (joints and segments) which are
represented by a planar polygonal contained in a bounded region of
R2. Motions of their components and its end-effector are constrained to
rigid displacements which are contained in a fixed plane π. Even so, this
architecture allows to introduce basic concepts, robotics architectures
involving components, solve reachability issues.

3. Spatial kinematic chain are composed by a collection of mechatro-
nic components which can operate in a bounded region of the space.
Their geometry is composed by a collection of consecutive segments
which are connected between them by spherical or Cardano joints. Fo-
llowing a similar approach to the performed in Chapter 1, we shall
represent each configuration as a spatial polygonal contained in R3.
Motion of end effector can be represented by a paths which are contro-
lled by composing different actions of Lie groups. In a very similar vein
to the precedent chapter, we are specially interested about forward and
inverse kinematics which are expressed in terms of Lie Groups linked
to internal movements at gears, and to external motions performed by
links which are translated to a final motion of the end-effector.
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4. Simulation of robotic operations. Before performing any task, it
is necessary to simulate not only the robot, but the interaction with
the environment where the tasks will be developed. In this chapter
one introduces some basic tools to simulate tasks which are strongly
related with the software tools for mechanical design which have been
presented in the first chapter. Additionally, one simulates some basic
aspects of kinematics for robotic arms composed by one a kinematic
chain. An advanced example concerns to snake-like robots.

5. Industrial anchored robots. In this chapter we consider planar and
spatial robots acting on conventional industrial environments. Main
operations to be modeled and implemented are Grasping and hand-
ling, inspection, cutting, welding, assembly and painting. In all cases,
a high accuracy is required. Usually, robots are isolated in isolated
zones by safety and security reasons. Thus, we don’t consider possible
interactions with other robots or human in mixed environments.

6. Assistance to chirurgy Versatily and redundancy. Metric calibra-
tion for extreme accuracy. Information fusion from different biomedical
images. Navigation in deformable environments. Cutting and assembly
operations. Precission and reliability. Laparoscopy. Neuronavigators
for assistance in brain chirurgy.

7. Hybrid architectures Some of the most interesting anchored robots
are given by Stewart Platforms and their generalizations. These me-
chanisms are composed by two polygonal plats and a collection of bars
connecting vertices of both plats. They are used for different purposes
going from flight simulators, hip simulation or prosthetics of artificial
hands, e.g. We follow a geometric approach which is based on flag ma-
nifolds to interlink representations in working space. Flight simulators.

8. Expert Systems for Robotics. Cellular automata. Basic elements
of Artificial Neural Networks (ANN). Associative memory. Dynamical
aspects. Statistical Pattern Recognition. Learning. Some extensions.
Neural computations.

5.1.2. Some references for the module 1

Two good references for Classical Mechanics of rigid bodies can be found
in [Abr78] or [Arn89] including a large sample of differential and topological
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methods which are commonly used in Mechanics. Unfortunately, neither of
them considers problems related with the Mechanics of articulated mecha-
nisms or multibodies. A more modern approach in the Differential Geometry
framework can be found in [Mur94], which includes the first systematic ap-
proach to Robotics in terms of Lie groups.

From a computational viewpoint, it is necessary to extend the original
contributions of Computational Geometry to Mechanics including aspects
relative to Kinematics and Dynamics. We adopt the same scheme as in
Computational Geometry, which is organized around models, data and al-
gorithms. This extension is currently labeled as Computational Mechanics,
which includes additional aspects relative to Computational Topology. Un-
fortunately, there is no a general reference covering all these topics 95. The
following list includes some of the most relevant textbooks. I apologize by
omissions of meaningful references-

[Abr78] R.Abraham, and J. E. Marsden: Foundations of Mechanics,
Addison-Wesley, 1978.

[Arn89] V.I.Arnold: Mathematical Methods of Classical Mechanics (2nd
ed), Springer-Verlag; GTM 60, Springer-Verlag, 1989.

[Boi88] J.D.Boisonnat and J.P.Laumond (eds): Geometry and Robotics,
LNCS 391, Springer-Verlag, 1988.

[Cal04] G.A. Calvert, C.Spence and B.E. Stein (eds): The Handbook of
Multisensory Processes, The MIT Press, 2004.

[Cor13] P.Corke: Robotics, Vision and Control: Fundamental Algorithms
in MATLAB, Springer Tracts in Advanced Robotics (1st ed. 2011, reprt
2013), Springer-Verlag, 2013.

[Gol89] D.E.Goldberg: Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, 1989.

[Kob89] A.A.Kobriski and A.E.Kobrinski: Bras manipulateurs des robots,
Ed. Mir, 1989.

[Koh97] T.Kohonen: Self-Organizing Maps (2nd ed), Springer-Verlag,
1997.

[Kul88] V.S.Kuleshov and N.A.Lakota (eds): Remotely controlled Robots
and Manipulators, Ed. Mir, 1988.

[Mur94] R.M. Murray, Z. Li and S. S.Sastry: A Mathematical Introduc-
tion to Robotic Manipulation, CRC Press, 1994.

[Nuc09] A.Nüchter: 3D Robotic Mapping. The Simultaneous Localization
and Mapping Problem with Six Degrees of Freedom, Springer-Verlag, 2009.

95My notes of Differential Geometry and several modules of Computational Mechanics
are in Spanish language, only.
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[Pas95] A.Pasqual del Pobil, M.A.Serna: Spatial Representation and Mo-
tion Planning, LNCS, 1014.

[Per92] P.Peretto: An Introduction ot the Modeling of Neural Networks,
Cambridge Univ. Press, 1992.

