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Previous remarks: These notes corresponds to a short version of the intro-
duction of the module A44 (Singualr map-germs) of the matter A4 (Differential
Topology). From the mathematical viewpoint, it is necessary to have some basic
knowledge for Groups and Commutative Algebra, General Topology and Basic
Differential Topology.

As usual, furthermore this introduction materials are organized in four sec-
tions. Subsections or paragraphs marked with an asterisk (∗) display a higher
difficulty and can be skipped in a first lecture.
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0.1. Introduction

Regularity hypotheses are too strict about “objects” (PL or PS manifolds,
varieties, e.g.) and maps between them. To include shape and behaviour changes,
it is necessary to incorporate singularities as “natural” parts of evolving models.
The simplest examples for “behaviours” on vector spaces appear already for
linear maps ϕ : V n →W p between vector spaces, including endomorphisms ϕ ∈
End(V ) of the whole space, which are classified by the rank of the representative
matrix.

A linear map ϕ : V n → W p between two vector spaces on a field K of
dimensions n and p, respectively, can be classified in terms of

The double conjugacy class by the A = R×L-action (right-left) of GL(n)×
GL(p) acting by double conjugacy K−1MϕH for each pair (H,K) ∈ A of
reglar transformations acting on the pn-dimensional space Mϕ of matrices
representing ϕ after fixing a basis.

The action preserving the graph Γ(ϕ) := {(v, w) ∈ V ×W | w = ϕ(w)}.

Both actions are extended initially to Euclidean, Affine and Projective spaces
with the usual formalism for each one of them. More generally, they can be
adapted to the tangent map given by the differential dxf : TxN → Tf(x)P
(represented by the Jacobian matrix) between tangent spaces for a differentiable
map f : N → P between manifolds A : 11. A similar argument is applied in the
GAGA framework for the differential dxf : ΘX,x → f∗ΘY,y (or preferably, its
dual) of the map f : X → Y .

Along this module, we extend the precedent construction to the spaces
Cr(n, p) of maps f : (Kn, 0) → (Kp, 0) representing germs [f ] : (N, x) → (P, y)
of class Cr for the usual geometric cases corresponding to r = ∞ (Differential
Geometry), r = ω (analytic case), and r = rat (algebraic case). We will suppose
that the base field is given by the real numbers R or the complex numbers C,
to ease their geometric or analytic interpretation.

If we take in account the geometric approach (linearization), the first non-
trivial problem consists of characterizing the tangent space TfC

r(n, p) at f ∈
CPr(n, p). The extension of the linearization approach to higher order deriva-
tives is performed in terms of k-jets spaces Jk(n, p) introduced in the chapter 2
of A41 (Basic Differential Topology).. The main issues concern to

the classification of map germs up to Cr-equivalence corresponding to
r =∞ (diffeomorphism), r = ω (bianalytic transformations) and r = arat
(birational transformations);

the identification of canonical forms w.r.t. some B-action of Cr-equivalences;

the description of general deformations including singular map-germs of
the same “type”;
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the development of computationally effective methods for each one of the
above models..

The foundations and main results of this theory were developed between late
fifties and eighties of the 20th century; some of the most prominent authors are
R.Thom, J.Matter, V.I.Arnold and C.T.C.Wall between others.

Since we are working with maps f ∈ Cr(n, p), groups of Cr-transformations
are given by (decoupled vs coupled) pairs of actions extending the right or R-
action developed for function germs in the precedent module A43. The corres-
ponding actions are the natural extensions of those appearing for linear maps
ϕ : V n → W p between vector spaces. In other words, they are given by the
A = R × L or right-left action of Cr-equivalences acting on the source and
target spaces, and the K-equivalence “preserving the graph”.

Along this module we are mainly interested on the cases r = 0 (topological
equivalence), r =∞ (differential equivalence) and r = ω (analytical equivalence
for map germs f : (Xn, x)→ (Y p, y)) between Cr-spaces. These actions provide
the starting point for the topological, differential and analytical classification.
The “basic strategy” consists of extending the “degree reduction” of f performed
in the precedent module. Now, the reduction involves to k-jets jkf of f for
enough large k, where jkf = (jkf1, . . . , j

kfp) being (f1, . . . , fp) the components
of f .

To “give shape” to this idea, one needs to develop explicit simultaneous
reduction strategies for all the components fi of f . A first approach (too rigid
from the topological viewpoint) consists of simultaneous reductions depending
on the value of the “determinacy degree” k . A first naive approach consists of
interpreting the components fi of f as the generators of an ideal, and suppose
all of them have the same degree:

1. For k = 1, we would have the linear classification corresponding to the li-
near map given by the differential dxf locally represented by the Jacobian
matrix of f . By the Implicit function Theorem, this case is an extension
of arguments given in Linear Algebra. They can be interpreted as “arran-
gements” of hyperplanes (lines in the 2D case). Possible degenerations are
“controlled” by nested subspaces as elements of a Flag Manifold.

2. The following case corresponds to k = 2 where hyperplanes are replaced
by hyperquadrics. It involves to the simultaneous classification of pencils
(easy), nets (more involved), webs (non-trivial), ..... of quadrics. The va-
riety of secant spaces to the projective space PN of quadrics in Pn and
their possible degenerations in terms of the variety of “complete quadrics”
provides a geometric interpretation [Fin83].

The problem becomes much more intrincate when we allow higher degree
polynomials, where mixed multi-degrees can be present giving a lot of “patho-
logies”. This simple remark motivates the development of more powerful topo-
logical strategies involving not only determinacy, but Cr-stability by the action
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of Cr- equivalences for r = 0 (topological case), r = ∞ (differential case) and
r = ω (analytical case) as the main cases to be studied.

