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Previous remarks: These notes corresponds to a short version of the Intro-
duction corresponding to the module A45 (Stratifications) of the matter A4

(Differential Topology). It is necessary to have previous knowledge of Basic Dif-
ferential Topology A41 and some familiarity with Singularities of map-germs
A44. It is advisable to have some knowledge of GAGA A33 to understand exam-
ples and applications to Geometry.

For applications to scientific and technological issues (developed in the two
last chapters) it is advisable to have some basic knowledge at the level of ma-
terials included in the matter A1 (Differential Geometry). Additional issues
concerning to Artificial Intelligence are included to a descriptive level; a more
formal treatment will be developed in several modules of the part II.

As usual, materials are organized in four sections to be given along one
month (one per week). They contain a list of exercises for self-verification of
understanding of materials. Subsections or paragraphs marked with an asterisk
(∗) have a higher difficulty and can be skipped in a first lecture.
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0.1. Introduction

The notion of stratification is ubiquitous in Science and Engineering. Initially,
a stratification is a decomposition of an object or the ambient space X in a dis-
joint union of “regions” (topological subspaces Xi) displaying a “similar beha-
vior” w.r.t. some mathematical property. Similarity can involve to any kind of
geometric, kinematic or dynamic criteria in any of usual Cr-categories. More for-
mally, the Ehresmann’s theorem says that a proper submersion between smooth
manifolds is a locally trivial smooth fibration (extending the notion of vector
bundle). The initial notion of stratification is extended to stratified maps, where
the decomposition can involve to source and target spaces.

Thus, it appears with different names in Materials Science, Hydrodynamics,
Meteorology, Geology, Social Sciences, Biomedicine, Physics and Mathematics.
To fix ideas, along the first three sections of this chapter, we will restrict oursel-
ves to the mathematical framework, where we sketch relations between different
notions of stratifications- More explicitly, materials are organized in four sec-
tions:

1. The first section develops a static approach to Stratifications, by using only
topological, geometric and analytic properties in a classical framework.

2. Along the section 2 one supposes that data are evolving under some cons-
traints. In the smooth case, tangent and normal bundles provide a support
for Kinematics. In presence of singularities and incomplete information,
one must enlarge the theoretical framework, and use “attaching maps” at
kinematic level also.

3. Interaction between multiagents provide a motivation for dynamic aspects
of stratificaitons. One extends the Geometry of the Moment Map of Theo-
retical Physics to include bifurcations and degenerations.

4. The last section displays some connections with other scientific and tech-
nological areas.

The next paragraphs are devoted to introduce some basic notions in an
intuitive way as possible, by following an increasing complexity. The coarsest
approach corresponds to the notion of “topological stratification” extending
the notion of Cr-fibration (Ehresman, 1946). Pieces are given by topological
subspaces Xi making part of a partition of X which are called “strata”. From
a local viewpoint, they fulfill “good incidence conditions”. There is no a unique
criterium for such partition: they depend on the category (for the absolute
case) and the choice of a map f : X → Y (for the relative case). So, for the
C0-topology, incidence conditions involve to the adherence Xi ⊂ Xj of adjacent
strata; in the PL- or the PS-category they involve to non-empty intersections
between linear subspaces or between Ps-manifoilds.

The specification of “good matching conditions” depends on the Cr-framework
and applications to be performed, and involve to “basic objects” X,Y and Cr-
maps f : X → Y between them. So, they can be formulated in quite different
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frameworks, from set-theoretical ones till the most sophisticated interactions
in dynamical environments. Last ones give dynamical stratifications in a ge-
neralized “tangent bundle” of the Phase space, e.g.. To avoid pathologies of
geometric-based approaches based on Cr-equivalences on intersections Ui ∩ Uj

of domains for coordinate charts, one uses “attaching maps”. In the last ca-
se, “good conditions” are formulated in terms of regular maps (submersions
and immersions in the smooth case) for matching together eventually singular
“objects”.

The approach performed in terms of “attaching maps” is more flexible than
usual geometric approaches, it does not require birregularity conditions nor a
“complete” previous information about objects or processes to be identified;
furthermore, it can be adapted to discrete or statistical frameworks, where one
has not a geometric structure. A lot of applications to Engineering start with
discrete data which provide the support for superimposed structures by following
different hierarchies. Clustering strategies of sparse data can be described in
terms of weak stratifications giving initially an infinite number of strata for each
dimension. Furthermore, the topological space X can have infinite dimension,
as it occurs with spaces of maps or more general fields appearing in Geometry
and Analysis. Dimensionality reduction is a first task to be accomplished.

Unfortunately, most effective methods for stratifications are not valid in pu-
rely topological structures, nor even on PL-superimposed structures on discrete
spaces, e.g. This justifies our choice which is initially based on the PS (Piecewi-
se Smooth) framework, and it is progressively enlarged to other more realistic,
flexible and/or computable frameworks. In the PS-framework, the first central
result for stratifications is the Ehresmann’s theorem giving a Cr-structure for
proper submersions. Some weakening of these hypothesis in regard with appli-
cations to other scientific and technological areas are developed in the last two
chapters of this module.

Furthermore Ehresmann’s theorem, from a historical viewpoint the most
important initial contributions in the PS-framework are due to H.Whitney and
R.Thom along 1940s and 1950s. Algebraic an topological extensions were deve-
loped along 1960s and 1970s (Mather, Lojasiewicz, Hironaka, Teissier, Verdier),
including explicit relations between different characteristics from the middle of
1970s (Teissier and Le). A topological reformulation in terms of Stratified Mor-
se Theory was performed in the 1980 (Goresky and MacPherson), where one
makes a systematic use of attaching procedures mentioned above. Some other
contributions will be specified along the draft.