[Sel00] J.M.Selig (ed): Geometrical Foundations of Robotics, World Scien-
tific, 2000.
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5.2. Automatic Navigation of Autonomous Vehicles

The main problem to be solved in the module B32 (ANAV) is the assis-
tance to real-time navigation by a mobile platform. We shall consider only
geometric and topological aspects which are meaningful for smart behavior
based on expert systems. We shall give an introduction to propioceptive
systems which are useful for an interactive navigation, including a descrip-
tion of sensor-based systems which are integrated in the navigation systems,
with a special regard to vision-based systems, by their capability to gene-
rate three-dimensional representations of the environment. We avoid more
complex kinematic and dynamic issues which are developed in the third and
fourth modules, respectively.

Initial examples are given by wheeled vehicles with a circular or rectangu-
lar basis. The former ones are commonly used in Robotic Labs corresponding
to already known structured environments. A more advanced case does co-
rresponds to wheeled chairs for disabled persons, with a supervisor module
to avoid collisions with fixed or mobile obstacles (including persons); in this
case, the environment is only partially structured. A third and more sophis-
ticated example is linked to traffic scenes; first applications in real outdoor
environments were performed at the late nineties in the USA. The incor-
poration of semi-automatic devices for driver assistance in smart vehicles
is more recent and deserves relevant challenges which are being currently
developed.

To start with, each mobile platform is considered initially as a material
point which represents the c.o.g. of mobile platform. The main purpose is to
provide an eventually changing geometric representation of the environment
able of integrating the information arising from sensors, an unified treatment
of signals, their interpretation and transformation in commands.

The main goal along the second module is focused towards an integra-
ted representation of all the processed information in a 3D representation of
the scene. Thus, we prior the visual information which combines 3D recons-
truction and motion issues. This goal involves to different aspects which are
organized by following a typical pipeline:

1. The real-time processing and analysis of mobile data provided by sen-
sors

2. Updating of the 3D representation for the geometric environment.

3. Self-localization based SLAM (Simultaneous Localization and Map-
ping) methods.
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4. Combination and selection of sparse and dense data at different scales.

5. Symbolic representations for grouped data (quickly updatable pers-
pective models, e.g.).

6. Interpretation by dedicated expert systems

7. Decision making from the evaluation of the precedent information

8. Control devices to execute commands in charge of semi-automatic na-
vigation.

The combination of the above aspects intends to provide a driver assistan-
ce in the most sophisticated models corresponding to open environments.
This is a far-reached goal which is being progressively incorporated to some
vehicles.

All the above aspects are integrated in a mathematical framework which
is provided by the Differential Geometry (as an extension of the classical
Projective Geometry) in a broad sense. Differential Geometry allows to inte-
grate the flow image in a flow scene which provides an integrated framework
for navigation issues. To fix ideas, we shall restrict ourselves to the regular
case 96

Our choice of a geometric context is initially justified by the conversion
of information arising from different kinds of signals in the spatial domain.
Furthermore, the geometric framework admits a natural extension (in the
context of Differential Geometry, again) to Kinematics and Dynamics which
appear as superimposed layers to be developed in modules 3 and 4, respec-
tively. 97

To achieve these goals, it is necessary to develop a flexible approach to
the Differential Geometry going beyond usual Curves and Surfaces. Indeed,
the high dimensionality of the configuration space requires a more abstract
approach which is performed in terms of manifolds and their superimposed
structures: fiber bundles (initially given by tangent and cotangent bund-
les or phase spaces), connections (in their metric and affine versions) and
principal bundles (to include homogeneous arising from the action of Lie
groups). Some mathematical foundations for these aspects are developed in
the second chapter.

96The singular case is introduced in the module 3 in the context of Differential Calculus
on Semianalytic Geometry which is a natural extension of the regular case.

97A spanish version of a computational approach for Mechanics as an extension of
Computational Geometry appears in my web site.
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Next, we consider some local aspects which concern to a feedback bet-
ween qualitative properties of (image and scene) flows and actions to be
undertaken for Navigation.

5.2.1. A description of the module 2

The main problem to be solved is the (semi-)automatic navigation of
mobile platforms avoiding collisions with obstacles. This problem has a lot
of approaches (see [Lat91] for a classical and excellent presentation). Roughly
speaking it involves to a changing representation of the environment and the
(absolute and relative) localization of the mobile platform. This description
keeps away a lot of very interesting topics related to navigation such as
maritime, aerial or satelitar navigation with more than relevant problems to
be solved related to the noise, turbulence and stabilization, e.g.

The geometry of mobile platform imposes strong conditions about allo-
wable motions. So, the problem for circular-based platforms in indoor known
closed scenes is easy, but the problem becomes increasingly more complex
when we consider open environments, multilegged robots or possible inter-
actions with other intelligent agents. To simplify, we shall restrict ourselves
to the simplest cases corresponding to circular platforms or semi-automated
wheelchairs in known scenes, initially. Later, we relax these hypotheses de-
pending on additional developments.

A 3D reconstruction of the environment requires information arising from
additional sensors, including infrared, acoustic, laser and cameras of visible
spectrum, mainly. All information is referred to a 3D representation of the
scene; thus, visual information arising from video cameras is the most rele-
vant one to integrate all information 98 Usually, one adopts a coarse-to-fine
approach going from relative localization (based on an affine reconstruction,
e.g.) to more accurate representations (corresponding to a metric recons-
truction, e.g.). The main contribution is the simultaneous management of
RT generated perspective and semantic maps by using topological tricks
(perspective representations as “retraction” of semantic maps, e.g.) and un-
derlying cellular structures.