Stable maps play a fundamental role in the differential case. roughly spea-
king, if s(n, p) is a function representing the codimension in a sufficiently large
jet space Jk(n, p), and n < s(n, p), then stable maps are dense in C∞(n, p).
This result is due to J.Mather (1970) and determines a region called the “nice
dimensions”. In particular, it explains the “good behaviour” by deformations of
“ordinary singularities” appearing in Classical Algebraic Geometry. Furthermo-
re, it opens the door for the analysis of moduli spaces in these regions, and a
more detailed analysis for boundary or outdoor regions beyond the nice dimen-
sions.

s

To summarize, the study of the singularities of maps is the natural extension
of the methods presented for functions A43, where one replaces function germs
by map germs [f ] of maps f ∈ Cr(n, p). The main cases correspond to the
differentiable case f ∈ E(n, p) or analytic f ∈ O(n, p). Local Algebra provides
a unified language to address both cases simultaneously. Remark that analytic
maps can have several branches, and that differentiable maps are not necessarily
analytic ones (flat functions).

The fundamental problems to be solved in regard to classification issues
are characterization (in terms of invariants), classification (including canoni-
cal forms), construction of non-necessarily universal “foldings” (versal defor-
mations) and analysis of the different types of stability. To do this, different
B-equivalence relations are introduced where B extends the R-equivalence on
the right, and the L-equivalence on the left, in terms of the A-equivalence where
A = R×L (right-left equivalence), or the K-contact equivalence (linked to the
graph oreservation).

The classification is effective for finitely determined maps, i.e. map-germs
[f ] which are B-equivalent to its k-jet jkf ∈ Jk(n, p). This strategy can be un-
derstood as a non-linear dimensionality reduction (NLDR), which is ubiquitous
in applications, including some recent developments in Artificial Intelligence. In
our case, NLDR techniques are relative to a “projection” on a graded algebra,
which allows the introduction of hierarchies for adjacencies between B-orbits.

The central algebraic result [Bru86] for k-determinacy (i.e. the equivalence
w.r.t. a truncated Taylor development) is the unipotency of the group action
“stabilizing” the B-orbit. The explicit computation of the corresponding unipo-
tent group is a very hard problem. By this reason, one computes the nilpotent
Lie algebra Uf of the unipotent group Uf for the finitely determined map-germ
[f ] extending the approach performed for function germs developed in the pre-
cedent module A33. Explicit computations are performed by hand for some
examples. It would desirable to have a computational version.
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0.1.1. Stability

From the 19th century, it is well known that generic projections of algebraic
curves C ↪→ P3 (resp. surfaces S ↪→ P5 with center a line `) give ordinary singula-
rities on P2 (resp. P3. Futhermore, “small perturbations” of generic projections
of curves and surfaces give ordinary singularities, again.

Similar arguments can be applied for generic singularities of non-regular
maps between spaces of the same dimension by using methods based on “small
perturbations” (obtained by integrating vector fields, e.g.). These methods are
widely used in Applied Sciences and Engineering. However, they have not a “uni-
versal validity” and require a rigorous foundation. The first systematic treatment
is due to H.Whitney (1955), who formulated a temptative conjecturee about
the density of stable maps in Cr(n, p). R.Thom gave the first counteerexample
(1959), and posed several conjectures which required more formal developments
of equivalence relations on Cr(n, p) for classificaiton issues.

The classification of maps f ∈ Cr(X,Y ) by Cr-equivalences is performed
in terms of some subgroup of the group of homeomorphisms preserving a point
acting on source and target space of f . An explicit description of the resulting
B-orbits in Cr(n, p) is a hard problem for p ≥ 2. However, the introduction of
“constraints” linked to geometric structures makes the problem more afforda-
ble and shows their interest for a lot of applicatioins in Natural Sciences and
Engineering.

In particular, diffeomorphisms preserving a metric, symplectic, or a con-
tact structure can be applied to different problems in Riemannian Geometry,
Analytical Mechanics or Dynamics, by preserving orthogonality, Lagrangian or
Legendrian manifolds as solutions of the corresponding systems of equations.
All of them can be applied to phenomena linked to waves propagation and in-
teractions in non-necessarily homogeneous or isotropic media. So, singularities
of solutions would correspond to “irregularities” in the distribution of matter,
their evolution rates and interacting forces or momenta.

The precedent remarks are linked to “observability” of phenomena in terms
of data. In several modules of the part II, one makes a more systematic ap-
proach for the modelling the “emergence” of data structures from Data Mining
B11 (Computational Mechanics of Continuous media), the generation of PL-
structures for linking them in B12 (Computational Algebraic Topology), and
their “regularization” in PS-structures to simplify their management in B13

(Computatoinal Differential Topology).
In all cases, observability is linked to “some kind of stability” in despite of

qualitative shape changes or sudden “events”. In other words, one detects “stable
patterns”, even instantaneous transitions can not be detected. Typical examples
appear in traffic scenes, where the kinematics of traffic flow uses techniques of
motion analysis B23 of computer Vision B2, to provide the inputs for Automatic
Navigation B32 in robotics B3. They are crucial for simulation and animation
B44 in Computer Graphics, and for the generation of interactive evolving 3D+1d
scenes for semi-automatic learning in recent AI developments.
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The simplest non-trivial stable models for Cr-maps were developed by H.
Whitney [Whi55] 1, who proves that folds and cusps appear for f ∈ C∞(2, 2)
and proper smooth maps R2 → R2 can be approached by stable maps. This
article can be considered as the starting point for the singular map-germs.

R.Thom (Bonn, 1959) disproved the original Whitney’s conjecture about the
density of stable maps, and posed the need of identifying the values of (n, p) such
that the stable maps Sr(n, p) are dense in Cr(n, p) with the Whitney topology.
The characterization of the region corresponding to allowed values for (n, p)
fulfilling the density property was performed by J.Mather (1965-1975), who
introduced different notions of stability (topological, differential, infinitesimal),
and a formal construction for the tngent space TfC

∞(n, p) in terms of the so-
called “homological equation” (by V.I.Arnol’d).

The extension of the original viewpoint (due to H.Whitney and J.Mather)
to families of maps ft ∈ C∞(2, 2) includes different kinds of “degenerations”
for the discriminant curve corresponding to profiles of apparent contours (for
smooth transparent surfaces). They are useful to image understanding purposes
corresponding to different views of the same object (linked to partially overlap-
ping views from near camera’s localizations) or to track mobile objects for video
sequences (real or apparent motion).

