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Previous remarks: These notes correspond to an introduction to the module
A43 (Singular Function Germs) of the matter A4 (Differential Topology). Along
this chapter one makes a short presentation of basic notions and results arising
from the topological analysis of function germs. It is necessary to have basic
knowledge of Muyltivariate Analysis, Basic Algebra, Group Actions and General
Topology which will be used along the module.

Subsections or paragraphs marked with an asterisk (∗) display a higher dif-
ficulty and can be skipped in a first lecture.
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0.1. Introduction to the chapter A43

Functions f : X → R defined on a space X and taking values in r provide
a quite general method to obtain properties about functionals evaluating the
behaviour of evolving “objects” represented by a topological space X. In geo-
metric contexts, X is usually a PS manifold, an algebraic or analytical variety
X. In the discrete case, X can correspond to a symbolic representation of an
object or the whole scene, given by a skeleton, a graph or lattice, e.g. In Expe-
rimental Sciences, Probability and Statistics provide a nexus between discrete
and continuous representations.

In the continuous case, classical approaches for R are given by real R or
complex numbers C; other choices for the discrete case correspond to natural N,
integers Z, binary Z2 (or more generally, Zp for prime p), or rational numbers Q.
In this module we restrict ourselves to the real and complex cases, and we focus
towards the local case. Typical examples for functionals are given by measures
or energy functions, e.g.

We denote by means Cr(n, 1) the set of functions f : K→ K of functions of
class Cr, i.e. continuous and with continuous derivatives till order r. Some of
the most important cases correspond to smooth functions for r = ∞, analytic
functions for r = ω, i.e. having a (non-necessarily unique) convergent Taylor
development at each point, and algebraic functions given by polynomials (trun-
cation of analytic functions) in n variables.

Local Cartesian coordinates around a point p (usually taken as the origin
or coordinates) are denoted by x = (x1, . . . , xn) for the real case, and z =
(z1, . . . , zn) for the complex case, where zj = xj + iyj for 1 ≤ j ≤ n. In some
cases, it is more convenient use Spherical or cylindrical coordinates. All of them
provide a description of objects in terms of “level surfaces” f−1(r) for regular
values r ∈ R of f . The topology of the level surface changes at critical values
c ∈ R, whose inverse image is no longer a submanifold, but a subvariety. In
this module one extends the basic “examples” of Morse theory to more complex
singularities of the function germ [f ] for finitely determined f ∈ Cr(n, 1)

An intrinsic approach to the study and modelling of “objects” (manifolds,
varieties, spaces) X is not enough for applications, requiring the interplay bet-
ween internal structure and external environment. Tangent and normal bundles
provide a solution for the smooth case, which is useful for basic kinematic is-
sues. A more practical approach consists of “acting on objects” and measure
the “reactions” (deformations, motions, e.g.) on X.

The simplest models for actions on X are given by Cr-functions f : X → K
defined on X taking values in a field K. Along this module A43 one supposes that
K is the field of real numbers R or the field of complex numbers C. More general
cases have been developed in the precedent matter A3 (Algebraic Geometry).

In the same way as for any other Geometry or Topology, the main problems
are to classify objects and morphisms (maps not everywhere defined). This clas-
sification is performed up to Cr-equivalence. Hence, the choice of Cr-category



3

involves to objects, maps and regular transformations. The most importante
cases for this matter A4 (Differential Topology) are the following ones:

Topological category corresponding to r = 0 where objects are topolo-
gical spaces X, morphisms are continuous maps f : X → Y , and C0-
equivalences are homeomorphisms, i.e. bijective and bicontinuous maps.

Smooth category corresponding to r = ∞ where objects are manifolds
M , morphisms are smooth maps f : N → P , and C∞-equivalences are
diffeomorphisms, i.e. smooth homeomorphisms with inverse smooth, also.

Analytic category corresponding to r = ω where objects are analytic va-
rieties X, morphisms are analytic maps f : X → Y , and Cω-equivalences
are bi-analytic maps, i.e. analytic homeomorphisms with inverse analytic.

Algebraically based geometric models have been developed in the matter
A3 (Algebraic and Analytic Geometry) where the classification is performed
up to birational equivalence, i.e. rational maps with rational inverse. From the
algebraic viewpoint, the classification is performed on the field k(X) of rational
functions defined on the variety X. Anyway, the hypersurface f(x) = 0 in Rn
or f(z) = 0 in Rn provides the starting point for connecting with the geometric
viewpoint developed in Differential Geometry A1 or the GAGA framework A3.
This remark is naturally extended to local complete intersections in [Loo84]1

A basic difference between the smooth and the analytic categories concerns
to the existence of once a Taylor development (not necessarily convergent) in
the smooth category, in contrast with the possibility of several locally conver-
gent Taylor developments (one per branch) for the analytic case. If the base
field is given by the complex numbers, analyticity conditions are equivalent to
Cauchy-Riemann equations, which can be considered as an extension of Sym-
plectic Geometry to the non-linear case. The equivalence between analytical
and holomorphic functions has deep consequence for linking local and differen-
tial properties.

In regard to the precedent modules, the approach developed along the mo-
dules A41 (Basic Differential Topology) and A42 (Fiber Bundles) of the matter
A4 (Differential Topology) has a predominantly global character. However, in
this module A43 (Singular function germs) and the following one A44 (Singular
Map Germs), one adopts a local viewpoint.

A fusion of both local and global approaches is performed in the module A45

in the GAGA framework A3. Furthermore, most contents has a static character;
the extension to dynamic aspects (including interaction issues) is performed
in the module A46 (Dynamical Systems). The simplest dynamical models are
linked to conservative systems given by the gradient ∇f of a potential function
f , which are naturally extended to the symplectic gradient ∇Jn

f := Jnf .

1 E.J.N. Looijenga: Isolated singular points of complete intersections, Lect.Notex Vol.77,
London Math Soc, 1984.
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Unfortunately, global methods based on superimposed structures (vector or
principal bundles, sheaves, topological fibrations) are not easily extendable to
spaces of functions. The most immediate general analogue is given by spaces
Jk(n, p) of k-jets, i.e. formal truncated Taylor developments corresponding to
the action of differential operators on Cr(n, p) of order ≤ k.

In particular, the information associated to 1-jets (or its dual version) is
essentially the same that the information contained in sections of the tangent
(resp. cotangent) bundle, whose formal products give the tensor algebra cons-
tructed on any manifold M or variety X. An advantage of k-jets consists of
the capability of managing differential operators of order ≥ 2 which can not be
described as tensors.