Along the preliminary states, it is very important to detect main elements
which are linked to perspective representations including lines, planes and
volumetric representations which can be globally managed by means some

98Nevertheless, for a reactive navigation, infrared, acoustic and laser can become more
meaningful by their capability for RT responses.
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basic elements of multivectors. In more advanced stages and depending on
more complex tasks to be performed, it is necessary to consider finer in-
formation linked to curved shapes, e.g. The problem becomes much more
complicated in open environments and in presence of multiple intelligent
agents, which require additional developments arising from expert systems
(different variants of ANNs and their extensions). This kind of applications
is very useful for intelligent vehicles which have been initially developed
along the late nineties.

According to the above remarks, this module contains the following chap-
ters:

1. Sensors and Perception. A geometric approach: Deduced recko-
ning. Scanning the environment. Image and range information. Space
representations. Motion planning. Navigation strategies: Self-Location,
features recognition, simulation. Instruments for navigation: Compas-
ses and Gyroscopes.

2. Linear Geometries and Manifolds in Robotics: From the carte-
sian space Rn one considers the main Linear Geometries (Euclidean,
Affine, Projective) which are meaningful as support for kinematics
and dynamics. The matching of these structures provides models for
Smooth and Algebraic Varieties. An important case of manifolds and
their tangent bundles is given by structural Lie groups of the above
Geometries and their corresponding Lie Algebras.

3. Local Differential Analysis for Mobile platforms: Local com-
parison between structures and/or configurations varying along time
require some elements linked to several descriptions of tangent spaces.
In particular, flow images and flow scenes can be understood in terms
of distributions of vector fields; their evaluation is performed in terms
of systems of differential forms. The relation with navigation systems
is read in terms of the differential map of the transference map linked
to multisensor functions which is locally given by the Jacobian ma-
trix. Its introduction allows to identify the Kinematic Singularities of
mechanisms which plays an important role along the Course.

4. Motion Planning for one or several vehicles in indoor structured
scenes or outdoor unstructured scenes. A first problema concerns to a
representation of the environment from the information fusion arising
from different sensors; from this representation one computes ideal
paths which must be approached by PL- or PQ-trajectories performed
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by some control point of the robot (belonging to the platform or repre-
sented by the end-effector of kinematic chains). Next, it is necessary
to solve motion equations, under constraints relative to the scene or
the robot architecture. Usually, such constraints are represented by
means of algebraic and/or differential (in)equalities. Unfortunately,
most mobile systems are non-holonomic even for daily tasks such as
manoeuvres for car parking. Thus, it is necessary to develop Algebraic
and Differential Topology methods for solving these problems. Some
meaningful examples examples are included to illustrate our approach.

5. Autonomous vehicles and SLAM (Simultaneous Localization and
Mapping): SLAM is one of the most common strategies for generating
a map of the environment from an interactive navigation. Geometric
sparse and topological dense variants provide two complementary ap-
proaches which are commonly used in semi-structured (indoor or ur-
ban) scenes and arbitrary outdoor scenes. Resulting models combine
visual and range information (from metric sensors, e.g.) in a geometric
3D reconstruction of the scene which is updated from egomotion. Typi-
cal software tools for these representations are given by automatic ge-
neration of perspective maps and estimation of fundamental/essential
matrix, respectively. These topics are developed in chapter 5 of the
second module of the CEViC.

6. Optimization and Control for Navigation . Manifolds and Lie
Groups provide a structural framework for both of them. Modern des-
criptions of Configurations Space C and Working Space C for Robotics
is given in terms of Lie groups. They are groups G with an additio-
nal structure of manifold or smooth variety. This description allows to
apply usual tools of differential and integral calculus on manifolds on
the Lie algebra g of G. This description avoids the cumbersome use of
coordinate systems for displacements at joints, and provides a more
natural support for interpolation procedures. Optimization issues are
solved on the Lie algebra g := TeG of each group. A general approach
to control issues is obtained by dualizing this approach.

Autonomous Vehicles. This chapter includes some elements for
semi-automatic navigation in partially or non-structured. The inte-
gration of information arising from different sensors (visual feedback,
mainly) is crucial to improve security and adapt the current naviga-
tion to incidences which can appear in non-structured environments.
A special attention is paid to round platforms, wheelchairs for indoor
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scenes and cars for outdoor scenarios which provide two cases of use
for the two first sections. An extension to free-collision navigation in
aerial and maritime environments are sketched by using some variants
of mobile Voronoi diagrams. We don’t intend to replace the role of
human operators, but to provide an assistance for semi-automatic na-
vigation.

7. Expert Systems for Navigation. Mobile platforms require very
efficient algorithsm for updating and tracking cluestered data and ge-
nerate patterns from video sequences. In absence of general models
for recognition, it is necessary to implement strategies able of self-
adapting to changing environments. Modeling changes requires refine-
ments of ANN-based algorithms. One provides a small introduction
to the main approaches in terms of Genetic Algorithms, Evolutionary
Programming and Self-Organizing Maps with some applications to the
generation of space-temporal representations by following increasingly
complex models. In absence of structural patterns, Fuzzy models pro-
vide a very general strategy which takes advantage of statistical tools
for reasoning.

8. Multiagent Systems for Automatic Navigation. The presence
of different mobile objects (robots, humans, vehicles) can be mode-
led in terms of multiagent systems. Along this chapter we adapt some
well known results of this computational topic. We apply these results
going from the local management of traffic scenes till very large intelli-
gent transportation or logistic systems. In this case, one adapts typical
methodologies arising from cooperative systems in contrast with com-
petitive systems which will appear in the module 6. All of them can
be thought as variants of ecosystems with their corresponding stra-
tegies for distributed memory between different agents in presence of
uncertainty about the behavior of other agents. Thus, it is necessary
to develop some elements of Expert Systems and fuzzy reasoning on
scenes flows changing along time.