A general strategy to obtain equivalence relations able of detecting and relate
deep properties of map germs f ∈ Cr(X,Y ). Typical “examples’ of subgroups
of homeomorphisms r = 0, are given by differentiable maps r = ∞, analytical
maps r = ω and birational maps r = alg. Each one of them provides the support
for Differential Geometry, Analytic and Algebraic Geometry, respectively. We
start, by remembering a coarse characterization of stability.

Let X be a topological space, and let ∼ be an equivalence relation on X. An
element x ∈ X is said to be stable if the equivalence class of x under ∼ is an
(open) neighbourhood U of x.

There are different notions of stability going from the coarsest topological
descriptions to finest infinitesimal vs analytical stability. All of them are based
on the existence of a neighborhood of B-equivalent Cr-maps for f ∈ Cr(n, p).
The most important cases are labeled as

Topological stability for r = 0 stability (General Topology).

Differential stability for r =∞ (Differential Geometry).

Analytical stability for r = ω (Analytical Geometry).

Algebraic stability which is reformulated in terms of Moduli Thoery (Al-
gebraic Geometry).

Relations between Cr-invariants are very meaningful to understand relations
between different approaches to the classification problem. They allow to rein-
terpret relations between B-orbits in Differential Topology and properties of

1 H.Whitney: “On Singularities of Mappings of Euclidean Spaces. I. Mappings of the Plane
into the Plane”, Annals of Mathematics Vol. 62, No. 3, 374-410, 1955.
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moduli spaces in GAGA, e.g.. This kind of results is an extension of formulae
linking Milnor number for hypersurfaces and algebraic invariants. Typical exam-
ples appear in regard to the use of projective characters of algebraic surfaces
with topological invariants of Cr(2, 3) in the complex case .

All materials developed along this module correspond to the local case, with
some sporadic extensions to the multi-local case in terms of multgerms. The
main problem is to give effective criteria to warrant the above stability criteria.

0.1.2. Deforming singular map-germs

Deformations appear in a lot of mathematical areas and their applications
to other knowledge areas. If one starts with an algebraic, analytic or differential
local expression, variatioin of coefficients provide a first coarse approach to the
description of the simplest deformations. More formally,, one can apply scalar,
vector, covector or tensor fields to local descriptions involving the morphological
or functional aspects linked to the “shape” or different kinds of “behaviours” in
the ambient space, including interactions with themselves or the environment.

Deformations can involve to local or global aspects of the support (manifolds
or varieties, e.g.) or the superimposed structures defined on them. The simplest
cases correspond to first-order deformations which are performed in the tangent
space for

smooth manifolds in terms of TxM for the preservation of Riemannian,
Conformal or Symplectic structure, e.g.;

algebraic or analytic varieties in terms of ΘX,x including the analysis of
possible dgenerations and different kinds of “completions” in regard to
classification issues;

first order approaches to map germs in terms of TfC
r(n, p) for differen-

tiable r = ∞ or analytic r = ω map-germs, as the central topic for this
module A44.

This viewpoint is extended to the algebraic case, where first-order one-parameter
deformations linked to a parameter ε are formally described described in terms
of k[ε]/ε2. called “dual numbers” in the formal approach to deformations (in
terms of local algebras).

In addition of the support X, deformations are applied to superimposed
structures which affect to the resolution of systems E of equations corresponding
to the local form (given by sections, typically) of bundles, sheaves, or fibrations,
between other. In particular, deformations appear in regard to

PS-manifolds linked to tensor fields A13 for deformable multilinear struc-
tures. They are crucial to ealuate the “rigidity” of Riemannian manifolds
A16 with constant curvature, e.g..



8

PL-structures in Geometric Topology A14 in regard to coverings or, al-
ternately, (resolution of) graded complexes, where the Cohen-Macaulay
character of determinantal varieties plays an essential role to recover va-
rieties with the same character.

Algebraic Curves to formalize old arguments of “families of curves” (used
by Italian geometers), and in regard to Moduli theory in the context of
schemes.

Algebraic Surfaces A35 for analytic classification issues (Kodaira-Spencer)
extending the Enriques’s proof). in terms of infinitesimal deformation gi-
ven by the (co)normal space to ΘS,s.

Quasi-Projective varieties A32 in regard to the description of the tangent
space ΘX,x of families parametrized by a connected complex manifold S on
the first cohomology group of ΘS,s extending the approach performed for
surfaces. The corresponding constructions is given by the Kodaira-Spencer
map introduced originaly for surfaces.

G-structures linked to principal bundles G→ BG → X in A42, where BG

consists of all G-frames on X, to evaluate if a deformation of an integrable
G-structure is integrable or not.

Unfoldings of simple singularities for singular function germs A43 in regard
to the “evolution” of critical loci for A−D−E singularities, to be extended
to foldings of the Discriminant Loci for families of map germs f ∈ Cr(n, p).

Furthermore, they appear in a lot of areas of Natural Sciences (Physics,
Chemistry, Biology) and Engineering (Mechanical, Civil, Materials, e.g.). Some
of them are revised in the four modules of the part II (Geometric and Topological
methods in engineering) of these notes devoted to Computational Mechancis of
Continuus media B1, Computer Vision B2, Robotics B3 and Computer Graphics
B4, which have been introduced in the chapter A406.

Other applications to deformations will be developed in the next modules
corresponding to Stratifications A45, and Dynamical Systems A46, whose dis-
crete versions are developed in the part II. The diversity of objects, maps, and
superimposed structures gives a large diversity of methods to be applied. Hence,
it is very difficult to give an overview of deformations and their applications.
By this reason, we limit ourselves to a topologicla approach in the differential
framework.

From the topological viewpoint, equivalence classes appearing in the clas-
sification under Cr-equivalence of objects, maps, superimposed structures and
morphisms between them, can be onsidered as some kind of Cr-deformatioins.
Their local description in trms of locla algebras, poses the probleem of develo-
ping a formal theory of deformaitons involving local algebras, which is sketched
in the chapter 4.

In this module, we adopt a more down-to-earth viewpoint for map germs
in infinitesimal terms for the their tangent space Tf (Bf) to the B-orbit Bf
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of a finitely-determined map germ f . Its characterization by J.Mather gives a
differential equation calle the homological equation (J.Mather) for the tangent
space Tf (Bf). It can be applied to analyze the questions of stability and versal
deformations in regard to classification issues which are commented in the next
paragraph.