The choice of a local framework for this module implies that all invariants for
classification have a local character, i.e. they are linked to properties of the local
ring En (for the smooth case) or On (for the analytic case) of regular functions at
each point x ∈ X. A basic idea consists of extending relations between critical
points and critical values for Morse functions f : M → Rappearing in the
chapter 5 of A41 to non-Morse functions 2

Relations between local and global invariants for hypersurface germs are
only described for some particular cases involving hypersurfaces, and are given
in differential terms (Milnor, Tjurina, e.g.) or in analytic terms (Mond, Damon,
Gaffney, between others) in regard with their applications to some problems
appearing in GAGA. Some applications to other scientific or technological areas
are described in the last three chapters of this module.

The reduction from global to local issues involves to the study of regular
functions, and maps ϕ : X → Y which are replaced by ϕ∗ : EnY,y → ϕ∗EnX,x in the
smooth case, or ϕ∗ : OnY,y → ϕ∗OnX,x (in the analytic case), where ϕ∗(f) := ϕ◦f
for any regular (smooth vs analytical) function defined on the germ (X,x).

The unified approach allows the reformulation of differential and analytic
properties in terms of A-modules (derivations or differentials, e.g.) where A is
the local ring corresponding to En (smooth case) or On (Analytic case).

So, the algebraic language (based in modules and their formal sums as graded
algebras) provides a unified treatment to describe local properties involving
varieties and morphisms. By using multi-germs instead of germs one can manage
different processes holding in a simultaneous way. Their extension to the simplest
dynamical systems (given by once an equation) is performed by analyzing the
zero locus of the function-germ (as the equilibrium locus of the system). A non-
trivial problem consists of relating generic perturbation of the function with
properties of solutions for the corresponding dynamical system.

The basic idea consists of interpreting qualitative changes (corresponding
to changes of state involving materials or the chapter, or phase transitions in-
volving the behavior, e.g.) as singularities of functions in a first step. Next, as

2 This approach is a particular case of relations between the Ramification and Discriminant
Loci appearing in the GAGA context which has been developed in the module A32 (Quasi-
Projective Varieties).
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singularities or maps A44, and try of identifying their “stratified nature” A45

to understand the space-time evolution of different phenomena (including inter-
actions). Even under conditions of continuity, matter is neither homogeneous
nor isotropic; therefore, the behavior is not uniform. Thus, the analysis of sin-
gularities corresponding to the response w.r.t. different scalar fields provides
information about a matter or a structure initially unknown.

In this way, singularities provide models for evaluating, representing, cons-
training, and controlling qualitative changes in the characteristics or behaviour
of the system. Typical examples are given by changes of state, phase transitions
or dynamic bifurcations in relation to the propagation and interaction of wa-
ve fronts with matter. In these notes an approach based on products of fields
(scalar, vector or covector) is adopted.

The ubiquity of the fields in Physics, Engineering, Chemistry, Biology or
Economic Theory, and their use in Engineering, makes the study of singularities
essential to understand any type of phenomenon that presents a space-time
evolution with changes of state or transitions of phase.

To fix ideas and by complementarity with the materials presented in Al-
gebraic Geometry A3, in this module A43 and in the next ones we focus our
attention on the singularities of function germs A43, of map germs A44 and of
dynamic systems A46. In A45 one adapts results of the smooth case to the singu-
lar case, which requires more advanced local analytical methods, with a special
attention to the complex case: so, one recovers multiple connections with the
Algebraic Geometry of Complex Varieties.

Anyway, the fundamental problems to solve remain the same: Characteriza-
tion and Classification, but now of germs. In particular, a central problem is
the identification and analysis of hierarchies for canonical forms represented by
adjacencies for B-orbits for some of the usual equivalence relations. Different
kinds of (topological, algebraic, analytic) invariants and relations betwen them
provide keys for effective classification, at least from a theoretical viewpoint.

0.1.1. Reducing the classification problem

A first reduction for singularity classification problems consists of replacing
the study of a map f ∈ Cr(N,P ) at a point by the germ of a map f ∈ Cr(n, p)
on (x, f(x)) ∈ Γ(f) (graph of f) 3. This local reduction allows us to express
the germ as equivalence classes [f ] of f ∈ Cr(n, p) where n = dim(N) and
p = dim(P ). If we identify the germ [f ] with its representative f , we can denote
by f : (Kn, 0)→ (Kp, 0) to the germ of an application with f(0) = 0

The reduction to germs eases the qualitative management of changes or
transitions between adjacent types of singular points, whose properties only

3 Two functions f, g ∈ Cr(n, p) defined in two open U , V have the same seed in x ∈ U ∩ V
if and only if there exists an open W ⊂ U ∩ V such that f |W = g |W .

Therefore, the germ is an equivalence class corresponding to the “projective limit” in To-
pology.



6

depend on the local algebra at x ∈ X. Initially, on considers the local ring Enx
or Onx with its the graded structure linked to successive quotients mk/mk+1 of
consecutive powers of the maximal ideal m

(*) In more advanced settings, we will consider the graded structure linked
to Ik/Ik+1 representing e.g. the Jacobian ideal. An advanced motivations arises
from the considefation of several “simultanoeus events” (corresponding to dis-
apparition of “objects” e.g.) along a video sequence, e.g.. When there are several
singular points we speak of multi-germ with the corresponding to a finite number
of semi-local rings 4. This topic and the analysis of non-isolated singularities are
addressed at the end of module A44.

To fix ideas, initially we only work with germs of isolated singularities that
we assume centered on the origin 0 ∈ Kn corresponding to the source and
target spaces for the map germ f ∈ Cr(n, p). The use of the algebraic language
is key to provide a synthetic proof of most of the topological results in an
intrinsic way, that is, independent of the chosen coordinate system. By using
the algebraic language it is possible to extend the analysis of hypersurfaces with
isolated singular point at the origin (corresponding to singular function-germs)
to complete intersections with isolated singular points [Loo84]

As first conclusions,

the problem of characterizing germs of maps f ∈ Cr(n, p) is usually ex-
pressed in terms of Local Algebra that affects both the local ring in the
germs of the spaces of departure and arrival, as well as the derivations
used to represent the differential properties.

The topological cases r = 0, smooth r = ∞ and analytical r = ω present
specific characteristics that are highlighted throughout each of the two
modules.