From a topological viewpoint, the classical approach consists of reducing the
study of global aspects to a local analysis by using a trivializing covering for
some Cr-structure. The open sets Ui ∈ U are equipped with a Cr-equivalence
φi : Ui → Rn for some fixed n ∈ N fulfilling compatibility conditions on Ui ∩Uj

for any i, j ∈ I. In stratified theories, the main innovation consists of repla-
cing the atlas A = (U ,Φ) = (Ui, phii)i∈I by a locally finite set of attaching
maps which can match together eventually singular “objects” and maps” of
different dimensions. In this way, semi-analytic and semi-algebraic subsets are
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incorporated from the scratch as “natural objects”, by avoiding their treatment
as “exceptional” cases of classical approaches.

0.1.1. Different frameworks for stratifications

Relations between different approximations in Mathematics and/or other
Applied Sciences are a source of inspiration for notions and results relating
the corresponding areas. Some of the most relevant are explained along last
chapters of this module. Hierarchies between geometries and their structural
groups provide the framework to relate stratifications in different contexts, and
their applications. An “absolute approach” concerns to the space X, whereas a
“relative approach” involves to stratified maps f : X → Y between spaces. One
says that f is a stratified maps if the image of each stratum in X is a finite
union of strata in Y .

According to the fields-based approach, systems behaviors are modeled in
terms of different kinds of (scalar, co-vector or, more generally, tensor) fields
not only on PS-strata, but on their boundaries also. This motivates the use of
stepped functions, vector fields with corners (PL-vectors), and the corresponding
PL-versions for differential forms 1. Formally, behaviors are described in terms
of maps between tensor algebras. This approach is compatible with any Cr-
category. Piecewise Linear (PL) approaches provide the nexus between discrete
and continuous models. In both (absolute and relative) cases, one can follow
two alternative and complementary strategies:

If we follow a top-down methodology one can discretize local coordinate
systems and/or local fields defined on them, to understand internal rela-
tions or complex interactions between hierarchical structures.

If we follow a bottom-up methodology one can develop clustering methods
at different levels going from unstructured data to hierarchical models.

The feedback between top-down and bottom-up approaches for spaces and maps
between spaces is the key for some recent applications to IST (Information
Society Technologies) which are developed in Chapter 9 of this module A45.

On the other hand, in (Differential, Algebraic, Analytic) Geometric frame-
works a basic strategy consists of developing local procedures which are based
in matching fibred structures (vector bundles, principal, bundles, sheaves, e.g.)
by using local triviality conditions on the overlapping Ui ∩ Uj of open sets of a
covering U of the base space X. This strategy is the key for the common support
provided by (Commutative and Homological) Algebra. In Stratified spaces one
replaces compatibility conditions on intersections by “attaching maps”.

1 The notion of vector fields with corners is due to R.Thom (1969), who introduces the
notion of controlled submersion for the management of possible discontinuities for some deri-
vative.
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The resulting topology based on attaching maps is more adaptive, and it
can be applied to semi-algebraic and semi-analytic spaces (with the corres-
ponding superimposed structures). Furthermore, it does not need a previous
knowledge of the “ambient space” as a whole, which makes possible a better
behavior to conditions in absence of complete information or in presence of un-
certainty (statistical manifolds, e.g.). These ideas can be traced to Esquisses
of A.Grothendieck, where he introduces the notion of tame topologies (mode-
rate behavior) and “devissage”(unscrewing) for the management of stratified
structures.

0.1.2. The interplay between smooth and analytical approaches

As always, the simplest situation corresponds to the smooth cases, i.e. for
r =∞ which is well understood from Differential Geometry A1. Algebraic Topo-
logy (first three modules of A2) provides a PL-approach, which can be adapted
to geometric objects and morphisms in the Geometric Topology framework (last
three modules of A2). If we look at polynomial approaches (instead of PL ones),
one must use arguments of Algebraic Geometry A3. The incorporation of advan-
ced PS-techniques is performed in terms of k-jets spaces and the corresponding
maps in A4 (Differential Topology). Local Algebra provides a common language
for a lot of issues involving all of them. But, it has a strictly local character.

To recover global aspects one must reintroduce global topological methods.
In a lot of applications one has not an idea of global characteristics of ambient
spaces and their transformations. Thus, they must be constructed on the way
in terms of attaching maps, able of incorporating “events” as singularities of so-
me kind of (scalar, vector, covector) fields involving properties, trajectories and
constraints to understand complex behaviors. This program requires a refor-
mulation of classical results involving even to the initial Ehresmann’s fibration
theorem, continuing with Whitney conditions for “good stratifications” till arri-
ving to properties or maps between superalgebras which provide an integration
of all above issues.

To start with, let us remember that the differential df of a map f : N →
P between two smooth manifolds provides the linearization dxf of f at each
point x ∈ N which is locally represented by the Jacobian matrix after fixing
coordinate systems. The linearization allows to analyze the singular locus of
the local representation Kn → Kp. Their singularities have been analyzed and
classified according to different B-equivalence relations along the module A44 for
K the real or the complex field. Unfortunately, in most cases relations between
B-orbits have not a “nice” (locally trivial) structure.

To be more precise, and according to the Ehresmann’s fibration theorem if a
proper smooth surjective submersion f : N → P between smooth manifolds is a
locally trivial fibration. However, if the map is not proper or a submersion, then
the Ehresman’s theorem is no longer true. A first strategy consists of decom-
posing the source space in strata (by using the geometry of the Discriminant
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Locus) such that the restriction to each stratum fulfills the hypotheses. Unfor-
tunately, superimposed (tangential and normal) structures on adjacent strata
do not match between them necessarily in the singular case. To remediate this
situation, one introduces the Whitney’s conditions relative to the limits of tan-
gent spaces, which are “controlled” by secant spaces; alternately, one can use
“controlled submersions” [Tho69]. More details in chapters 1 and 3.