0.1.3. Classification issues

Classification of map-germs f ∈ Cr(n, p) up to B-equivalence uses a mix-
ture of topological, algebraic and differential methods. We restrict ourselves to
finitely-determined map germs, which allow a reduction to finite-dimensional
cases in terms of k-jets spaces Jk(n, p), where k is the order of finite deter-
minacy. Initial B-actions defined on Cr(n, p) in terms of Cr-equivalences, are
adapted to their k-jets Jk(n, p) by using k-jets of diffeomorphisms (or their
natural extensions for bianalytic transformations).

Local methods for singular map germs are the natural extension of the Lo-
cal Algebra methods presented for function germs A43 to differentiable maps
f ∈ E(n, p) or analytic maps f ∈ O(n, p). Each one of them is a local mo-
dule on the local ring E(n, 1) of differentiable functions, or analytic functioins
O(n, 1), respectively. In particular, Commutative Algebra provides an initial
unified language to address both cases simultaneously 2. We will denote by
means mn = (x1, . . . , xn) the maximal ideal w.r.t. local coordinates centred at
each point, corresponding to differentiable or analytic map-germs at the origin
0 ∈ Kn

Some of the most main algebraic problems to be solved are

algebraic characterization in terms of K-algebras;

classification of k jets up to B-equivalence;

identification of canonical forms and computation of invariants;

construction of “foldings” (versal deformations); and

analysis of the different types of (in)stability.

For this, the algebraic approach based on double conjugation is extended to
the topological approach. More explicitly, different B-equivalence relations are
introduced that affect the source or target spaces, or alternatively, the graph Γf

of f . More explicitly, B is the R-equivalent to the right, the L-equivalent to the
left, the A- equivalence where A = L ×R or the K-contact equivalence (graph
preservation).

This viewpoint can be extended to the global case, by taking a morphism
ϕ : E− → F of superimposed structures on the Cr-map f : N → P . The

2 Methods of Homological Algebra are very useful in more advanced developments, including
projective and injective resolutions of modules, also.
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superimposed structures are locally interpreted in terms of systems of equations
such as distributions D of vector fields, differential systems S of covector fields,
or their multilinear products in terms of tensors, e.g. This viewpoint has been
developed in the module A42.

The incorporation of higher order differential operators is initially formulated
in terms of the space of k-jets JkE given by k-jets jks of sections s : U → E |U
of E → N as usual. One can develop a formalism similar to the one that
appears in Sheaves theory A33 for covariant aspects. Alternately, from thee
GAGA viewpoint, one can use sheaves of principal parts ⊕k≥0(Ik/Ik+1) as the
analogue of Taylor development for an Ideal I of a Module 3

The classification is an extension of the one developed for functions germs. In
particular, the corange of the Jacobian matrix associated with the linearization
dxf in p of f : (Kn, x)→ (Kp, f(x)) provides a first criterion; next, consider the
codimension of the B-orbit Bf of the germ f ∈ Cr(n, p) in x ∈ Kn. To fix ideas,
we can assume that (x, y) ∈ Γf is (0, 0.

Beyond an endless catalog of different “pathologies” that are increasingly
“more improbable”, the classification of singularities reveals the morphological
and dynamic hierarchies that occur in Analytical Mechanics. Arnold’s approa-
ches on the one hand, and Marsden-Weinstein’s on the other, show deep con-
nections related to the structure of the projections, on the one hand, and the
locally symmetrical character of the moment map, on the other. Issues rela-
ted to equivariant stratifications for analytic varieties are addressed in the next
module. Therefore, in this module the focus is on Arnold’s approach and his
extensive area of influence (beyond the Moscow and Leningrad schools).

In a very simplified way, we can think of the Lagrangian submanifolds (resp.
Legendrian) as maximum dimension solutions of the Hamilton-Jacobi equations
in even dimension (resp. odd) which are the structural equations of Analytical
Mechanics. This first approach is useful for kinematic issues (involving simple
motions or waves propagation, e.g.), but it is not enough for more advanced
dynamical issues involving the interaction between agents (in terms of forces
and momenta, e.g.).

From the dynamic point of view, its elevation to the cotangent bundle with
its symplectic structure (contact resp.) provides a more natural representation
in terms of wavefronts, as well as a visualization of the singularities that appear
when projecting said varieties onto space. base. 4

3 A more sophisticated approach is developed in the module A45 (Stratifications) in terms
of D-modules.

4 This visualization is especially significant for applications related to Robotics (automated
navigation of autonomous vehicles) or Computer Vision (recognition of objects from their
envelopes), e.g.
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0.1.4. Some applications

Singular map germs are ubiquitous in almost all knowledge areas. If we adopt
the mechanical viewoint, they correspond to

changes of state in the ambient space X initially given by a PS manifold,
later by a stratified space;

phase transitions in some model for the ; space P (Poincaré) given by the
tangent bundle ΘX,x (or its dual); and

dynamical changes involving complex interactions expressed in terms of
higher order differential operators in the Euler space E modelled as

All of them are locally described by singular map germs [f ] : (N, x)→ (P, y),
which are locally described in terms of f : (Rn, 0) → (Rp, 0) for local systems
of coordinates centred at each pair (x, y) ∈ Γf ⊂ N ×P of points at source and
target spaces, where Γf is the graph of f .

The first order approach is given by the differential dxf which is locally
desribed by the p×n Jacobian matrix Jac0(f). For higher order derivatives, it is
convenient to adopt a description based on k-jets jkf defined by jkf1, . . . , j

kfp),
where f1, . . . fp are the components of f . This formalism is naturall extended to
suewrimposed structures given by morphisms E−− → F (vector bundles, e.g.)
on f : N → P (locally represented by systems of equations, e.g.). To describe
JkE it suffices to take the k-jets jks of local sections s : U → E |U (and similarly
for JkF ).

Data appearing in most applications to Natural Sciences and Engineering
are discrete and irregularly distributed. Hence, it is necessary to develop stra-
tegies for clustering data at diffrent levels of detail (LoD), removing redundant
data, filling incomplete information (by means propagation models, e.g.), and
superimposing continuous structures to ease their management. Graded comple-
xes appearing in Algebraic Topology A22 and Geometric Topology A24 provide
natural candidates to generate a PL or a PS-model linked to data.