5.2.2. Some references for the module 2

Previous remark: Most references of the module B32 (Automatic Navi-
gation) are only general textbooks. More specific and detailed references can
be found in [Gir96], [Hal97], [Sha97]. I apologize by meaningful omissions.
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[Aar96] E. Aarts and J. K. Lenstra (eds): Local Search in Combinatorial
Optimization. Wiley, 1996.

[Ber97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf:
Computational Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[Bue09] M.Buehler,K.Iagnemma, ans S.Singh (eds.): The DARPA Urban
Challenge. Autonomous Vehicles in City Traffic, Springer-Verlag, 2009.

[Cho05] H.Choset, K.M. Lynch, S.Hutchinson, G.A. Kantor, W.Burgard,
L.E. Kavraki, S.Thrun: Principles of Robot Motion: Theory, Algorithms, and
Implementations, Bradford, 2005.

[Cue05] F.Cuesta, and A.Ollero: Intelligent Mobile Robot Navigation,
Springer-Verlag, 2005.

[Eve95] H.R.Everett: Sensors for Mobile Robots, A.K.Peters, 1995.
[Gir96] G.Giralt and G.Hirzinger, eds: Robotics Research, Springer-Verlag,

1996
[Gri90] W.E.L.Grimson: Object Recognition by computer. The role of

Geometric Constraints. MIT Prtess, Cambridge MA, 1990.
[Hal97] D.Halperin, L.Kavraki and J.C.Latombe: “Robotics” Chapter 41,

in J.E.Goodman and J.O’Rourke: Handbook of Discrete and Computational
Geometry, CRC Press, 1997.

[Iag04] K.Iagnemma, and S.Dubowsky: Mobile Robots in Rough Terrain.
Estimation, Motion Planning, and Control with Application to Planetary
Rovers, Springer-Verlag, 2004.

[Koh97] T.Kohonen: Self-Organizing Maps (2nd ed), Springer-Verlag,
1997.

[Lat91] J.C.Latombe: Robot Motion Planning, Kluwer, 1991.
[Li93] Z.Li, and J. Canny: Nonholonomic Motion Planning, Kluwer,

1993.
[Mar92] J.E.Marsden: Lectures on Mechanics, Math. Society LNS 17,

Cambridge Univ. Press, 1992.
[Mil08] M.J.Milford: Robot Navigation from Nature. Simultaneous Locali-

zation, Mapping, and Path Planning Based on Hippocampal Models, Springer-
Verag, 2008.

[Mon07] M.Montemerlo, aand S.Thrun: FastSLAM. A Scalable Method
for the Simultaneous Localization and Mapping Problem in Robotics, Springer-
Verlag, 2007.

[Mul93] K.Mulmuley: Computational Geometry. An Introduction through
Randomized Algorithms, Prentice Hall, 1993.

[Oka92] A.Okabe, B.Boots, and K.Sugihara: Spatial tessellations: Con-
cepts and applications of Voronoi diagrams. John Wiley & Sons, Chichester,
England, 1992.
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[Rou94] J. O’Rourke: Computational geometry in C (1st ed). Cambridge
University Press, 1994.

[Sci00] L.Sciavicco and B.Siciliano: Modeling and Control of Robot Ma-
nipulators (2nd ed), Springer-Verlag, 2000.

[Sha97] M.Sharir: Algorithmic Motion Planning, Chapter 40, in J.E.Goodman
and J.O’Rourke: Handbook of Discrete and Computational Geometry, CRC
Press, 1997.

[Sie11] R.Siegwart, I:R.Nourbakhsh, and D.Scaramuzza: Introduction to
Autonomous Mobile Robots (2nd ed), The MIT Press, 2011.

[Sta09]C.Stachniss: Robotic Mapping and Exploration. SLAM for auto-
nomous robots, Springer-Verlag, 2009.
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5.3. Robot Kinematics. A Hierarchised approach

The initial geometric framework for Kinematics is given by the tangent
bundle τM of a manifold or, more generally, the cotangent bundle Ω1

V (dual of
the tangent bundle in the classical case) for an eventually singular variety V .
Singularities appear in a very natural way in regard to geometric, kinematic
and dynamic aspects. Roughly speaking they can be interpreted as a default
rank of matrices representing the transference map τ : C → W or linked to
manipulation (dexterity, e.g.) or locomotion (locomotivity) tasks, e.g. The
rank default conditions are intrinsic, i.e., they do not depend on the inicial
chosen reference for localization and they can be extended to kinematic and
dynamic frameworks; hence they can be formulated in terms of Lie groups,
and more specifically in terms of the Geometry of the Momentum Map
[Gui90]

Ordinary differential equations linked to structural descriptions for ki-
nematics or dynamics can be interpreted as sections of a fiber bundle or,
more generally, as Ehresmann connections on the support of fiber bundles.
Last interpretation allows to re-interpret minimal solutions as geodesics, by
solving in the way linked optimization issues. To understand the above con-
cepts, it is necessary to develop some rudiments of Riemannian Geometry
which are introduced in the central chapters of this module.

The most relevant contributions are linked to the systematic use of Lie
groups for discrete, finite-dimensional and infinite-dimensional symmetries.
They involve to signals persistence, preservations of geometric configura-
tions, motion analysis of trajectories performed by control points (including
end-effectors), data alignment and decision mechanisms in automatic lear-
ning procedures for tasks-oriented approaches, between others. Their Lie
algebras provide the basic models for their estimation, and to evaluate their
transformations along the motion, according to structural equations.