In the smooth and analytic cases, Local Algebra provides a common lan-
guage that facilitates formulation and transfer (when possible) between
results.

The introduction of local invariants associated to the singular point (when
they are isolated) or invariants of associated graded algebras provides cri-
teria to describe the basic types and their canonical forms.

Their extension to the non-isolated case will be performed at the second part
of the module A44 in regard to some deep connections with GAGA.

0.1.2. Equivalence relations

Groups of Cr-equivalences B act on Cr(n, p) in a deocupled way (direct
group of actions on the source and target spaces of f), or in a coupled way

4 A local ring has once a maximal ideal m (corresponding to a branch); a semi-local ring
can have a finite number of maximal ideas.
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(preserving the graph Γf or higher contact conditions) for the map f ∈ Cr(n, p).
The description of B-orbits by these actions provides an equivariant approach
to the space of map-germs.

So, the canonical forms are representatives of the B-equivalence classes or
orbits. Their local structure allows to compute the tangent space TfC

r(n, p)
. Therefore, the identification of singularities types provides the support for
thee computaiton of numerical invariants for each B-orbit. In this module we
only study the case corresponding to the R-action (action to the right of the
homeomorphisms), that is, on the starting space given by

R× Cr(n, 1)→ Cr(n, 1) | (h ∗ f)(x) := f(xh−1) ∀h ∈ R := Dif0(Kn)

In this case, the fundamental problem to solve is the R-classification of the
germs of functions that, initially and from the geometric point of view, corres-
pond to hypersurfaces f(x) = 0 with isolated singularities at the origin. Other
relationships of interest for germ classification problems are the following ones:

The L-equivalence (acting on the arrival space) is applicable to the study
of “path” spaces over a manifold that can be interpreted as trajectories
or integral curves of vector fields.

The A-equivalence corresponding to the left-right action is of interest for
a simultaneous study of paths and constraints (corresponding to vector
fields and differential forms, e.g.) that are considered decoupled (direct
product of actions).

The K-equivalence or contact equivalence is of interest to study the effect
of coupling conditions (feedback between systems in scientific or techno-
logical applications, for example) that are evaluated on the graph Γf of
f ∈ Cr(n, p).

Each one of them can be restricted to Cr-equivalences leaving invariant a
tensor, in other words, it can be restricted to ta Classical Group 5. Some typical
examples concern to the Special Linear Group leaving invariant the volume
form, and the Symplectic vs Contact Groups leaving invariant the symplectic
2-form ω and the contact 1-form α. The analysis of symplectomorphisms (resp.
contactmorphisms), i.e. diffeomorphisms leaving invariant ω (resp. α), plays
a fundamental role in the study of Lagrangian (resp. Legendrian) varieties in
modern Analytical Mechanics (V.I.Arnold and his school).

Unfortunately, the analysis of singularities linked to eventually degenerating
volume forms has been disregarded. The ideal volume preservation is the key for
“perfect fluids” (Liouville Theorem), and it can be expressed in a differential or
an integral way. The last one is the most natural for Variational issues. From

5 See the chapter 5 of the module A12 (Linearization) of the matter A1 (Differentiable
Manifolds).
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a geometric viewpoint, last ones can be considered as the problem of finding
minimizers of an integral functional

F (S) :=

∫
x∈S

F (x, S(x))dV mH x ,

where S(x) represents the m-dimensional linear tangent subspace to a “flow”
S(x) (a surface in the classical case) at the point x ∈ X, and dV m is the volume
element linked to a m-dimensional Hausdorff measure ds2H or, alternately, to a
distance on a Grassmann manifold. Last one can be extended to the statistical
framework and several applications will be developed along the part II, jointly
with their extensions to Flag Manifolds to include completions of possible de-
generations.

A volumetric measure is given by a determinant whose global evolving ver-
sion correspond to the canonical divisor in A3who or the determinant line bundle
det(E) of a vector bundle E in A42. Now, the novelty consists of a functional
determinant can can have singularities, to be classified by the corank. The rank
stratification (Thom-Boardman) induces a degeneration in the above integral
functional, corresponding to “collapsing flows”.

This simple remark provides a structural connection between global aspects
[Tho56] and local aspects [Mil68]. Volumetric degenerations are managed in
terms of nilpotent operators linked to dissipative phenomena. Their estimation
is performed in terms of degenerations of Kullback-Leibler divergence (see the
subsection §4,1 for more details).

The overlapping of topological, differential and algebraic techniques on these
objects (seeds of functions or of hypersurfaces) reveals the richness of these
objects. This module presents different approaches to the problem depending
on the tools used. Special attention is paid to the case of simple singularities of
functions for which eighteen equivalent characterizations are available (at least
according to A.Durfee) (we do not review all of them, obviously).

The second part of this module combines the approaches of R.Thom on
the one hand and V.I.Arnold on the other. Firstly, basic algebraic results are
presented that allow recovering topological invariants for the case of isolated
singularities. Morse singularities are non-degenerate critical points of functions
f : M → R, that is, the Hessian matrix of f is non-degenerate, so the critical
points are classified by the signature .

The next case in difficulty corresponds to corank 1 singularities , that is, such
that rk(Hess(f)) = m−1. In this case, it is possible to easily construct the most
general possible (universal) deformations of f -called unfoldings, déploiements-
and control their possible evolution in terms of the pathologies that occur when
projecting onto a space of parameters Λ. This study was initially carried out by
R. Thom who, in view of the sudden changes in the topology of the solutions,
gave it the name of Catastrophe Theory.

Currently, this study is part of the Bifurcation Theory. The review and refor-
mulation of this theory by V.I.Arnol’d and his school has revealed the ubiquity
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of the ADE classification in multiple areas of Mathematics, showing unsus-
pected structural relationships previously scattered in the literature. The list
provided by Arnol’d was extended by A.Durfee to 18 types, but recent advances
in algebras of deformations, quantization of gravitational theories, and mirror
symmetries make it difficult to know the number of equivalent characterizations.

0.1.3. Some geometric aspects

For any f ∈ Cr(n, 1), i.e. a function f : Kn → K of class Cr, the set of
points (x, y) ∈ Kn ×K such that y = f(x) can be interpreted as a hypersurface
in Kn+1. The most known cases correspond to plane curves in K2 and surfaces
in K3 have been studied in the Differential Geometry of Curves and Surfaces
for the real case in A0, and in Algebraic Geometry for the complex case. In the
last case, there appear singularities on the support X even for simple rational
curves.