They are computationally managed in terms of functionals defined on them
(cohomological methods) which have been developed before (see A42 for the PS
case). The most difficult problems concern to the “emergence” of PL-structures
from sparse, incomplete and noisy data. By following an increasing difficulty
order, clustering process can be illustrated by the following applications5

Maps between graded complexes (simplicial vs cuboidal meshes, e.g.) lin-
ked to clouds of points arising from 3D laser scans for bottom-up modelling
in Computational Algebraic Topology B12 and its smoooth regularization
in B13 (computational Differential Topology).

5 All of them are developed in the part II (Geometric and Topological Methods in Enginee-
ring) of these notes.
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Simultaneous kinematic tracking of multiple agents in evolving traffic sce-
nes B23 (Motion Analysis) in B2 (Computer Vision), and their decentra-
lized control in Automatic Navigation B32.

Control of dynamical interactions B34 (Robot Dynamics) between ato-
mic vs molecular configuratioins in Sample Preparation or Pharmaceutical
Synthesis by using segmentation, separation and synthesis strategies.

Animation of Characters and Scenes B44 including radiometric properties
(involving illumination and color) for planar vs volumetric representations
in terms of uniparametric families of maps for n = p = 2 vs n = p = 3.

Each one of them poses a lot of issues in regard to the modelling of the above
mechanical hierarchy involving Geometric, Kinematic and Dynamical aspects in
terms of k.-jets of maps F : X → Y or morphisms ϕ : E− → F on them. Despite
of this diversity, continuous modelling based on singular map-germs provides
“almost universal” models which can be adapted to ideally conservative (regular
maps) and more realistic dissipative phenomena (described in terms of multiple
events or singular multigerms).

The identification of local symmetries for materials, propagation and in-
traction siimplifies the modelling. The classical distinction between regular and
irregular algebraic actions (breaking symmetries) is formalized in terms of regu-
lar vs unipotent actions. The last ones (or its linearized nilpotent action) are the
“responsible” for the finite dimensionality reduction of map germs to their k-
jets [Bru86]. to understand how it works, one must remember some antecedents
beyond the Catastrophe Theory which has been developed in the precedent
module A43 .

A very detailed classification of topics presented in the previous paragraphs
was developed by V.I.Arnol’d and his school in the 1970s and in the early
1980s. In particular, the description of the simple singularities associated with
the propagation of wave fronts on ordinary and edged manifolds facilitated a
reinterpretation in terms of root systems for the ABCD series of the classical
groups and the reflections associated with the symmetry groups. crystallography
of the Platonic solids. This reinterpretation has been presented in module B43.

A surprising extension of this approach carried out by O.Scherbak (1985)
and A.B.Givental (1988) showed the connection between the singularities of the
projections of the symplectic and contact space with the Euclidean reflection
groups (not only the crystallographic ones as in Arnold’s initial formulation).
This result has profound consequences that have not yet been sufficiently ex-
plored.

The differential approach to Analytical Mechanics initially described on a
PS-manifold M (PS: Piecewise Smooth) has two has two paradigms labeled as
Symplectic and Contact Geometry. Roughly speaking, they correspond to the
preservation of the symplectic form ω for evendimension 2m and the preserva-
tion of the contact one-form α for odd dimension 2m − 1, respectively. From
the early decades of the 19th century, Analytical Mechanics is formulated on an
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“extended space” (called Phase space P by Poincaré) in terms of ODEs invol-
ving generalized coordinates q for the support (corresponding to several control
points) and momenta p as local coordinates in the Phase space P = TM .

The dual approach puts the accent on evolving constraints represented by
differential forms ωi as local sections of the cotangent bundle τ∗M with fiber
T ∗qM = Hom(TqM,R) (i.e. they are linear forms on the tangent vector space

generated by vector fields ξj .

The initial purpose of old Analytical Mechanics was the study of solutions
of structural motion’s equations given initially (in absence of external forces) by
the Hamilton Jacobi equations:(

q̇(t)
ṗ(t)

)
=

(
0 In
−In 0

)(∂H
∂q
∂H
∂p

)
=: ∇JH ,

where H : TM → R is a Hamiltonian function (in fact a one-form) and
∇JH is called the symplectic gradient, giving a Hamiltonian field. The simplest
Newtoniana “example” for conservative systems is given by the total energy
Etot = Epot + Ekin (whose derivative gives the Newtonian force) whose solu-
tions give iso-energy levels. For quadratic expressions, soltuions can be easily
describe. In this way, one can explain propagation phenomena, involving light
(Huygens, Newton), sound (Barrow) or, a little bit later, the simplest equations
of continuous fluids (Euler).

The problem becomes non-trivial but tractable in presence of external forces,
where one introduces “torques” to balance the system. However, the problem
becomes almost untractable in presence of several Hamiltonian fields interacting
between them or, even worse, for Hamiltonian of degree three or four. In these
cases solutions of maximal dimension called Lagrangians for even dimension and
Legendrians for odd dimension can display quite complic behaviors on the base
manifold, which must be “controlled”.

Typical strategies for controlling singularities appearing in the envelopes of
geometric elements (tangent vs normal lines, osculatrix circles or spheres, e.g.)
are based on the identification, classification and construction of (uni)versal
foldings which allow their “stabilization” in a similar way to the case of “simple”
singularities developed in the precedent module.

The apparition of singularities in propagation phenomena was well known
at the early years of the 18th century in regard to caustics (envelopes of normal
lines) or evolvents (envelopes of tangent lines). They were meaningful for the
optimal design of optical lenses (avoiding aberratioins) or the optimal design of
transmission mechanisms.

The simplest example (appearing in the precedent mdoule), corresponds to
the caustic of the parabola y = x2 which is a translation of the cusp‘y2 = x3

called the semicuspidal curve by I.Newton. In this case, the caustic gives the sup-
port for the “aberration locus” of the lens, whose singular point must be avoided
for observer’s loclaization. Alternately, the singular point is used to concentrate
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energy for incident light on a parabolic mirror for energy applications (solar
energy or laser, e.g.)