Hierarchies between different symmetry groups are described in terms of
G-equivariant decompositions (including capture and breaking procedures)
and superimposed structures, going from Principal Bundles (initially deve-
loped by J.Burdick) till G-fibrations (introduced in the modules and A24

in Algebraic Topology). The superposition of available information about
inner mechanism and the outdoor environment is performed in terms of cell
complexes A23 giving a Cellular Equivariant Stratification (CES) as a com-
mon framework for morphological and functional issues involving low-order
extensions (Jets spaces) of the PACW cycle.
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5.3.1. A description of the module 3

The module B33 (Robot Kinematics) the following chapters:

1. Differential Geometry in Robotics: Manifolds. Vector fields and
distributions. Differential forms and systems. Fiber Bundles. Integra-
bility of systems.

2. Forward Kinematics:. Differential of a map. Jacobian matrices. Re-
gularity. Direct images of distributions. Kinematic singularities. Lifting
vector fields.

3. Inverse Kinematics: Pseudoinverses. Local duality. Feedback bet-
ween forward and inverse kinematics. Path following methods. Kine-
matic analysis of trajectories.

4. A hierarchical approach introduce a general hierarchy between geo-
metric and kinematic which can be extended to dynamic aspects. Jets
spaces and prolongations of maps.

5. Lie formalism: Lie groups in Robotics. Homogeneous Spaces. Sym-
plectic geometry. Infinitesimal version. Locally symmetric spaces. Prin-
cipal bundles in Robotics. Evolving symmetries in Robotics.

6. Elements of Riemannian Geometry Riemannian metrics. Metric
and affine connections on manifolds. Connections on Fiber Bundles.
Ehresmann connections. Extension to jets spaces.

7. Optimization in Kinematics: Convex optimization. Non-convex
optimization. Contact geometry. Internal constraints. External cons-
traints. Integrability issues. Reachability.

8. Kinematic control: Lyapunov control. Robust control. Adaptive con-
trol. Interaction with the environment. Impedance-based control

9. Geometric Algebra for Kinematics The introduction of vector
calculus provides a unifying language for some aspects described above.

5.3.2. Some references for the module 3

Only textbooks are included. I apologize by meaningful omissions.

[Bay01] E.Bayro-Corrochano: Geometric Computing for Perception Ac-
tion Systems. Concepts, Algorithms and Scientific Applications, Springer-
Verlag, 2001.
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[Gui90] V.Guillemin and S.Sternberg: Symplectic Techniques in Physics
(2nd reprt), Cambridge Univ. Press, 1990.

[Kel13] A.Kelly: Mobile Robotics: Mathematics, Models, and Methods,
Cambridge Univ. Press, 2013.

[Kob63] S.Kobayashi, and K. Nomizu: Foundations of Differential Geo-
metry (2 vols, J.Wiley, 1963.

[Koh97] T.Kohonen: Self-Organizing Maps (2nd ed), Springer-Verlag,
1997.

[Lau07] C.Laugier,and R.Chatila (eds): Autonomous Navigation in Dy-
namic Environments, Springer-Verlag, 2007.

[Mur12] S.Murata, and H.Kurokawa: Self-Organizing Robots, Springer-
Verlag, 2012.

[Mur94] R.M. Murray, Z. Li and S. S.Sastry: A Mathematical Introduc-
tion to Robotic Manipulation, CRC Press, 1994.

[Nic13] T.Nicosevici, and R.Garcia: Efficient 3D Scene Modeling and
Mosaicing, Springer-Verlag, 2013.

[Oll07] A.Ollero, and I.Maza, Iván (eds): Multiple Heterogeneous Un-
manned Aerial Vehicles, Springer-Verlag, 2007.

[Sat86] D.H.Sattinger, and O.L. Weaver: Lie Groups and Algebras with
Applications to Physics, Geometry, and Mechanics, Springer-Verlag, 1986
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5.4. Dynamics and control in Robotics

Two important issues which involve specially to dynamics are related
with non-integrable systems and discontinuities linked to contact mechanics,
including friction phenomena, impact and/or collisions. All these issues are
crucial in multilegged robots which display additional troubles linked to
coordination tasks in multibodies.

From a geometric viewpoint, mechanical systems may be holonomic
or non-holonomic. Nontrivial holonomy represents the lack of conservation
along a “transport” of geometric quantities given by some (scalar, vec-
tor, tensor) field along a path. In Differential Geometry parallel transport
is performed in terms of a “connection” on a fiber bundle extending the
(co)tangent bundle presented along the precedent module. A parallel trans-
port does not preserves exactly the “shape”, but it transforms geometric
objects (tensors) according to certain rules which are compatible with (co-
variant) differentiation. Thus, in Mathematics one says that a connection is
a rule of covariant differentiation.

A first taxonomy give us two types of affine and metric connections.
Both of them are useful in Robotics because they involve to (real or ap-
parent) deformations and accuracy in regard to the information fusion or
the expenditure energy necessary to maintain motions to be performed. The
main invariant of a connection is the curvature. Roughly speaking, the cur-
vature represents the second order variation rate of “geometric quantities”.
The global representation of curvature maps provides a visualization of dy-
namical effects linked to internal constraints (propioceptive evaluation) or
external restrictions (changing environmental conditions). The construction
of curvature flows allows to manage the above quantities.

In more abstract terms, a holonomic constraint is a wholly integrable
sub-bundle E of the tangent bundle τM of a manifold M . The system outco-
me for a non-holonomic system is path-dependent. Non-holonomic systems
have been studied in robotics. Examples include: car-like robots, tractor-
trailers, bicycles, roller-blades, airplanes, submarines, satellites, and spheri-
cal fingertips rolling on a manipulandum.

In robotics, a non-holonomic system is usually defined by a series of
non-integrable constraints of the form Gi(p,v) = 0 on the tangent bundle.
For example, whereas holonomic kinematics can be expressed in terms of
algebraic equations which constrain the internal, rotational coordinates of
a robot to the absolute position/orientation of the body of interest, non-
holonomic kinematics are expressible with differential relationships only.
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This distinction has important implications for the implementation of a
control system.