Up to veery simple cases (uniform rectilinear motion), evovling objects or
maps display singularities for the kinematic or dynamic behavior, whose first
order approach is given by the differential of local equations. Thus, singular
loci (corresponding to the vanishing locus of the differential) display “qualita-
tive changes” in the shape or the behaviour. This simple remark explains the
ubiquity of singularities in all scientific and technological areas, and the need
of characterizing, classifying and studying their evolution in the space-time to
understand characteristics and evolution of complex systems.

Along the module A43 we are focused towards singularities of hypersufaces
defined by a finitely dtermined germ function f ∈ Cr(n, 1). We paid special
attention to singularities of curves and surfaces, and their evolution in terms of
deformations as “generic” as possible.

The simplest example corresponds to Morse functions where singularities
are non-degenerate critical points6. Excellent properties of the Morse case are
due to the simple behaviour of the tangent space at critical points due to the
non-degeneracy of the Hessian matrix in the smooth case.

The good behaviour at critical points can be extended to ordinary singula-
rities with “different tangents” in the GAGA framework. The simplest example
corresponds to a nodal curve, where the introduction of the slope m for the
tangent at each branch provides a desingularization in the phase space which is
locally parameterized by (x, y,m) fulfilling a contact condition.

A similar reasoning can be performed for hypersurfaces or “complete in-
tersections” (locally defined by the intersection of transversal hypersurfaces
(roughly speaking), by using the Nash transform). Unfortunately, the Jacobian
ideal is not usually a “permissible” centre for blow-ups (is not regular in gene-
ral). In particular, in presence of higher order contact between branches at a
singular point, the Nash blowing-up does not provide a non-singular model (the
Jacobian variety is usually singular).

6 See the chapter 5 of the module A41 (Basic Differential Topology) for details and results.
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Hence, the first case to be analysed corresponds to the overlapping of se-
veral branches for corank one singularities including Morse singularities as an
almost trivial particular case. They are classified by the codimension. When one
has only finite number of different types, one says that singularities are “sim-
ple”. They appear in a lot of matehamtical reas, including the classification of
semimiple Lie algebras, where there appear as A-D-E singularities, also.

For simple singularities one can give an explicit description of universal defor-
mations,, i.e. such that any other deformation factors out through the universal
deformation. In more general cases, one has only “versal” deformations (which
are not unique). Instead of looking at the tangent space of a manifold M as
in Differential Geometry, a basic geometric strategy consists of looking at the
“tangent space” Tf (Rf) to the R-orbit Rf of f , where R := Diff0Rn of dif-
feomorphisms fixing the origin 0 ∈ Rn in the real smooth case. In this case, the
R-action on Cr(n, 1) is defined as follows:

R× Cr(n, 1)→ Cr(n, 1) | (f, h)(x) 7→ (f ◦ h−1)(x) := f(h−1x) ∀x ∈ U ⊂ Rn

and ∀h ∈ Diff0(Rn). The canonical form of f is given by the simplest expres-
sions for the elements of Rf in the space of function germs, i.e. equivalence
classes in Cr(n, 1), which is denoted as En for r =∞ (smooth case) and as On
for r = ω (analytic case). A typical “example” is given by all monic polynomials
of degree k + 1 in one variable x whose canonical form is f(x) = xk+1 for any
k ≥ 0 and universal deformation given by

f(x, λ) = xk+1 + λ1x
k−1 + . . .+ λk−1x+ λk

where λ = (λ1, . . . , λk) ∈ Λ ⊆ R` (space of parameters). In more general cases,
the space Λ of parameters is not a Cartesian space, but a variety. The above
examples corresponds to the Ak-singularity and it is the simplest one for the
classification of non-trivial singularities. Thus, it reappears in different ways
along this module. Several extensions of this example will appear along this
module, jointly with some applications. The most popular are known as “ca-
tastrophes” in the Thom’s terminology, which provide non-trivial models for
conservative phenomena.

From a topological viewpoint (as an extension of the geometric approach),
the role of general deformation is performed by the Milnor fibration for isolated
singularities in the complex case. The existence of (uni)versal deformations is
justified by finiteness results about the quotient k[x]/Jac(f) (called the Milnor
algebra), where Jac(f) is the Jacobian ideal of f generated by ∂f/∂zi for 1 ≤
i ≤ n.

In local algebra, it plays a similar role to the tangent space but adapted to
the case of finitely generated k-algebras. The topological study of an isolated
singularity is performed by taking a small ball Sε, cut a small environment of
the isolated singularity and study the topology of the intersections.
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The analysis of the local topology around the isolated singular point is per-
formed in terms of a small tubular neighborhood of radius ε, whose “nerve” is
the hypersurface with a degenerate critical point. Let us remark that, contra-
rily to the approach performed in the module A41, the “nerve” of the tubular
neighborhood is an eventually singular variety with an isolated singularity at
the origin. The basic idea for the study of the topology of the corresponding
Milnor fibre consists of relating real and complex aspects as follows [Mil68]:

1. One supposes the fiber X0 = f−1(0) at 0 is the germ of an analytic map
f : (Cn, 0)→ (C, 0) has an isolated singularity at the origin 7.

2. The condition of isolated singularity at the origin is equivalent to the
Milnor algebra On/Jac(f) has finite dimension, i.e.

µ := dimC[On/Jac(f)] <∞

where Jac(f) is the Jacobian ideal of f , On is the local ring of (germs of)
holomorphic (equivalently analytic) functions and 0 ∈ Cn, and µ is the
Milnor number of f

3. Study the differentiable structure for the (2n− 1)-dimensional real mani-
fold Kε := Σ ∩X0, where Σ = Sε(0,Cn) is a sphere of radius ε.

4. After associating the smooth manifold Kε to the singularity (X,x), one
must analyze the part of of the algebraic structure of the singularity de-
termines the topological structure.

5. The precedent item is solved by using the homeomorphism between the
pairs (Dε, X0 ∩ Dε) and the cone on (Sε,Kε).

The last item of the precedent steps is the most advanced one and it is
called the Theorem of Conical Structure (see Theorem 2.10 in [Mil68]). It can
be understood as some adaptation of the construction of tubular neighborhoods
in the smooth case (see module A41 for details) to the singular case. This result
has deep implications in regard to the topology of singularities, extending old
results of O.Zariski (1932) in terms of the topology of Knots which have been
clarified along the early seventies by Le Dung Trang (more details in the Chapter
3).