The two main approaches to stratifications are due to R.Thom and H.Whitney.
They are related with the precedent smooth and analytical approaches:

The Thom’s approach can be considered as an extension of the rank
stratification for spaces of matrices (representing the Jacobian matrix,
e.g.). The deep relations with cellular decompositions of the Grassman-
nian Grass(k,N) of k-dimensional linear subspaces Lk of a N -dimensional
space V N appear already in [Tho69]. The notion of controlled submersion
(very useful for a lot of applications in Engineering) is crucial for a local
maintenance of “good conditions” for fibrations (locally trivial structu-
res) and appears in [Tho69]. Cell complexes provide a large amount of
“examples” where the Thom’s approach is applied successfully.

The Whitney’s approach uses geometric conditions about limits of tangent
lines ` = txX and tangent vector spaces TxX at regular points x ∈ X0 =
X\Sing(X), as control conditions to avoid “bad behavior” at singularities
in order to recover some kind of fibred local structure. These conditions
could be inspired in usual Lipschitz conditions for ODEs, and are labeled
as Whitney’s conditions. Quasi-projective varieties provide a large amount
of “examples” where the Whitney’s approach is applied successfully.

From the late 1960s there appear different extensions of both approaches by
following topological and algebraic approaches. Limitations linked to the study
of semi-analytic (Lojasiewicz)and semialgebraic varities (Hironaka) motivate so-
me first extensions where there appears the need of reformulating topological
and geometric aspects. Some more sophisticated motivations arise from limita-
tions for the applicability of the above approaches to more general topological
spaces (CW-complexes, lens spaces, e.g.) or to Deligne-Mumford compactifica-
tions in moduli spaces. The development of Polar Varieties and the relations
with the Discriminant Loci of (families of) maps is developed by B.Teissier and
Le-Dung Trang along the 1970s and early 1980s.

All of them, suggest the development of “controlling the behavior at boun-
dary” or “attaching maps” instead of using local coordinate charts to integrate
features which were considered as “pathologies” in precedent approaches, spe-
cially in regard to the possibility of singular attachments. The need of controlling
the behavior at these situations motivates the introduction of “tame” topologies
by Grothendieck 2. The attachment of “singular cells” occupies a central role in
the Stratified Morse Theory, where the attachment is performed in terms of Tan-
gential and Normal Morse Data performed by Goresky and Macpherson along

2 Some descriptions appear in his “Esquisses”, where they are called “moderate” topologies
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the 1980s, which are integrated in the Homology Intersection Theory. The more
recent introduction of Persistent Homology can be considered as an extension of
this approach to the Discrete Topology, with the corresponding applications to
Engineering (see the last section of this introductory chapter for more details).

0.1.3. From Geometric to Dynamic stratifications

As always, a first distinction involves to “absolute vs relative” approaches
involving the Cr-spaces X vs the Cr-maps f : X → Y between spaces. The
simultaneous consideration between both of them is formulated in terms of
maps X = (X,OX) → Y = (Y,OY ) between analytic spaces, where OX (resp.
OY ) denotes the “sheaf“ of regular functions on X (resp. Y ). Formal properties
and some applications to GAGA have been developed along the module A33

(Sheaves, Cohomology, Schemes) of the matter A3 (Algebraic Geometry). This
approach has an essentially static character.

In presence of variations for evolving objects Xt and evolving morphism
ft : Xt → Yt, it is necessary to enlarge the initial framework. Furthermore, these
variations can involve different underlying topologies including possible changes
of state or phase transitions linked to singular behavior of deformations. A lot
of “examples” have been described along the modules A43 (Singular functions)
and A44 (Singular maps). Now, we are incorporating possible “degenerations” or
“regenerations” of the whole superimposed Cr-structure, whose simplest types
(vector bundles vs principal bundles) have been described in the module A42.

Furthermore, one must introduce elements able of “controlling” possible evo-
lutions of living systems. Along the part II of these notes there appear a lot of
illustrations involving different regimes (laminar, turbulent, chaotic) in Compu-
tational Mechanics of Continuous Media B1, all kinds of events in video sequen-
ces in Computer Vision B2, auotmatic navigation of autonomous vehicles in
Robotics B3, and interactions between avatars in Computer Graphics B4, e.g.
All of them can be considered as “examples” of dynamic stratifications.

To fix ideas, we borrow some terminology arising from Robotics which we
adapt to more general frameworks:

Let P = (P ;OP ) be the Perception space, where sections of OP are the
signals corresponding to sensors (with ascending and descending sequences
of ideals)

Let A = (A;OA) be the Action space, where sections of OA are the com-
mands corresponding to actuators (devices for controlling the system).

Let C = (C;OC) be the Configurations space (involving clouds of points
with attributes, e.g.), where sections of OC are any kind of functions
(inclduing Dirac delta functions) on elements of C;

LetW = (W ;OW ) the Working space, where sections of OW provide clus-
ters with similar characteristics linked to the space-time evolution of the
systems. corresponding to actuators (devices for controlling the system).
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Later we will see that one can construct the “knowledge map” κ : P → A
which is locally an analytical fibration (extending the Ehresmann fibrations),
giving the Perception-Action Cycle (PAC). Similarly, one has the “mechanical
transfer map” µ : C → W linking the Configurations and Working space through
a locally analytic fibration: the map µ provides the framework to understand
any kind of motions for complex configurations of points 3.

Both knowledge κ and transfer µ maps are related between them through a
commutative diagram, called the BAD (basic analytic diagram) where all maps
are semi-analytic fibrations (to be approached by semi-algebraic maps). Hence,
one can compute the corresponding k-th successive extensions in terms of k-jets
spaces and maps

JkP → JkA
↓ ↓
JkC → JkW

where jkκ : JkP → JkA is the k-th extension of the “knowledge map” κ : P →
A linked to the Perception-Action Cycle, and jkµ : JkC → JkW is the k-th
extension of the “mechanical transfer maps” µ : C → C. In particular, for k = 0
one obtains the BAD diagram.