Geometrical optics and its evolving phenomena linked to wave fronts provide
the foundations for the development of applications to

1. Analysis of materials, including chromatography for separation in Compu-
tational Differential topology B13.

2. Capture of radiometry in digital images or video sequences for Image Ba-
sed Rendering (IBR) or Video Based Rendering (VBR) to obtain more
realistic 3D Reconstructions B22.

3. Non-linear dimensionality reduction for the Perecpetion-Configurations-
Working-Action (PeCWA) cycle linking the coarse hierarchy P → C →
W → A in Robotics B3, and their pseudo-inverses away the singular loci
for each proper morphism.

4. Synthesis of new graphical multimedia contents in Computer Graphics B4

by using advanced AI developments based in Deep Learning.

Obviously, one must start with “basic examples” by imposing constraints
about characters or invariants, in the same way as in the precedent module A43

where one bounds corank and codimension for function germs. Furthermore,
it is necessary to develop strategies linking continuous models (developed in
this module) with discrete experimental data where statistical techniques (for
segmentation, clustering, and weighting) play a fundamental role.

The simplest illustrative examples appear in regard to semi-automatic un-
derstanding images in computer Vision B2, where one starts with the simplest
cases corresponding to the following values for (n, p):

(2, 2) in regard to the comparison of two digital images by using their
support as a bitmap.

(3, 2) where the digital image is understood as a projection of a bounded
region of the “world” on the image plane for extraction of “features”.
A mobile camera generates a uni-parametric family of (3, 2 maps, with
emerging and vanishing events which are modelled as singular multigerms.

(3, 3) to compare two reconstructions to detect modifications, propagate
lacking information or generate “new” geometric contents (where radio-
metry is a superimposed layer on the underlying geometric model).

(4, 3) to detect “events” in evolving volumetric objects in terms of singular
map-germs.

More details about these topics will be developed in the chapter 7 of this
module; applications to Economic Theoory and and biomedical sciences are
developed in the chapters 8 and 9, respectively.
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0.2. Outline of the chapter

In addition of this introduction and a final section about Complements (Con-
clusions, Practices, Challenges and References), this chapter has the following
four sections:

1. A topological approach to classification.

2. Some connections with Dynamical Systems.

3. Singularities in Mechanics.

4. Singular map-germs in Engineering.

The two first sections have a standard contents, and they can be considered
as a natural extension to singular map-germs f ∈ Cr(n, p) of methods deve-
loped in the precedent module A43 for singular function germs f ∈ Cr(n, 1)..
Main novelties appear in regard to the last two sections, where one introduces
some motivations arising from Analytical Mechanics (extending wavefronts of
Geometrical Optics) and some Engineering areas (appearing the part II of these
notes), respectively.

Mechanics is ubiquitous in Engineering. Thus, all developments involving
singular maps in Analytical Mechanics can be applied their corresponding ap-
plications in Engineering. Fromm the middle of the 20th century, the develop-
ment of Control and Optimization strategies pose new challenges wich require
a matrix reformulation of classical approaches involving to once a control point
to be tracked and controlled.

Central issues such as stability and deformations must be reformulated in
matrix terms to give response to problems in different Engineering areas. To fix
ideas, we will paid attention only to those matters which are related to modules
Bi developed in the second half of these notes, by ignoring developments in
Nanomaterials, Biotechnology, or Chemical Engineering, between others. In the
last section of this introductory chapter we devote a subsection to each one of
the following matters: B1 (Computational Mechanics of Continuous Media), B2

(Computer Vision), B3 (Robnotics) and B4 (Computer Graphics) 6 .

Topology of singular map germs f ∈ Cr(n, p) can be motivated from proper-
ties of maximal dimension solutions of Analytical Mechanics which are labelled
as Lagrangian vs Legendrian manifolds of the Phase space P = TM . This view-
point is a natural extension of singularities appearing in front waves in Geome-
trical Optics, whose basic aspects have been developed in the precedent module
A43. From the Klein’s viewpoint (characterization of Classicla Geometries in
terms of Groups),

the Symplectic Geometry can be characterized by the preservation of the 2-
differential symplectic form ω given locally by ω |U=

∑m
i=1 dqi∧dpi which

is equivalent to the preservation of Hamilton-Jacobi motion’s equations.

6 An introduction to each one of them can be found in my web site
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the Contact Geometry can be characterized by the preservation of the 1-
differential contact form α given locally by α |U

∑m
i=1 pidqi, corresponding

to a motion which is constrained to a displacement preserving the contact
with a hypersurface in Phase space P .

Obviously, dα = −ω which gives a structural relation between both Symplectic
and Contact Geometries. Thius simple feature has deep implications in common
phenomena appearing for the classification of singularities linked to Lagrangian
and Legendrian wavefronts in the applications.

The re-formulation of Symplectic Geometry in functional terms is performed
in terms of Poisson structures which are defined w.r.t. a Hamiltonian H (New-
tonian or total energy functional defined as a map H : TM → R) or a more
general Lagrangian L (the simplest example corresponds to L = Ecin −Epot to
explain the energy exchange for falling bodies, e.g.). The Poisson formulation in
functional terms provides the support for extending the Analytical Mechanics
to Quantum Mechanics 7. An adaptation of the Quantum approach provides the
support for discrete models in Engineering which are based on configurations of
particles.

0.2.1. A short overview of the module A44

The module A44 contains the following chapters:

1. Topological Properties of Cr(n, p) with a special regard to “relative
genericity” appearing in regard to different kinds of stability, equivalence
relations and deformations.

2. finite determinacy in terms of their equivalence w.r.t. jets. Reductive
groups. Unipotent group actions.

3. Classification by using a finite-dimensional reduction of Lie groups. Cons-
truction of Versal foldings.

4. Infinitesimal criteria for Deformations, by developing Lie algebras
actions for an effective control of deformations.

5. elements of Analytical Mechanics with Symplectic and Contact Geo-
metries and the main paradigms. Simplectization and Contactization of
Geometry. Lagrangian and Legendriansingularities.

6. Applications to Theoretical Physics illustrated by some applications
of Qauntum Mechanics to Physics of Materials and Physical-Chemistry.