0.1.4. Some applications

The most classical applications of singularities of function germs appear in
Geometrical Optics (Newton, Huygens, e.g.) and some basic problems of Mecha-
nics (Hooke, e.g.). In particular, the description of different kinds of (tangent

7 This construction is immediately extended to isolated singularities in complete intersec-
tions [Loo84].



12

vs normal) envelopes shows from the beginning singularities which is neces-
sary to identify and localize to avoid optical aberrations in lenses design, or
maximal stress zones. Both kind os tangent and normal envelopes provide the
foundations for the Intrinsic and Extrinsic approaches in any Geometric fra-
mework. The analysis of different types appearing in their space-time evolution
makes part of the Differential Topology. A very good description can be found
in [Bru9?] 8

The connection with ODEs and PDEs appears later in regard with the inte-
gral formulation (Euler. Lagrange) and the differential formulation (Hamilton,
Jacobi) of the Analytical Mechanics at the end of the 18th century and the first
half of the 19th century. The analysis of envelopes of solutions for ODEs is a
classical topic where geometric and analytic methods are overlapping with im-
portant milestones as the Cauchy’s method of characteristics. A more synthetic
and systematic unification is performed in the framework of Lie actions from
1880s. A basic distinction for some applications to Physics and Engineering
considers two complementary approaches:

Differential approach: The need of incorporating more complex behaviors
that those linked to quadratic functionals (such as the Newtonian total
energy), motivates the introduction of Hamiltonian functions H : TM →
R of degree ≥ 2. They provide more flexible patterns than those appearing
in the Classical Morse Theory. Formal properties of Hamiltonian scalar
fields are described in terms of Lie-Poisson algebras involving their corres-
ponding Hamiltonian vector fields. Canonical types for function germs are
adapted to Hamiltonian vector fields.

Integral approach: In a complementary way, instead of looking at critical
points of Morse functions f : M → R on a compact manifold, one can
consider critical points of integral operators corresponding to the minimi-
zation of measurements (length, area, volume) or geometric characteristics
(different kinds of curvatures, e.g.). From a geometric viewpoint, they can
be considered as the search for minimal values of a geometric flow invol-
ving volume or curvature elements. The “simplest example” correspond
to geodesics 9; More details involving other situations (minimal surfaces
and curvature flows, e.g.) are developed in the module Computational
Kinematics B14 and their applications.

In absence of external forces, integral and differential approaches are equiva-
lent between them. The simplicity of differential formalism has contributed to
the popularity of the differential approach. However, the integral approach in
terms of volume or curvature flows is more meaningful in a lot of applications.
In the global cas,e the Moment Map plays a fundamental role for the study of
invariant functions on G-orbits. This remark motivates the adaptation of some

8 Bruce and P.Gibllin: Curves and Singularities (2nd ed), Cambridge Univ. Press, 199?
9 In the chapter 3 of A10 (Differential Geometry of Curves and Surfaces) one can see eight

equivalent characterizaitons of geodesics.
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ideas for an equivariant approach to the classifications of function germs, which
will be developed in the Chapter 6 of this module.

Coming back to the differential approach,, let us remember that the total
energy Newtonian functional is extended to more general Hamiltonians H :
TM → R define don the Phase space P = TM (total space of the tangent
bundle τM of a smooth manifold M) fulfilling the Hamilton-Jacobi equations.
Last ones describe the space-time evolution of a point (qq, p) in the phase space
P according to the symplectic gradient ∇JH := J∇H; in other words, the
motion is ideally given by a conservative system 10.

The solutions of maximal dimension of Hamiltonian systems of equations in
the Phase space (or its dual) are called Lagrangians (in absence of external cons-
traints) or Legendrian subvarieties (in presence of “contact” constraint w.r.t. a
hypersurface). Both of them display singularities which extend the singularities
appearing in Geometrical Optics of basic Mechanics already described from the
early years of the 18th century.

Thus, to control the space-time evolution of a system including possible
degenerations, it is necessary characterize the singularities appearing in evolving
integral subvarieties of P = TM , their projections on the base space M , and
their possible evolution according to the hierarchy linked to adjacent types. If
singularities are “simple” (finite dimension for the moduli space), adjacencies
are well known, and their evolution can be described in terms of nilpotent vector
fields preserving the R-orbit (see chapters 7 and 8 of this module).

In presence ofG-actions (linked to a classical group or first integrals, e.g.) one
must analyze the behavior of R-orbits w.r.t. the G-action. In this case, one has a
double conjugacy whose study is a an extension of the double action of General
Linear Groups acting on the source V and target space W of a linear map
ϕ : V →W . Roughly speaking, the R-action allows to reduce to canonical types
involving topological transformations on the source space, whereas other G-
actions provide information about other properties linked to integrability issues
in regard to dynamical systems, e.g.

The basic idea consists of “reducing the complexity” of singularities by using
local and infinitesimal symmetries corresponding to functions and their tangent
spaces. They have been used from the last years of the 19th century to solve
ODEs in the Lie algebras framework. For finite-dimensional groups each inde-
pendent symmetry lowers in a unity the dimensionality. The development of a
similar reasoning for PDEs is more difficult because the corresponding infinite-
simal symmetries for variational problems has infinite dimension (E.Noether).
PDEs are local sections of jets spaces. Thus, classification issues of singular
function-germs in Jk(n, 1) for a variational functional is relevant for the inte-
gral approach to Mechanics.

The homogeneous singularities are related to the action of C∗ and respond

10 In more advanced settings, one must add dissipative components which will be modelled
in our approach by using nilpotent operators.
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to a locally conical structure of the solutions of dynamical systems appearing
in different classical mechanics or engineering problems. However, the restric-
tions associated with this type of action are too strict and unnatural in different
applications. nThis has motivated the introduction of quasi-homogeneous sin-
gularities related to the action of finite subgroups (in particular, symmetric or
reflection groups), the study of quasi-homogeneous potentials (and related in-
version problems), the analysis of the (co)homology associated with this type of
functions or super-conformal field theories (Kreuzer and Skarke, 1992), e.g.

Quasi-homogeneous singularities appear in Theoretical Physics (mirrors on
superstrings, non-linear particle dynamics with colliding singularities) to try to
explain from an algebraic point of view the contraction or collapse of topological
structures superimposed on manifolds.