Optimization along m multi-paths are given by maps [0, 1]m → X , whereas
constraints corresponding to ` functions (scalar fields) are given by maps gj :
Y → R for 1 ≤ j ≤ ` in the Basic Analytic Diagram; their k where X or Y
are any of the above spaces P,A,C,W (written as PACW shortly). Functorial
properties allow their extension to Kinematic and dynamic aspects by taking
the 4K4-th extension of the PACW.

0.1.4. An equivariant approach

Propagation models on locally homogeneous or isotropic media provide an
equivariant decomposition of the ambient spaces for source X and target spaces
Y of any map f : X → Y . The resulting decomposition of X and Y as union
of orbits provides an equivariant decomposition for equivariant stratified maps
f : X → Y . This description eases the study of kinematic and dynamic aspects
which are superimposed to f in geometric terms (tangent τM and cotangent
bundle τ∗M in the simplest cases) or in analytic terms (jets spaces for ODEs or
variational problems , e.g.).

Monodromy groups have been used for Milnor’s fibration in regard to functon
germs (hypersurfaces) in the chapter 3 of the module A43 and for more general
map germs (local complete interesections or lci) in the chapter 4 of the module
A44; in both cases, one has strong relatons between different kinds of invariants.
Unfortunately, most singularities are not lci; thus, it is necessary to develop a

3 In Robotics, the configurations space C is labeled as the Joints or Articular space; we use
the configurations terminology to avoid confusion with the use of J (Joints space, Jacobian,
maps, structural tensor in symplectic geometry, jets spaces) and A (action space, articular
space, right-left equivalence)
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more general approach taking in account the reduction of map germs to jets
spaces. In this framework, unipotent actions (or their infinitesimal version given
by nilpotent actions) play a fundamental role [Bru86]. To understand how it does
works, it is convenient to remember some basic features of Linear Algebra before
extending them to “deformations” given by local diffeomorphisms or analytical
transformations.

From a more applied viewpoint, propagation and more general diffusion-
reaction models can be reformulated on the above analytic diagrams involving
the PACW and its extensions. Given a map f : V n → W p between two vector
spaces, the main actions are given by right-left or A = R × L-action, and the
contact or K-action preserving the graph Γf of f . In particular, the classical
description of the A-action is given by the direct product GL(p;R)×GL(n;R))
which is called the “double conjugation”. Learning subspaces procedures (com-
monly used in Self-Organizing Maps ai [Koh97]) can be easily extended to pro-
vide feed-forward mechanisms in a lot of applications of AI to Engineering.

Along the module A44 (Singularities of map-germs) we have developed a
similar reasoning scheme by replacing the above actions by the action of dif-
feomorphisms groups acting on the source and target spaces of a differentia-
ble map-germ f : (Rn, 0) → (Rp, 0). To understand the relation between both
approaches one must have in account the Lie group structure of the diffeo-
morphisms Diff0(Rn) fixing the origin 0 ∈ Rn, which gives the Lie algebra
TeDiff0(Rn) as the general linear group GL(n;R). Thus, the A = R×L-action
on map germs is the natural extension of the A = R × L-action on pairs of
vector spaces. The argument for the contact condition is similar 4.

Instead of the General Linear Group GL(n;R) one can take other Clssical
Groups. Some of the most important are the following ones:

its complex version (for the simulataneous management of the “phase”, e.g.),

the Special Linear Group SL(N ;R) for the preservation of oriented volu-
mes in Fluid Mechanics, e.g.:

the Orthogonal group O(N ;R) to preserve orthogonality conditions bet-
ween frames;

the Special Orthogonal Group SO(n;R) for metric preservation;

the conformal group C(n;R) for the angles preservation;

the Symplectic group Sp(2n;R) for the preservation of the motion’s equa-
tions in the Phase space under ideal conditions;

the Contact group C(2n+ 1;R) for the preservation of contact conditions
w.r..t a hypersuprface in the Phase space P = TM

4 Remark that this argument is not longer valid for the topological ccategroy, i.e. for r = 0,
because in this case, it is not possible to computer the differential at the neutral element
(derivatives have no sense in a purely topologicla framework).
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One can impose the preservation of the above quatities for any of he B-
actions (corresponding to the smooth or the analytic cases) where B is equal
to R (right action on te source space), L (left action on the target space), A
(decoupled right-left action on source and target paces), or K (contact action on
the graph Γf of a map as support for some kind of coupling). The differential of
the action at the neutral element e corresponding to each geometrical restriction
gives each one of the above classical groups on the corresponding ambient space
for Kinematics.

The above approach for the smooth cases has been extended to infinitesimal
B-actions on spaces of map germs f ∈ Cr(n, p) for r = ∞ (smooth case) and
r = ω (analytic case). The most interesting cases for B-action correspond to the
right-left or A = R×L and the contact or K-action, and have been extensively
studied in the module A44 (Map-germs). All of them can be considered as an
extension of actions on the tangent space to the B-orbit, but the action is defined
now on jets spaces.

An important particular case corresponds to simple singularities where the
introduction of boundary conditions on Ak and Dk series gives the Bk and Ck

series, with the corresponding “dictionary” for classical groups. Unfortunately,
the resulting classification in terms of infinitesimal actions are not stratifica-
tions in the Thom’s sense (there are infinitely may orbits), nor in the Whitney’s
sense (homological equations for computing neighborhoods is much more gene-
ral than Whitney’s conditions). It is necessary to enlarge the usual notions of
stratification to include them.

Coming back to stratification criteria for the support X (instead of looking
at functions or map-germs), the notion of G-equivariant stratification can be
extended to objects or maps in the semi-analytic and the semi-algebraic frame-
works. It suffices to consider the corresponding transformations in a stratified
framework, where local descriptions on intersections Ui ∩ Uj of coordinate do-
mains are replaced by attached maps along eventually singular elements. In
different applications we will consider an interplay between

Discrete groups which are described in terms of representations of sym-
metric and alternating groups (appearing for polyhedral symmetries, e.g.)
acting on configurations of isolated elements (points or segments, e.g.);

Continuous finite-dimensional groups such as the Classical Groups “pre-
serving quantities” (in fact tensors), to ease locally homogeneous or isotro-
pic structures appearing in the Phase space, e.g.; simplest stratifications
in the semi-algebraic cases appear associated to “complete objects” inclu-
ding envelopes by linear elements5. The most interesting cases for semi-
algebraic stratifications are linked to the action of the Unipotent Group
which are associated to finite-determinacy conditions for k-jets.