It is well known that many under-actuated manipulation systems are
naturally modeled as non-holonomic systems. An important control problem
is the analysis of isotropic non-holonomic manipulation system in which
multiple robots manipulate objects by using non-prehensile grasps, or by
using prehensile grasps enabled by tools such as ropes. Bimanual operation
poses additional problems from the dynamical viewpoint which are relative
to coordination, compensation, control of velocities before and after contact,
stabilization, anticipation of efforts and compensation of effects linked to
manipulation.

Complex interactions with the environment require an adaptive behavior
of mechanisms. To soften effects of contact and/or impact it is necessary to
incorporate elastic models for multibodies. Elasticity is an old topic in Me-
chanics, but it is usually applied to materials. Usual mathematical tools are
related to a formulation of small deformations in terms of Tensor Calculus,
which very often impose additional mathematical constraints linked to the
preservation of energy 99.

It is necessary to develop models for multibodies in a dissipative fra-
mework, having in account the propagation of impact effects, evaluation of
friction effects, minimization of non-linear vibrations, stabilization of me-
chanisms along stable trajectories, and compensation mechanisms for the
whole robot architecture.

5.4.1. A description of the module 4

The module B34 (Robot Dynamics) has the following chapters

1. Dynamical aspects The application of forces at joints and the ge-
neration of moments at torques, provide a collection of examples for
planar and/or volumetric robots. Basic principles of mechanics are re-
formulated in terms of Lagrangian formulation and Eulerian approach
. Several methods for resolution of structural equations are discussed.
Finally, we display some applications to simple kinematic chains which
operate in the cartesian space, with a special regard to 6R robots

2. Optimization in Robotics Along this chapter we develop an ap-
proach which follows an increasing order of difficulty. A short revision

99For a basic approach see the module 3 of my notes on Differential Geometry, e.g.
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of linear methods is presented, including some elements of neural net-
works based approach. The core of this chapter is devoted to present
and explain some of the most usual non-linear methods for optimiza-
tion issues and their applications to anchored robots. Optimal Control
Theory. Pontriajine Maximum Principle. General variational princi-
ples. Local and infinitesimal symmetries. Elements of sub and semi-
analytic theory.

3. Control and Stability From a theoretical viewpoint, control issues
can be considered as dual of optimization problems. A basic distinction
involves to robust vs adaptive control systems; the choice depends on
the characteristic of problems to be solved in regard with industrial
vs more flexible environments. Besides general considerations invol-
ving linear and non-linear control, a special attention is paid to the
applications of differential and integral methods involving PID (Pro-
portional Inverse Derivative) methods and control systems based in
Expert Systems. Main applications concern to force-position control;
the incorporation of kinematic effects for more advanced control issues
is performed from the module 2.

4. Global Differential Geometry in Robotics. Vector bundles. Ba-
sic notions. Integrability conditions. Non-holonomic constraints and
control theory. Elements of Subriemannian Geometry. A geometric re-
formulation of Optimal Control. Stabilization from Energy-Moment
map.

5. Geometric Algebra for control issues An excursion through Al-
gebraic Geometry. Extending matrix calculus. Controllability. Acces-
sibility.

6. Elastic multibodies. Contact. Impact. Anticipation and Compensa-
tion models. Elastic models on multibodies. Topological and different
stability.

7. Control of Vibrations. Controlled submersions. Infinitesimal stabi-
lity. Controlled Lagrangian Methods. Feedback matching. Stabilizing
Non-holonomic systems.

5.4.2. Some references for the module 4

Only textbooks are included. I apologize by meaningful omissions.
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5.5. Humanoid Robots for disabled persons

Following Wikipedia, “a humanoid robot is a robot with its body shape
built to resemble that of the human body. A humanoid design might be for
functional purposes, such as interacting with human tools and environments,
for experimental purposes, such as the study of bipedal locomotion, or for
other purposes. In general, humanoid robots have a torso, a head, two arms,
and two legs, though some forms of humanoid robots may model only part of
the body, for example, from the waist up. Some humanoid robots also have
heads designed to replicate human facial features such as eyes and mouths.
Androids are humanoid robots built to aesthetically resemble humans.”

Along the fifth module, each robot is considered ideally as a humanoid
given by a four kinematic chains and a head which are connected to a fixed
body which is called as the trunk. From the beginning there is a human
inspiration which is modeled from human biomechanics with its traditional
hierarchy in skeletal, muscular and nervous systems (chapter 1). In practice
and to ease a real-time robust behavior, it is necessary to adopt some simpli-
fications (Chapter 2). An efficient design is crucial to improve functionalities
linked to complex tasks such as locomotivity for human gait (chapter 3) and
dexterity/manipulability for grasping (chapter 4).

The above general principles are applied to robotics of assistance to disa-
bled or elderly people, where some advances in Prosthetics and Orthopedical
Chirurgy are reported to ease their lifestyle. Finally, some of the most inter-
esting research domains concerns to human-machine communications, from
RT-interaction based on human gestures and speech recognition; these to-
pics are related with information processing arising from different sensors
and their integration to provide a RT response is a permanent challenge
from the late nineties (Chapter 6).

Other important topics related to biomedical applications which are not
considered here concern to the simulation of surgery interventions. In this
case, it would be necessary to develop additional models and software tools
linked to internal organs (using deformations controlled by meaningful para-
meters), the behavior of soft tissues and their response w.r.t. interventions.
The simulation involves to advanced mathematical models for the most used
software tools for surgery, elasticity and plasticity for internal organs, and
which are not considered here.