The connections between these aspects and their applicability to the quan-
tization of gravitational phenomena is an advanced research topic that presents
deep connections with complex three-dimensional manifolds that are presented
in module A36; for details and references related to the A-D-E classification of
simple singularities see [Fan13] 11

More recently, one can find applications of Singular Functions Germs to
other scientific or technological areas. To fix ideas, we will restrict ourselves to
the areas appearing in the part II of these notes, i.e. Computational Mechanics
of Continuous Media B1, Computer Vision B2, Robotics B3 and Computer
Graphics B4 (see the fourth section of this chapter for more details). Recent
developments of AI (Artificial Intelligence) provide the nexus between all of
them. Let us illustrate with an “example”:

In addition of extensions of classical energy-entropy functionals, some of
the most relevant ones are linked to the loss function of a model. Roughly
speaking, a loss function tracks the error between the predicted (or expected
in a statistical framework) y the current value of the output of a system, from
an initial state. With this description, one can develop an analytic approach
(in terms of convergence vs divergence), a geometric approach (in terms of a
“volume form”), or a statistical approach (in terms of distribution functions,
e.g.). All these approaches are unified in the AI framework for learning tasks
corresponding to objects or behaviours.

The difference a = y−f(x) (called “residual” in P& S) between the observed
and predicted values of a function f , is the key for a formal characterization of
the the Huber loss function defined as

Lδ(y, f(x)) =

{
1
2 (y − f(x))2 for |y − f(x)| ≤ δ,
δ ·
(
|y − f(x)| − 1

2δ
)
, otherwise.

largely used in robust regression strategies, with application in a lot of knowledge
areas.

11 H.Fan, T.Jarvis and Y.Ruan: “The Witten equation, mirrors symmetry and quantum
singularity theory”, Ann of Maths 178, 1-106, 2013
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The joint management of multiple constraints with only an output suggests
a determinantal approach, where the output is expressed as a the determinant
D of a square matrix with the corresponding stratification by the rank 12. For
non-linear coefficients, the rank stratification is linked to the Jacobian matrix
Jac(D) = (∂D/∂wij)1≤i,j≤n where wij are the local coordinates for the (initially
unknown weights) of the matrix.

(*) In the AI framework, one supposes parametric data to be clustered in
terms of the behaviour of initially smooth functions (the hyperbolic tangent,
typically), whose weights are fitted by minimizing a “loss function”. In practice,
the smooth functions are replaced by ReLU (Rectified Linear Unit) as activation
function. ideally, the loss function has only “puere” critical points corresponding
to the geometry of functional space (as it occurs for Morse functions, e.g.).

(*) In practice there appear “spurious” critical points (labelled as “arti-
facts” of learning processes), corresponding to “degenerate” singularities. Typi-
cal “examples” appear in the A-D-E classification (simple singulariites), where
degenerations are interpreted as “overlapping” of intermediate singularities in
the corresponding unfolding soace.

0.2. Outline of the module A43

The above remarks are a small sample of the deep relations between topo-
logical, differential, algebraic and analytic invariants. Thus, it is necessary to
make a small introduction to the main techniques to be used along this mo-
dule. We have followed a strategy going from coarse topological properties to
finer structures concerning to algebraic and analytical properties for static is-
sues. Differential aspects re-appear in different ways to unify diverse viewpoints,
including dynamical aspects.

A typical example for the interplay between static and dynamical aspects
in different contexts appear from the beginning with the simple harmonic osci-
llators or the Hooke’s law q̈ = −ω2q. where quadratic perturbations given by
quadratic functionals H(q, p) = q2 +p2 do not modify the topology of solutions.
Nevertheless its simplicity, this example displays deep relations between static
and dynamic aspects, stability and genericity which are in the nucleus of larger
developments. The problem becomes less trivial when one substitutes the equi-
librium locus of the parabola by other higher degree Hamiltonian functions on
the Phase space P = TM (see the section 3 of this chapter for more details).

The analysis of mechanisms and lenses along the last years of the 17th cen-
tury are in the origin of Singular Function germs in regard to the study of en-
velopes for mobile points on gears, and the behavior of caustics in Geometrical
Optics. An analysis of contributions performed by Hooke, Newton, Huygens and

12 The extension to (n × p)-matrices is also a determinantal variety which is given by the
vanishing of the determinant of maximal minors of the matrix, with its corresponding rank
stratification.
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Barrow has been reviewed in modern terms and extended to other applications
by V.I.Arnold in [Arn90].

With some exceptions arising from the Russian school (Arnold and his team
in Moscow and Leningrad) and some people of the Liverpool school (Bruce,
Giblin), the development of applications of Singular Function Germs to other
scientific and technological areas is some scarce and sparse. One aim of this
module and other ones of the part II of these notes is contribute to a better
knowledge of foundations with a view to their applications in Engineering. In
the last section of this introductory chapter one can find some snapshots to
encourage young mathematicians and engineers to develop these remarks.

In addition of this enlarged introduction, this chapter has the following five
sections:

1. Local analysis of functions where one remembers some basic notions and
one introduces some tools of Local algebra to unify the language.

2. Classifying singularities where we adopt an increasingly complex strategy
going from regular to degenerate singular geerms. The introduction of
group actions and their corresponding infinitesimal version provides the
key for a systematic approach.

3. Topological properties invovling stability, genericity, and stratifications as
central topics, ending with some remarks about their interplay.

4. Some applications to Engineering with a special regard to the 4 areas deve-
loped in the part II (Geometric and Topological methods in Engineering)
linked to Computational Mechancis of Continuous media B1, Computer
Vision B2, Robotics B3 and Computer Graphics B4.

5. Outline of the module A43 where one specifies goal, methods, relations
with other knowledge areeas and a short description of chapters, ending
with references and some open problems.

0.2.1. Goals of the module

The main goals of the module A43 are the study of singular function germs
in the smooth case En and the analytic case On, and their applications to other
scientific and technological areas. This study includes their topological proper-
ties involving stability, genericity and stratifications of their zero loci. The formal
interpretation is performed in terms of (uni)versal deformations, i.e. “as generic
as possible” in the space of map germs.

To achieve this goal, one uses a collection of techniques arising from several
mathematical areas with a special attention to Local Algebra (it provides a
common language for differentiable and analytic functions) and the Topology of
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spaces of functions, with its natural “stratification” linked to jets spaces Jk(n, 1)
for finitely determined singular function germs.

A relevant novelty w.r.t. the two precedent modules consists of the incor-
poration from the scratch of singularities as a structural part. This approach
provides a support for more comprehensive computational approach by avoiding
their treatment as “exceptions” to be avoided.