5 In the Part I of my thesis there appear explicit analytic, algebraic and symbolic descrip-
tions for the variety of Complete Quadriccs, e.g.
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Topological actions on spaces of map-germs with usual smooth vs analy-
tical frameworks, which are crucial to understand changes of state, phase
transitions and the corresponding dynamical models in a lot of applica-
tions to Physics, Mechanics, Biological Sciences, Chemical-Physics and
Engineering. They are strongly related with symmetries of ODEs and
PDEs (giving the local expressions for sections of jets spaces), which are
developed in the next module A46 (Dynamical Systems).

Some contributions of our approach consist of developing some tools for
relating the above types of actions, their applications to several aspects of Me-
chanics, and the possibility of incorporating dissipative phenomena in a natural
way at different (discrete vs continuous) levels. The idea is very simple again:
Use (upper vs lower) triangular matrices whose diagonal elements are null. They
can be visualized in a very easy way, because they induce collapsing phenomena
which can be read in terms of vanishing nested subspaces.

So, dissipative phenomena can be described in terms of nilpotent operators
acting on the (co)tangent fields. This approach is compatible with the singular
case because the finite-determinacy condition for finitely determined map-germs
is characterized by by nilpotent operators on the tangent space Tf (Bf) of the
B-orbit of f ∈ Cr(n, p) for any of the usual B-equivalence relations, i.e. B = R,
L, A or K. One must have in account that the resulting decompositions in robit
spaces are not stratifications in the Thom’s or the Whitney’s sense because tthe
number of cells is not finite, and one has not a locally cartesian structure to
describe limits of tangent or secant spaces.

0.2. An outline of the module

Along this module A45, one follows an increasingly complex description of
stratifications which starts from initial Ehresman and Thom’s approaches for
PS-frameworks, and the Whitney’s analytic tools. Limitations of both approa-
ches in regard to finiteness conditions or the lack of structure for geometric
approaches provide the motivation for different theoretical extensions. Further-
more the intensive use of generalized flag buindles and their functional exten-
sions (in terms of filtered algebras), the most relevant contributions are linked
to the applications to other scientific and technological areas.

The application to other scientificc areas was pioneered by R.Thom himself,
but with a restricted viewvery focused towards simple singularities and the co-
rresponding Catastrophe Theory 6. Some applications to Civil Engineering were
developed along 1970s and 1980s. Thus, we focus towards other Engineering
areas appearing in the part II of these notes such as Computational Mecha-
nics of Continuus Media B1, Computer Vision B2, Robotics B3 and Computer
Graphics B4, which are commented in the last section of this chapter. Most
mathematicians ignore basic aspects for these areas and because of this, one

6 See the module A43 (Singular function germs) for details
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gives only an eye’s bird view of these applications. A more detailed presentation
is developed along the corresponding modules of the part II.

0.2.1. Some methodological issues

Most notions and results of this module are developed by following a top-
down approach, i.e. they are based on previosuly known topological and geome-
tric models, with their corresponding extensions to analytic models and their
algebraic reformulation. However, to connect with several applications in other
scientific and technological areas where stratified models and maps are ubiqui-
tous, it is necessary to develop bottom-up approaches. In the last case, strati-
fications must “emerge” as a result of clustering data arising from sensors, by
following different morphological and functional criteria. In this pàrageraph, we
sketch some basic methods of both approaches.

The first general meaningful result of Stratification Theory is the Ehrese-
man’s fibration theorem; roughly speaking it says that a proper submersion
between manifolds is a Cr-fibration. In a more down-to-earth terms it can be
described by local sections, even the topology can change. Trivial examples
are given by vector bundlles and principal bundles. Less trivial examples are
linked to multi-parameter families of algebraic varieties fulfilling the hypothe-
ses of the theorem such those appearing in Classical Algebraic Geometry A32

(Quasi-Projective Varieties). Other more sophisticated examples with irregu-
lar behavioir at fibers appear in regard to unfoldings of simple singularities of
function fgerms A43.

A Cr-map germ f : (N, x)→ (P, y) with y = f(x) is not in general a regular
map at x ∈ U ⊂ N . To analyze the lack of regularity one considers singularities
of the differential dxf : TxN → TyP . After fixing local coordinate systems at
(x, y), the differential is represented by the Jacobian matrix at x ∈ U ⊂ N . The
locus of points x < oinN where the map is not regular is called the Ramification
locus Ram(f) of f , , and its image in P is the Discriminant locus Disc(f); they
are the natural generalization of critical points and critical values for a function
f : N → R (see chapter 5 of A41 for details). Thus, a first approach (R.Thom,
1956) to stratification issues for f is given by

Σr := {x ∈ U | corank(dxf) = r} r ≥ 0

where for r = 0 one has the “regular strata”. Having in account the corank is a
lower semi-continuous map, one has a finite collection of inclusions

Σ0 ⊃ Σ1 ⊃ . . .Σm

where Σk denotes the adherence of Σk for k = 0, . . . , ,m = min(n, p), and

Σk\Σk is the singular locus of Σ0. Obviously, the subsets Σr are not necessarily
connected nor regular necessarily, which gives a recurrent decomposition for
each one of them, which can be formulated in a more intrinsic way (J.Boardman,
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1963). The resulting decomposition is called the Thom-Boardman stratification
and will be developed along the first chapter of this module.