Models to be developed must include Advanced Visualization tools for
modeling internal organs, eversion procedures for interventions, interactive
navigation tools inside the body, dynamical systems for elastic and resilient
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deformable objets, and real-time incorporation (in terms of VR/AR tools)
of information arising from microcameras linked to very sensitive tasks 100

5.5.1. A description of the module 5

The module B35 (Humanoid Robots) contains the following chapters:

1. Elements of Human Biomechanics. Along this chapter we recall
some of the most meaningful facts about the three (skeletal, muscular
and nervous) systems in the human body for the support, execution
and control of tasks. We develop morphological and functional approa-
ches, and we sketch some basic feedback mechanisms for understanding
right behavior under normal conditions to obtain typical locomotion
patterns. (De)coupling between components for each subsystem is es-
sential to provide a distributed management which eases the validation
of partial models and their effects on the whole human architecture.

2. Simplified models of muscle-skeletal system. The complexity of
most tasks performed by human body and their imitation by artificial
mechanisms requires some simplifications to morphological and fun-
ctional levels. These simplifications are performed by introducing a
hierarchy which involves initially to morphological aspects, and which
incorporates in a more advanced stage functional aspects for control
and optimization issues.

3. Grasping and Handling. Efficiency in these tasks require a right
design going from the whole arm, till the fingers and their articula-
tion in an artificial prosthetics hand. To start with, we shall consider
three-fingered artificial hands with the thumb in an opponent loca-
tion w.r.t. the other fingers. Main problems to be solved concern to
position-force based control able of warranting dexterity and mani-
pulability of objects arising from a visual feedback. The final section
considers some problems related to the coordination of both hands for
manipulating volumetric objects. Stability in manipulating objects is
a very difficult problem, in part by the modification of gravitational
effects linked to dynamical effects arising from robots; in addition, ob-
jects to be manipulated can display a passive or, contrarily, an active
behavior, including energy exchange which must be modeled (in terms

100An introduction can be read in the module 5 of my notes on Computer Graphics
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of Lyapunov models, e.g.) and absorbed/stored in components of the
robot.

4. Human Locomotion is one of the most difficult tasks for human
modeling. Even if we restrict ourselves to human gait (by forgetting
jumping and different types of courses), there is no a universal model
for locomotion. Thus, we adopt some simplifications which are initially
centered in the coupling of lower limbs along the different phases of
human gait. Our purpose is to try of providing a basic structural model
which can be adapted to different subjects depending on morphological
parameters. The most difficult issues concern to stability for the whole
structure and kinematic control. Stability is performed around expec-
ted trajectories (never exactly performed in the same way). Adaptive
control to changing environments is performed in terms of kinematics
impedance having in account a discontinuous contact of limbs with the
environments, which generates an alternance between open and closed
loops. In both cases, it is necessary to perform a coupling between
anticipatory and compensatory movements performed by the whole
body.

5. Robotics of assistance to disabled persons. Some of the most
outstanding applications for Robotics is the assistance to disabled peo-
ple, such as paraplegic or tetraplegic persons. From the early nineties
several mechatronic devices have been developed for assistance which
are based on Functional Electro-Stimulation (FES), prosthetics (reci-
procators, e.g.), artificial muscles (pMA, e.g.) or other hybrid systems.
More recently, some of these elements are being integrated in com-
ponents which are coupled with human bodies for traumatic ampu-
tations. Exo-skeletal structures have been developed from the early
nineties and make part of chapter core. Recent advances in mechatro-
nic miniaturization, performance of new materials and advances in the
integration of bionic components open the door for excitant progress
which try of improving the quality of life for disabled persons. 101

6. Simulating virtual characters Recognition of gestures involving
the human body and human face provide some keys to improve the
interactions between different (human or artificial) agents. A basic
distinction in human activity analysis concerns to human gestures,

101The url http://www.vph-institute.org/ provides a permanent update of related ma-
terials and connections with RTD and clinical groups working in this area.
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actions, interactions and group activities. In this chapter we develop an
approach which is mainly based in video processing for human gestures
and individual actions. Main goals are the recognition, synthesis and
simulation to improve human-machine interaction, to simulate optimal
configurations and postures (ergonomics), and to provide a support for
the production of multimedia contents. 102

7. Sportive performance. Sportive performance is a challenge which
requires the information fusion arising from different sensors linked to
actuators. The main goal of this chapter is to provide an assistance for
Medical Rehabilitation. Biomechanical and physiological models provi-
de a support for advanced visualization 103 of more advanced functio-
nal models (cardiovascular, pulmonary). Current research involving
integration in a whole model is incorporated to progressively complex
Virtual Physiological Humans from biomodels (including (biomedical)
databases. Paralimpic activities for amputees is an extreme case to
evaluate the sportive performance of advanced prosthetical devices in
order to try of improving the quality of life of citizens.

5.5.2. Some references for the module 5
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5.6. Animats. Simulation and animation

In despite of the progress performed in Robotics from the eighties, even
the most advanced robots are still very far from achieving the efficiency of
superior mammals. Even, the performance of insects is often much higher
than the achieved by robots, currently. Several millions of evolution years
have produced architectures which are very specialized for complex tasks,
which we are still far from imitating in an efficient way. Progress in aerial
and marine navigation are still very far from being satisfactory from the
viewpoint of robotic prototypes.

In view of the unsuccessful state, there are several options which are
centered in quite different approaches related to some basic functionalities,
the development of evolutionary strategies for robots at algorithmic level, a
better biomechanical understanding of connections between different com-
ponents, simulation of movements and/or the modeling of Central Nervous
Systems. In the same way as the precedent module, the main inspiration
arises from Biomechanical Analysis, but in this case applied to other live
beings different from humans.