The first part of this module (the first four chapters) develops some topics
presented in module 1, although from a more algebraic approach to facilitate a
unified treatment with geometric aspects (typical of GAGA) that are presented
in module A45 if Differential Topology A4 and in module A33 of Algebraic
Geometry A3. The algebraic approach is complemented with an analysis of the
different types of stability linked to the action of groups of Cr-equivalences on
the space of functions.

In the simplest case, the approximation using Morse functions allows us to
show generic evolutions of singular phenomena towards simpler ones with qua-
dratic singularities, controlling the evolution in terms of the topological charac-
teristics of said singularities. Reconstruction of array topology by cell addition
makes it easy to visualize and control evolution for compact arrays.

The extension of the arguments presented in the framework of Morse Theory
to non-compact manifolds, orbifolds, or, even more difficult, to function spaces
with “good metric properties” requires more advanced tools that are only outli-
ned in chapter 4. The introduction of CW-complexes provides a tool to address
the above cases in a framework that extends the finite cell gluing of the com-
pact (Morse) case. In this case, the tools are closer to Homotopy Theory and
its relations with (co)homology theories typical of Morse Theory 13.

However, the reintroduction of deformations or, alternately, variational prin-
ciples allows to recover a typically variational approach, showing some applica-
tions. The basic idea consists of computing critical points for integral functio-
nals. The novelty of this module consists of including degenerate singularities
for functionals.

The second part of the module A43 combines the approaches of R.Thom
on the one hand and V.I.Arnold on the other, jointly with some applications
to other scientific or technological areas. Firstly, basic algebraic results linked
to determinacy and unfolding are presented. They allow recovering topological
invariants for the case of isolated singularities of function germs.

The simplest case correspond to Morse singularities, i.e. non-degenerate cri-
tical points of functions f : M → R, that is, the Hessian matrix of f is non-
degenerate, so the critical points are classified by the signature of the quadratic
form which is R-equivalent to the original function germ.

The next case in difficulty corresponds to corank 1 singularities, that is, such
that rk(Hess(f)) = m − 1. In this case, there is once a variable x where non-

13 An introduction from the point of view of Geometric Topology has been presented in the
module A24 (Geometric Topology) of the matter A2



18

Morse behaviour can appear for a finitely-determine singular germ. The basic
strategy consists of constructing the “most general” (universal) deformations
F : R×Λ→ R of the original f : R→ R. The corresponding map F ∈ Cr(1+`, 1)
is called the unfolding (deploiements in French language) of f

The unfolding F is the key to “control” all possible “degenerations” in terms
of singularities of the second projection π2 : R×Λ→ ×Λ on the space of para-
meters Λ. The study was initially carried out by R. Thom for Ak singularities
given by f(x) = xk+1 with unfolding F (x, λ) = xk+1+λ1x

k−1+. . .+λk−1x+λk.
In view of the sudden changes in the topology of the fibres corresponding to the
inverse images of the projection on the space Λ of parameters, Thom introduced
the name of Catastrophe Theory.

Currently, Catastrophe Theory makes part of the Bifurcation Theory in Dy-
namical Systems A46, but in this module one adopts a simpler approach in to-
pological terms by looking at topological changes appearing in their unfoldings.
The review and reformulation of this theory by V.I.Arnol’d and his school has
revealed the ubiquity of the ADE classification in multiple areas of Mathema-
tics, showing unsuspected structural relationships previously scattered in the
literature.

The characterizations of simple singularities provided by Arnol’d was exten-
ded by A.Durfee to 18 types, but recent advances related to deformations of
algebras, quantization of gravitational theories, and mirror symmetries make it
difficult to know the number of equivalent characterizations. For Ak singula-
rities the first description of topological changes in families of function germs
was given by R.Thom in the Catastrophe Theory framework, jointly with an
analysis of stability for solutions cutting the discriminant loci. More general
relations with Classical Groups (described by V.I.Arnold ) open the door for
applications to Physics and Engineering which are introduced in the section 4
of this chapter.

0.2.2. Methodological issues

In this module a progressive approach is carried out with increasing diffi-
culty that goes from the simplest cases to the most complicated. Some of the
latter (such as the one corresponding to quasi-homogeneous singularities, e.g.)
are developed in more detail in module 4, as it requires more sophisticated
algebraic techniques. Due to the abstract nature of foundations, we follow a
top-down approach in most developments of this module. We don’t suppose a
previous knowledge of Local Algebra techniques, which will be introduced from
the beginning by giving the appropriate references for more advanced results.

In a complementary way, it is advisable to try of illustrating basic princi-
ples with a bottom-up approach to improve the initially theoretical approaches
performed along 1960s and 1970s in Physics, Biology, Geology and Engineering.
Bottom-up strategies try of explaining the behavior of complex systems from
data clustering arising from sensors capturing information at different scales.
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Natural hierarchies linked to the scales suggest the introduction of hierarchies,
where previous topological models play an important role due to higher “flexi-
bility”.

The construction of continuous models from discrete data combines techni-
ques arising from Data Mining in Statistics with techniques arising from Pie-
cewise Linear (PL) models in Algebraic Topology to provide a continuous sup-
port for propagation issues. In classical approaches one requires some stronger
smoothness criteria for the support and maps which are not fulfilled in practical
applications. Thus, it is necessary to develop connections between continuous
and smooth frameworks through algebraic and analytic frameworks which allow
any kind of singularities and powerful tools for their treatment.

On the other hand, as smooth functions are a Baire set (some kind of weak
density) in the space of Cr maps for r ≥ 1, they provide enough adaptive
methods for objects displaying singularities. Unfortunately, most singularities
are not even of class C1. Hence, one must enlarge the smooth to the analytic
category. Local Algebra plays a fundamental role for this extension. For compu-
tability reasons, it is necessary to replace convergent developments of analytic
functions by polynomials. Last ones can be interpreted as truncated Taylor
developments. It is necessary to know when this reduction from analytic to al-
gebraic expressions is compatible with regular (diffeomorphisms vs bianalytic)
transformations. Finite determinacy provides the key for this issue.

The extension of this viewpoint to propagation phenomena is important for
analyzing topological properties of related dynamical systems displaying chan-
ges of states or phase transitions. Singular function germs play a fundamental
role for classification issues. So, families of curves cutting out the discriminant
locus on the space Λ of parameters provide the key for controllability issues. In
particular transversal curves to an ordinary cusp in the plan (as discriminant
locus in the plane of parameters) display two stable and an unstable points
(depending on the sign for the slope at the intersection point), e.g.