On the other hand, (p × n)-matrices (corresponding to the evaluation of
the differential dxf of f : N → P at each point, e.g.) up to scale, correspond
to k-dimensional subspaces Lk of a N -dimensional vector space V N being k =
min(n, p)) and N = max(n, p). Thus, there exists a local dictionary between the
vector space of matrices with constant coefficients and the Grassmann manifold
Grass(k,N) of k-dimensional subspaces Lk of V N . Thus, it is “natural“the
existence of a dictionary between the (co)rank stratificaiton of M(k×N ;K) and
the cellular decomposition of Grass(k,N) in terms of the Schubert cycles. This
viewpoint is developed by R.Thom in his 1956 article [Tho56] for the smooth
case. Automated learning is performe din the SOM framework [Koh87].

The extension of Grassmann manifolds to Grassmann modules (GAGA fra-
mework) is performed in [Gro73] 7. Roughly speaking, this means that one can
replace matrices with constant coefficients by variable coefficients, represen-
ting maps between modules on a ring, instead of vector spaces on a field. The
(co)rank stratification of maps between modules is locally developed in terms
of determinantal varieties, an old topic where Algebraic Geometry and Local
Algebra overlap between them; a classical representation, not easy to read, is
[Roo37] 8; a more modern presentation is the chapter 20 of [Eis95] 9

In the analytical approach (Whitney) the comparison between limits of tan-
gent lines ` = txX or tangent k-subspaces TxX at regular points of each stratum,
and the “control” of their evolution is performed by imposing like-Lipschitz con-
ditions involving the evolution of secant spaces. These conditions are feasible
because the Grassmann manifolds appearing in both cases (secant and tangent
spaces) are compact spaces. However, incidence conditions along different paths
in the corresponding Grassmann manifold vary according to a Schubert cycle
(making part of the cellular decomposition) where one takes the path (this idea
is implicit in [Tho56]). Their dual version is formulated in terms of characte-
ristic classes (Stiefel-Whitney vs Chern) depending on the base field (real vs
complex).

In local terms, it is necessary to make a control of the intersection dimension
of subspaces appearing when one takes limits. A solution consists of considering
“all possibilities” of intersections between k-dimensional subspaces. They can be
described in terms of the monoidal transformation of the product Grass(k,N)×
Grass(k,N) with center on the diagonal ∆G ' Grass(k,N). As a result, one
obtains the Secant Variety. Nevertheless its synthetic character, this approach
disregards richer structure involves the internal structure involving properties
depending on the dimensionality of intersections. To remediate it, one introduces

7 A.Grothendieck and J.Dieudonne: Elements de Geometrie Algebrique, GMW, Springer-
Verlag, 1973.

8 T.G.Room:The Geometry of Detrminantal Loci, Cambridge Univ. Press, 1937.
9 D.Eisenbud: Commutative Algebra with a View to Algebraic Geometry, GTM 150,

Springer-Verlag, 1995.
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complete flag manifolds playing a universal role w.r.t. intersections 10.

The main contribution of these notes is the use of Flag manifolds B(r1, . . . , rk)
of nationality (r1, . . . , rk) corresponding to a partition of N as “universal spaces”
for strattified spaces and their applications to represent multiple hierarchies. The
usual superimposed structures on B(r1, . . . , rk) given by tangent, cotangent and
tensor bundles provide general patterns to represent complex behaviors in stra-
tified media.

A formal advantage of this approach consists of the minimal character of
the complete flag manifold B(1, . . . , 1) and the splitting result for its tangent
bundle as sum of line bundles on B(1, . . . , 1). This result makes possible the de-
coupling of linear systems on the complete flag manifold (see part III of [Bot82]
for a proof). Unfortunately, the result is not true for “intermediate” partitions.
Hence, a tupical strategy for solving a problem in a stratified spaces X consists
of reformulating in terms of osculating flags, remap on the complete flag mani-
fold to solve it (by using splitting methods), and pull-back to intermediate flag
manifolds.

0.2.2. Morse Stratified Theory and beyond

Classical Morse Theory develops a constructive approach to the topology
of any compact smooth manifold M by “attaching cells”. A k-dimensional cell
(eki , ∂e

k
o) is a pair homeomorphic to the pair (Dk,Sk−1) where the (k − 1)-

dimensional sphere Sk−1 is the boundary ∂Dk of the k-dimensional disk Dk.
The dimension k of the cell to be attached depends on the signature of the
quadratic form given by the Hessian Hess(f) of a Morse function, i.e. a function
f : M → R whose only singularities are non-degenerate critical points (i.e. the
Hessian has maximum rank equal to m). The tangent bundle τM is described
in terms of the gradient vector field ∇f , and this description provide the nexus
with the simplest applications to other scientific and technological areas.

The above reasoning scheme is of conservative type, i.e. one supposes there
exists once a function defined on a smooth manifold M or the Phase space
P whose first variation rates (given by its differential or the gradient field)
explains the Kinematics or the Dynamics of a system. Typical examples are
given by the height for objects or the depth for static scenes, the energy or any
other Hamilton function H : P → R on the Phase space P = TM , or any other
Lagrangian (curvature functionals corresponding to second order variation rates,
e.g.) to be minimized along possible trajectories according to “connections” on
the underlying structure.

However, most systems are not conservative and non-integrable; very often
one ignores the nature of the support X (it is a PS-manifold in the best case),
one has not information about internal forces acting one the system, there ap-

10 In the part II of my Ph.D. (Valladolid, 1983, non-published) there appear more details
involving linear subspaces, which can be extended in a relatively easy way to modules on a
ring.
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pear singularities at each mechanical level (Geometry, Kinematics, Dynamics),
and they can display a different behavior depending on the scale and possible
singularities. Thus, it is necessary a more flexible approach than conservative
systems able of integrating not only the diversity of maps germs A44, but all the
richness of interactions between different components, and the corresponding
bifurcations for partially unknown dynamical systems A46.