One of the most relevant applications for Biomechanics concern to per-
formance in complex tasks such as locomotion and grasping-handling. The
evolution of several millions of years has provided very efficient architectures
which are very well adapted to different environmental conditions and to dif-
ferent tasks related to predator-prey behavior. The adaptation is performed
at different scales going from the simplest ones (corresponding to insects)
to the most advanced (terrestrial, marine, aerial) animals. Seemingly, there
is no a systematic study of all these aspects, and because of this the notes
presented here have a very fragmentary character with different degrees of
development.

Our main motivations arise from two quite different topics which are
related to Sportive Medicine (including an analysis of some of the most
common lesions) and the analysis, understanding and simulation of basic
principles for aerial, terrestrial and marine movements of live beings.

Along the sixth module, each robot is considered ideally as a body given
by several kinematic chains which are connected to an articulated body. All
the models are biologically inspired in insects or more complex mammals,
with a high number of d.o.f. The very large diversity of natural mechanisms
makes very difficult a unified approach to animats. Thus, our approach is
necessarily very schematic and it is more focused to suggest possible research
lines and applications rather than detailed solutions. Connections with the
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industry of multimedia contents give a more speculative character to most
applications developed in this module.

A typical approach consists of combining structural models (arising from
biomechanical studies, as for humanoids) with appearance-based models
(arising from the analysis of video sequences which are edited and mani-
pulated in a manual or semi-automatic way. These applications are strongly
related to advanced contents of Computer Vision which are developed with
more detail in the CEViC 104

From a theoretical viewpoint the introduction of different kinds of sym-
metries and the use of Lagrange multipliers allows to reduce the initial com-
plexity of the problem. Symmetries allow to decompose complex systems
to be solved by means the introduction of natural hierarchies associated to
inclusion relations (from the kinematic viewpoint) or breaking symmetries
(from the dynamical viewpoint). Symmetries are applied not only to working
and configurations spaces, but to the tasks to be performed, including kine-
matic and dynamical aspects. Control and optimization issues are developed
in terms of (de-)coupling and (ir)redundant mechanisms.

5.6.1. A description of the module 6

The module B36 (Animats) contains the following chapters:

1. A stratified approach Along this chapter we adapt the hierarchical
approach for mechanics (Geometry, Kinematics, Dynamics) associated
to the successive prolongations (in jets spaces) of the transference map
τ : C → W between configurations and working spaces for like-insect
and like-mammal robots.

2. Motion equations Contact structure of the jets space provides struc-
tural constraints for motion equations which are exploited to obtain
first integrals of motions equations. Along this chapter we develop the
two classical formulations based in Lagrangian and Newton-Euler for-
malism. Finally, we give some examples of motion equations for several
paradigms involving efficient animats at different levels corresponding
to insects (the incredible fast course of a cockroach, e.g.), mammals
(the fall of a cat as the best solution to recover equilibrium, e.g.) or
birds (variable geometry of a falcon for efficient hunt, e.g.)

104Curso de Especialista en Vision por Computador, an on-line course which is coordi-
nated by the author
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3. The role of symmetries. In mathematical formulations of Robo-
tics, symmetries are ubiquitous from the geometric design (opponent
character between components), to the reformulation of kinematics
in terms of Lie groups and its infinitesimal version (in terms of Lie
algebras), and the resolution of motion equations in the Lagrangian
formulation by using first integrals linked to conservation of “quan-
tities”. Furthermore, we show how singularities can be used to pass
through singularities, by avoiding indeterminacy issues linked to the
lack of “enough independent sections” of fiber bundles where control
is developed.

4. Simulation and Visualization. Several millions years of evolution
have provided a lot of architectures which we are still far of understan-
ding. It is necessary to improve our knowledge of these architectures
and their functionalities to try of understanding and imitating them.
In this chapter we provide modeling and simulation tools for increa-
singly complex animats inspired by some insects and mammals. To
accomplish these goals we introduce several hierarchies which are ins-
pired by biomechanical principles. After understanding them, the main
goal is to try of simulating and visualize results. To achieve this goal
we adopt a hybrid approach which combines biomechanical structural
principles and appearances-based modeling (Computer Vision tools).

5. Architectures like-insect. Most robots are still far of achieving the
performance of seemingly simple insects. With very low energy con-
sumption, some of them are able of transporting weights (ants, e.g.),
develop very fast displacements (cockroaches, e.g.) or develop abilities
for flight to improve the performance of current UAV in cooperative
tasks (such those appearing in bees flight, e.g.). Thus, the study of ar-
chitecture and functionalities of insects provides a permanent source
of inspiration to improve the current robots. The analysis performed
in this chapter is completed with some examples focused towards si-
mulation and visualization of other insects (butterfly, dragonfly, etc)
which are useful for multimedia productions.

6. Architectures like-mammals. The most known architectures invol-
ve to domestic terrestrial mammals. Thus, we concentrate our atten-
tion on several cases relative to horses, dogs and cats. The multilaye-
red structural approach must include layers corresponding to skeletal,
muscular, and internal organs. The appearance-based model has two
components which are labeled as video cartoonization (as a part of
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video processing and analysis) and video-based rendering (as an ad-
vanced development of video edition). 105

7. Artificial modeling of ecosystems. An initial motivation is given
by two typical strategies given by cooperative and competitive sys-
tems. Both of them can be considered as particular cases of Synergetics
applied to Robotics. From a more applied viewpoint, soccer-matches
provide some very interesting models which combine both strategies on
the same space. Their management requires to combine supervised and
unsupervised strategies. We illustrate some basic principles with ro-
botic behaviors for multiagents in speculative financial markets which
drive the self-evolution of smart systems towards the self-destruction.

Some references for the module 6 Only textbooks are included. I
apologize by meaningful omissions.
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