7. Applications to IST (Information Society Technologies) with a special
regard to the topology of Signals B1 , events in Computer Vision B2,
Singularities in MIMO systems for Control in robotics B3, and evolving
space-time animation in Computer Graphics B4

7 First formulations were given in matrix terms by Heisenberg, Von Neumann et al; see my
notes of the module A5 for details and references.
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8. Applications to Economic Theory: for competitive vs Cooperative
systems appearing in Micro vs MacroEconomics, International Trade and
Financial Economics. Modeling Social and Biological Complex Systems.
Robust vs Adaptive Control

9. Applications to Biomedical Sciences centered on mutations at diffe-
rent scales, including some mathematical aspects of Genetic Algorithms,
Evolutionary programming and Self-organziing Maps, in regard to para-
digms develope in ML along nineties.

The first four chapters contain the basic notions of this knowledge subarea.
The fits starts the transitions towards applications with a reformulation of theo-
retical aspects in terms of Analytical Mechanics. The last four chapters are fo-
cused towards some temptative applications which are usually disregarded in
textbooks.

0.2.2. Methodological issues

From the local point of view of singularities, it affects the study of orbits
by the action of Lie pseudo-groups (initially simple) whose algebraic classifica-
tion was carried out by E.Cartan as an extension of Killing’s classification of
the simple Lie algebras. The infinitesimal version of this approach (carried out
by Bruce, DuPlessis and Wall in [Bru87]) emphasizes the algebraic properties
(nilpotency) of the Lie algebras responsible for determining the k-jets.

Currently, algebras of nilpotent vector fields are known that preserve the
tangent space TfRf for a simple singularity 8, whose methods are applicable to
any type of singularity. However, the tools of (representation of) nilpotent Lie
algebras necessary to manage this information have not yet been developed.

From the global point of view of varieties (even more interesting), simplecti-
zation (resp. contactization), that is, the introduction of a symplectic structure
(resp. contact) on the cotangent bundle T ∗M of a manifold M suggests that
any differentiable manifold should have corresponding symplectic and contact
versions (this idea is again due to V.I.Arnol’d). The extension of this idea to
the Differential Topology leads to construct a Symplectic Differential Topology
(Lagrangian resp.), and to study the Lagrangians (Legendrian resp.) as integral
solutions of maximum dimension of the associated symplectic (contact resp.)
structure.

0.2.3. The interplay between Geometry and Topology

The Symplectic Geometry can be characterized by the preservation of the
2-differential symplectic form ω given locally by ω |U=

∑m
i=1 dqi ∧ dpi which

8 For an explicit description see Tomás Pérez’s Doctoral Thesis (unpublished), on which
Arnol’d himself commented to JF that this is the Mathematics of the 21st century (private
communication in Trieste, 1991)
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is equivalent to the preservation of Hamilton-Jacobi motion’s equations. Simi-
larly, the Contact Geometry can be characterized by the preservation of the
1-differential contact form α given locally by α |U

∑m
i=1 pidqi, corresponding to

a motion which is constrained to a displacement preserving the contact with a
hypersurface in Phase space P . Obviously, dα = −ω which gives a structural
relation between both Symplectic and Contact Geometries.

A modern synthetic treatment of Symplectic and Contract Geometry is per-
formed in terms of the Moment map. Furthermore its intrinsic character, an
advantage of this approach consists of the existence of a locally homogeneous
structures, which can be translated to structures of G-orbits. These structures
are well known for the reductive case, i.e. for homogeneous spaces G/H such as
g = h⊕m (direct sum of Lie algebras).

An advantage of the reductive case consists of providing a “decouling” which
eases the explicit computation of geodesics. However, even in the two-dimensional
case, the situatioin is not quite elementary: Euclidean and Lobachevsky planes
admit a reductive decomposition, whereas the cylinder or the projective line do
not admit a reductive decomposiiton 9

From an infinitesimal viewpoint, the re-formulation of Symplectic Geometry
in functional terms is performed in terms of Poisson structures which are de-
fined w.r.t. a Hamiltonian H (Newtonian or total energy functional defined as
a map H : TM → R) or a more general Lagrangian L (the simplest example
corresponds to L = Ecin−Epot to explain the energy exchange for falling bodies,
e.g.).

The Poisson formulation in functional terms provides the support for ex-
tending the Analytical Mechanics to Quantum Mechanics 10. An adaptation of
the Quantum approach provides the support for discrete models in Engineering
which are based on configurations of particles.

Mechanics is ubiquitous in Engineering. Thus, all developments involving
singular maps in Analytical Mechanics can be applied their corresponding ap-
plications in Engineering. Fromm the middle of the 20th century, the develop-
ment of Control and Optimization strategies pose new challenges wich require
a matrix reformulation of classical approaches involving to once a control point
to be tracked and controlled.

Central issues such as stability and deformations must be reformulated in
matrix terms to give response to problems in different Engineering areas. To fix
ideas, we will paid attention only to those matters which are related to modules
Bi developed in the second half of these notes, by ignoring developments in
Nanomaterials, Biotechnology, or Chemical Engineering, between others. In the
last section of this introductory chapter we devote a subsection to each one of
the following matters: B1 (Computational Mechanics of Continuyous Media),

9 This remark is immediately extended to Grassmannians or Flag manifolds; see the module
A24 (Geometric Topology).
10 First formulations were given in matrix terms by Heisenberg, Von Neumann et al; see my

notes of the module A5 for details and references.
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B2 (Computer Vision), B3 (Robnotics) and B4 (Computer Graphics) 11 .

0.2.4. Some illustrative examples

In the case of Symplectic Geometry, ordinary vector fields are replaced by
Hamiltonian fields and the Lie bracket is replaced by the Lie-Poisson bracket
of Hamiltonian functions. This approach is found developed in different ma-
nuals both from the local or infinitesimal point of view (Arnol’d) and algebraic
within the framework of the Geometry of the Moment Application (Guillemin
and Sternberg, Marsden and Ratiu, Weinstein) 12. In the same way, it is neces-
sary to replace the study of the submanifolds of differentiable manifolds by the
study of the Lagrangian (intersection of) submanifolds of symplectic manifolds
(Weinstein).