Along this module A45 one develops several strategies to include quasi-static
approaches to an eventually singular support X and superimposed structures
(beyond vector bundles or sheaves, e.g.). To be more effective, one supposes that
singularities involving objects and maps are not “too bad”, i.e. their differential
has low corank, and one has information about generic types appearing in a small
neighborhood of singularities giving information about propagation phenomena.

Stratified Morse Theory provides a first framework, fulfilling the above con-
ditions. In despite of its name, relations with classical Morse Theory are weak.
To start with, the support is not a smooth manifold M but an eventually sin-
gular variety X. The decomposition of X is not performed w.r.t. the gradient
field ∇f of a Morse function, but w.r.t. the discriminant locus Discr(F ) of a
vector map F . The reconstruction of X is not a cellular complex (nor even a
CW-complex as in Geometric Topology A24), but a collection of Tangential and
Normal Morse Data to be matched by using the information of an evolving sin-
gular support. A systematic treatment for these issues is developed by Goresky
and R.Macpherson from the early 1980s [Gor88].

A typical example to have in mind correspond to the well known family of
curves y2 − tx2 − x3 = 0. Away from t = 0 it can be represented as a nodal
curve which degenerates in cusp curve for t = 0. Hence, the resulting surface
in the (x, y, t)-space has a double curve of a surface whose orthogonal sections
to the axis Ot display an evolving simple singularity. For each t < oneq0, the
tangent cone is given by two transversal lines which coalesce in a double tangent
for t = 0. The stratification is given by once a point (the origin), separating two
half-lines (positive and negative parts of the Ot axis) and the complementary
pieces of the surface. Tangent Morse Data (TMD) along the singular case are
given by a (half)line, whereas Normal Morse Data (NMD) are given by two lines
coalescing in a double line at the origin. According to the Thom’s approach, the
corresponding attaching maps are given by local submersions. More details are
given in the §1,4

Classical Morse Theory provides a method for computing the homology of a
compact smooth manifold M from the cellular decomposition linked to a Morse
function. Similarly, the Stratified Morse Theory introduces methods and tools
for computing the Intersection Homology of a singular variety X with a “good
stratification” (fulfilling Thom-Whitney conditions, e.g.) from TMD and NMD
which play a similar role to cell complexes in the classical case. An advantage of
this approach consists of its compatibility with changes of state in M or phase
transitions in P = TM given as singularities of any kind of fields (vector maps,
distributions of vector fields, systems of differential forms) making part of the
tensor algebra with the corresponding local symmetries.
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All of them are considered as different kinds of tensors defined on the even-
tually singular support X. Thus, behaviors involving them can be described in
terms of (maps between) filtered algebras; in our case, they are approached by
using the dual (tensor algebras) of generalized flag manifolds by using simple
properties linked to representations of the symmetric and alternating groups (in
correspondence with Invariant Theory in Algebraic vs Differential Geometry).
The introduction of supersymmetries on the associated superalgebras has been
performed in an overlapping of Theoretical Physics and Algebraic Geometry
along the late 1980s. A small introduction can be read from the chapter 7 of the
module A33 (Sheaves, Cohomology, Schemes). The last section of this chapter is
devoted to illustraate several adaptations of this approach to some Engineering
areas which are developed in the part II of these notes.

0.2.3. From estimation to generation

All the above paragraphs have a theoretical character and follow a top-down
approach. When one tries of adapting some of the above ideas to other scientific
and technological areas there appear a lot of non-trivial problems. Experimental
data can have a static, mobile or interacting nature; thus, a first hierarchy for
evolving data involves to the weak stratification of Mechanics in their Geometric,
Kinematic and Dynamic levels. Typical examples involve to traffic scenes or
interacting agents. The problem is how can learn the underlying models?. In a
more formal setting, how to generate different hierarchies in a semi-automated
way which can be understood by an artificial device?

In AI (Artificial Intelligence) the SOM (Self-Organizing Maps) [Koh97] pro-
vide an unsupervised approach to learning subspaces Lk by successive submer-
sions reducing information. Along the part II we develop several tools for the
automatic generation of meaningful subspaces which are applied to Computatio-
nal Mechanics of Continuous Media B1, Computer Vision B2, Robotics B3 and
Computer Graphics B4. To develop this proposal it is necessary to specify a
local stratification (involving morphological and functional aspects), consider
multiple paths on the support (integral curves of vector fields belonging to a
distribution D), and introduce multiple constraints (covectors) involving them
(integral hypersurfaces belonging to a system S). More details appear in the
section 4 of this introductory chapter.

In bottom-up approaches, problems appear from the beginning because one
must work with vectors linked to discrete differences of data corresponding to
partially unknown models to be identified. Very often their distribution is non
uniform, including different densities with different distributions. Data mining
provides tools for clustering, but one must design and implement strategies for
clustering according to different similarity criteria. Each one of them gives a
“hierarchy” depending on clustering criteria for “quantities”.

One can use topological, metric, differential or analytic criteria for clustering.
In our approach we prior vector-based approaches which are generated in an
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automatic way by using first-order variation rates between data of the same type;
their space-time variation provides the inputs for Hidden Markov fields as a first
step for data-driven models. Linear forms defined on vectors provide covectors,
whose evolution in the ambient space-time provides a formal analogue of PS
differential forms in the statistical framework. In our approach, we introduce a
formal description of higher order central momenta to recover more meaningful
information than linear forms of Hidden Markov Fields (see the section 3 of this
chapter for additional information).

Multivariate Statistics of k quantities involves to the simultaneous estimation
of (a discrete version of) k-dimensional subspaces which are ideally represented
by multivectors. Thus, in our approach statistical Grassmannians play a central
role in multivariate statistics. The computational management of redundant
information is performed in terms of matroids, which are given by rectangular
matrices of size k × N where one stores eventually redundant information to
be cleaned in later stages. Again, these rectangular matrices can be interpreted
in terms of Grassmannians Grass(k,N) which provide structural models for
managing vector and covector information.

The use of “projections” (in fact submersions for the curved case) minimizes
the redundancy. Linear Optimization issues are solved in the Grassmannian
representing subspaces to be learned in terms of geodesics w.r.t. the Cramer-
Rao distance on the space of parameterized pdf (probability density functions).
Nonlinear Optimization requires more advanced techniques based on the use of
higher order central momenta as functionals (not as scalar functions which is
the most usual approach).

In the top-down approach first-order hierarchies involving variation rates of
“clustered quantities” (multi-vectors and multi-covectorss) are reformulated in
terms of conormal sheaves (as the extension of tangent bundles of the smooth
case) or in terms of Jet Bundles from a functional viewpoint. The problem is
how can be estimated; in more down-to-earth terms, how to estimate “subspa-
ces” (as naive version of subalgebras, e.g.) or differential functionals on them. It
is almost obvious that one must use r-th order finite differences w.r.t. a “central
value” (mobile k-means), and introduce clustering criteria for the corresponding
central momenta to find “hidden structural relations”. Let us remark that fi-
nite differences require some kind of parametric representation of (geometric,
radiometric, physical, chemical, economic) data. Thus, we will restrict oursel-
ves to locally parameterizable spaces, including their corresponding probability
density functions (pdf).

In our approach, the usual numerical approach to the computation of central
momenta is replaced by a symbolic computation of the corresponding tensors.
Tensors can be generated in an automatic way by using Tensor Voting strategies.
The idea is very simple and can be described in a sequential way as follows: O

1. Identify the minimal number of evolving vectors and covectors which are
meaningful for the process

2. Introduce a generator of hypotheses with varying (stepped decreasing and
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increasing) weights for the structure tensor

3. Adapt Sampling Consensus strategies for each tensor,

4. Validation (acceptation vs rejection) of the proposed tensor.

5. If the tensor is rejected, transform it according to contraction and expan-
sion techniques for adjacent tensors according to the poset structure of
Tensor Algebra.

Tensor Flow methods in Deep Learning [Goo16] provide the support to es-
timate transformations between tensors for each “regular piece” of tensors re-
presenting “aggregate quantities” represented by multivectors under evolving
constraints (ovectors or differential forms in the smooth case). The variability
of the dimension of vectors and covectors suggests the use of pairs of flags re-
presenting their aggregates.

To simplify the management and develop decoupling strategies, we restrict
initially to complete flag manifolds linked to vectors and covectors. Their com-
binatorial management is performed in terms of representations of the symme-
tric group (for their structure as poset) and the alternating group (for internal
duality relations). Thus, possible degenerations involving dependence relations
between sections (locally controlled in terms of limits of tangent spaces in Whit-
ney stratifications, e.g.) are managed in terms of complete models for symmetric
and skew-symmetric forms representing quadrics or elements of a Grassmannian.
Their completion (different kinds of compactification) are interpreted again as
flag manifolds representing contact conditions on each one of the above spaces.

0.2.4. A short description of the module

Furthermore the introductory chapter, the module A45 contains the following
chapters:

1. A Differential approach to Stratifications which starts with Ehresmann’s
Fibration Theorem and develops the Thom’s approach based on corank
stratification, relations with Schubert cycles of Grassmannians and its
applications to manifolds having finite CW-complexes

2. Algebraic aspects where one exploits differential aspects in terms of Fitting
ideals for determinantal varieties, and one constructs an algebraic version
of relative tubular neighborhoods for adjacent strata.

3. Analytic stratifications where one introduces Whitney’s conditions to avoid
constraints linked to proper maps, in terms of geometric conditions invol-
ving limits of linear subspaces. This approach provides some connections
with deep issues in GAGA (Algebraic Geometry Analytic Geometry) de-
veloped in A33.
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4. Extending geometric stratifications to semialgebraic and semi-analytic va-
rieties, which allow the extension to boundaries of adherences, which pro-
vides the support for attaching maps as new topological framework.

5. Stratifications in GAGA with a reformulation of Polar Varieties as the
main tool for an intrinsic study of the Discriminant Loci of maps and
higher contact conditions.

6. Stratified Morse Theory where one uses Tangential and Normal Morse
Data as basic pieces to describe singular stratifications. Homology Inter-
section Theory provides the framework to compute invariants.

7. Stratified fibrations where one extends the original Ehresmann’s approach
to stratified Cr-maps specially in regard to equimultiplicity and equisin-
gularity for families of maps.

8. Some applications to Natural and Social Sciences where stratifications in-
volve to the ambient space for Dynamics, which is given by the conormal
space CP for the Phase space P (corresponding to Kinematics) as a na-
tural generalization of TP . Equivariant stratifications provide a support
for some interesting propagation models in different kinds of (bi)stable,
excitable, oscillatory and active media which will be developed with more
details in A46 (Dynamical Systems).

9. Stratifications in Engineering with a special regard to stratifications in
Computational Mechanics of Continous Media B1, Computer Vision B2,
Robotics B3 and Computer Graphics B4. A more detailed treatment of
these matters will be developed along the part II of these notes.
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[Loj93] S.Lojasiewicz Árbol and M.A. Zurro Moro: Una introducción a la

geometŕıa semi- y sub-anaĺıtica, Univ. of Valladolid, Valladolid, Spain, 1993.



20

[Mat73] J.Mather: “Stratifications and Mappings”, in Dynamical Systems,
M.M:Peixoto, ed., Academic Press (1973), 195-223.

[Shi97] M.Shiota: Geometry of Subanalytic and Semialgebraic Sets, Birkhau-
ser, PM 150, 1997.

[Tho56] R.Thom: “Les singularités des applications différentiables”, Annales
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As usual, sections, subsections or paragraphs marked with an asterisk display
a higher difficulty and can be skipped in a first lecture. Each chapter ends with
a recapitulation including conclusions, practices, challenges and references.

Final remark: Readers which are interested in a more complete presentation
of this chapter or some chapter of this module A45 (Stratifications), must write
a message to franciscojavier.finat@uva.es or to javier.finat@gmail.com.