Unfortunately, the currently available knowledge about Lagrangian subma-
nifolds of symplectic varieties or Legendrians of contact varieties is very scarce.
We hardly know anything beyond some homogeneous varieties such as Grass-
mannian or projective space, to cite two classic examples of both situations.
Again, the most valuable information relating to more complicated spaces such
as k-jet spaces is due to Arnold’s, but the corresponding results affect areas of
research that go beyond the objectives of an Introductory Course like this.

The fourth section of this chapter is devoted to display some examples of
singularities arising from the discriminant loci of smooth maps (whose compo-
nentes are polynomials of low degree). A more systematic treatment of these
examples will be developed in the matters B1 (Computational Mechanics of
Continuous Media), B2 (Computer Vision), B3 (Robotics) and B4 (Computer
Graphics).

Another application which is transversal to all the above matters concerns
to the use of Singular Map-Germs in regard to some basic issues of AI in the
Deep-Learning framework. An artificial Neural Network (ANN in successive)
is composed by successive layers, whose cells are connected between them. In
artificial models, very often one takes “fully connected” layers, i.e. each weighted
cell of the k-th layer is connected with all cells of the the (k + 1)-layer.

Weights of ANN are initialized in a random way, and they are corrected by
following different strategies along the (supervised vs non-supervised) learning
procedures. In the Deep Learning framework, it is not necessary wait at the
end of processing, and their very strong parallelism allows a learning in two or
three consecutive layers by using an adaptation of old CNN (Convolutional NN)
and RNN (Recurrent NN). In this way, it is possible to perform very cmplex
recognition tasks.

If we look only at two consecutive layers, one has a discrete version of maps
Rn → Rp, where n and p are the number of non-correlated cells in the source

11 An introduction to each one of them can be found in my web site
12 For a elementary introduction see chapter 7 of module A12 (Linearization) of the matter

A1 (Differential Geometry)
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and target layers of a CNN. If we want to incorporate the orientation, it is
convenient to take

In more modern terms, the Symplectic Geometry can be characterized by
the preservation of the 2-differential symplectic form ω given locally by ω |U=∑m

i=1 dqi ∧ dpi which is equivalent to the preservation of Hamilton-Jacobi mo-
tion’s equations. Similarly, the Contact Geometry can be characterized by the
preservation of the 1-differential contact form α given locally by α |U

∑m
i=1 pidqi,

corresponding to a motion which is constrained to a displacement preserving the
contact with a hypersurface in Phase space P . Obviously, dα = −ω which gives
a structural relation between both Symplectic and Contact Geometries.

The re-formulation of Symplectic Geometry in functional terms is performed
in terms of Poisson structures which are defined w.r.t. a Hamiltonian H (New-
tonian or total energy functional defined as a map H : TM → R) or a more
general Lagrangian L (the simplest example corresponds to L = Ecin −Epot to
explain the energy exchange for falling bodies, e.g.). The Poisson formulation in
functional terms provides the support for extending the Analytical Mechanics to
Quantum Mechanics 13. An adaptation of the Quantum approach provides the
support for discrete models in Engineering which are based on configurations of
particles.

Mechanics is ubiquitous in Engineering. Thus, all developments involving
singular maps in Analytical Mechanics can be applied their corresponding ap-
plications in Engineering. From the middle of the 20th century, the development
of Control and Optimization strategies pose new challenges which require a ma-
trix reformulation of classical approaches involving to once a control point to
be tracked and controlled.

Central issues such as stability and deformations must be reformulated in
matrix terms to give response to problems in different Engineering areas. To fix
ideas, we will paid attention only to those matters which are related to modules
Bi developed in the second half of these notes, by ignoring developments in
Nanomaterials, Biotechnology, or Chemical Engineering, between others. In the
last section of this introductory chapter we devote a subsection to each one of
the following matters: B1 (Computational Mechanics of Continuous Media), B2

(Computer Vision), B3 (Robotics) and B4 (Computer Graphics) 14 .

0.3. References

The references are not exhaustive. They must be understood as an invatation
to the reader to explore this subsject, according to his/her interests to construct
his/her own representation of this knowledge subarea.

13 First formulations were given in matrix terms by Heisenberg, Von Neumann et al; see my
notes of the module A5 for details and references.
14 An introduction to each one of them can be found in my web site
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0.3.1. Basic bibliography

Only some textbooks are included. For an enlarged bibliography, see the
subsection §5,4. References for meaningful research articles are included as foot-
notes. The most important absence is linked to the series of articles written by
J.Mather between 1965 and 1970, which appear as footnotes.
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edition 1992.
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[Arn88] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko: Singularities
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Univ. Press, 1975
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0.3.2. Software resources

To my knowledge, nowadays there are no textbooks for a computational
treatment of Singular map Germs. Singular provides a support for some alge-
braic issues in the framework of Computational Algebra. Beyond some basic
cases related with Singular Function Germs involving f ∈ Cr(n, 1), the number
of relevant contributions for Cr(n, p) for p ≥ 2 is very scarce. To my knowledge,
there is no reference in the OOP framework.

It is necessary an effort to develop software at least for corank 2 and low
codimension map germs. These developments would must have in account preli-
minary contributions which are curreently being develope in B13 (Computatio-
nal Differential Topology) inside the matter B1 (computational Mechanics of
Continuous Media). Their foundations can be found in

[Her13] M.Herlihy, D.Kozlov, S.Rajsbaum: Distributed Computing Through
Combinatorial Topology, 2013.

[Kup87] T.Kupper, R. Seydel, and H.Troger: Bifurcation, Analysis, Algo-
rithms, Applications. Birkhliuser, 1987.

[Zom05] A.J. Zomorodian: Topology for Computing. Cambridge Univ. Press,
2005.

It is necessary to develop more specific software for a computational treat-
ment of most aspects developed in this module. To my knowledge, the only
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reference is Singular. Additional informaiton about other software packges is
welcome.

Final remark: Readers which are interested in a more complete presenta-
tion of this chapter or some chapter of the module A23 (Topology of Gra-
ded Complexes), must write a message to franciscojavier.finat@uva.es or to
javier.finat@gmail.com