A better understanding and extension of the above toy example, requires an
analysis of families of hypersurfaces cutting transversally (genericity conditions)
to the Discriminant Locus. Hence, to apply the theoretical results at more com-
plicated singularities than Morse one, it is necessary to have propagation models
linked to flows, able of adapting to diffusion-reaction models, e.g. The simplest
propagation models are described in terms of the evolution of volumetric flows
which are locally given by a functional determinant.

(*) From the statistical viewpoint, Kullback-Leibler divergence provides the
statistical version of the classical Stokes approach of the smooth framework.
The divergence represents the volume element, and the corresponding integral
functional provides a structural model for the flow information. The equivalence
class (up to birational equivalence) of the volume element is the Canonical
Divisor; it is the corner stone for classification issues in the GAGA framework
A32

In the smooth framework, one supposes that the volume form is non-null,



20

and as consequence the determinant bundle det(E) is a rank one vector bundle.
This hypothesis is no longer true in presence of singularities corresponding to
a “degeneration” of the volume form 14. From a global viewpoint, sections of
the bundle E can become linearly dependent by lowering the rank of the matrix
representing the volume form det(E).

Hence, the analysis of critical points of the determinant is a non-trivial ex-
tension of the Morse’s approach (chapter 5 of A41) because the determinant
representing locally the flow divergence has a stratification depending on the
corank of the matrix 15.

0.2.3. From Local Analysis to Local Algebra

The first part of this module (the first four chapters) develops some topics
presented in A41 (Basic Differential Topology). Local Algebra of rings of poly-
nomials is easily adapted to the differential or the analytical framework. Their
extension to finitely determined map germs [f ] ∈ Cr(n, p) is performed by using
the natural structure as En of E(n, p) in the smooth case (or of the On-module
of O(n, p)) given by the components (f1, . . . , fp() of f .

The algebraic approach is complemented with an analysis of the different
types of stability linked to the action of groups of Cr-equivalences on the space
of functions and other Classical Groups. The introduction of group actions eases
the description of eventually bifurcating propagation phenomena. A more global
approach will be performed in terms of Equivariant Stratifications in A45 (Stra-
tifications) and their corresponding Equivariant Bifurcations in A46 (Dynamical
Systems).

In the simplest case, the approximation using Morse functions allows us
to show generic evolutions of singular phenomena towards simpler ones with
quadratic singularities, controlling the evolution in terms of the topological cha-
racteristics of said singularities. Reconstruction of topology of compact smooth
manifolds M by matching cells makes it easy to visualize and control the evo-
lution of simple gradient systems linked to M .

In this module, things are a little bit more difficult. From the geometric
viewpoint, the space Λ of parameters is not a smooth manifold, cells collapse
around a singularities (giving vanishing cycles in the complex case), singularities
display a higher complexity than Morse singularities, and there can appear
infinitely many different types in the neighborhood of a singularity, even for
families of degree four curves.

The extension of the arguments presented in the framework of Morse Theory
to non-compact manifolds, orbifolds, or to function spaces with good metric

14 A statistical inteerpretation in terms of loss functions has been sketched below at the end
of the paragraph §0,1,4.
15 A global topological analysis in terms of Euler obstruction class appears in the chapter 3 of

the module A35 (Enumerative Geometry) for analytic varieties (J.L.Verdier and G.Gonzalez-
Sprinberg).
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properties requires much more advanced tools that are only outlined in the
module A41. The introduction of CW-complexes provides a tool to address the
above cases in a framework that extends the finite cell gluing of the compact
(Morse) case.

In this case, topological tools are closer to Homotopy Theory (in terms of
deformations) and its relations with (co)homology theories typical of Morse
Theory 16. However, the reintroduction of deformations or variational principles
allows to recover a typically variational approach, showing some applications.
The topological formulation is performed in terms of k-jets spaces.

Along the module A43 one takes a quite different approach. Instead of looking
at the topology of the support (a CW-complex, e.g.) one looks at the topology of
spaces of functions. The main object is again the Jets spaces Jn,p (formal Taylor
developments) which have been introduced in the chapter 2 of the module A41

(Basic Differential Topology).
A novelty of this module consists of using algebraic properties linked to mo-

dules and algebras of derivations linked to quotients R/I of a ring R by an
ideal I, or M/N of a module M by a submodule N , e.g.). Thus, the Commu-
tative Local Algebra plays a fundamental role to unify analytic and algebraic
approximations as intermediate between PL and smooth frameworks. In the
next module A44, Homological Algebra plays a similar fundamental role for this
unification.

An almost obvious limitation is the strictly local nature of the approach
performed along this module A43 and the next one A44. In other words, one ig-
nores global aspects linked to topological characteristics of an eventually curved
support and the possible apparition of “holes”, “tunnels” r similar phenomena
appearing in higher dimensions. They are crucial for the analysis of propagating
phenomena, and they can appear in a natural way in a lot of applications to
other scientific and technological areas (as “obstacles” or unknown zones in the
static case, e.g.).

Along these notes we will use different Group Actions and Divergence Flow
as algebraic and analytical tools to ease the transition between local and global
issues. Their confluence in Stratified G-equivariant theories has been developed
by F.Kirwan along the 1980s; some details appear at the end of the module A45

in regard to the minimization of the Yang-Mills functional. Roughly speaking,
instead of taking the divergence flow (evolving volume from) one takes the cur-
vature flow (interaction of the support with the environment), and instead of
minimizing volume flow along paths one minimizes the curvature functional in
the space of connections on a Principal Bundle.

Again, critical points of the YM-functional provides “ooptimal solutions?
to solve YM equations (instantons, e.g.). The YM-functional appears in the
Standard Model (unification between electromagnetic, weak and strong forces).
It would be interesting to extend the YM functional by allowing more general

16 An introduction from the point of view of Geometric Topology has been presented in the
module A24 (Geometric Topology) of the matter A2.
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singularities than those appearing in Morse stratified theory.
A “toy model” of this approach consists of looking at simpler curvature flows

in surfaces (linked to mean or total curvatures, e.g.) and the corresponding
energy functionals (such as the Wilmore energy functional, e.g.). This approach
will be developed in Computational Dynamics B15 in Computational Mechanics
of Continuous Media B1, Video restoration B25 in Computer Vision B2, more
adaptive grasping and handling for manipulation tasks B31 in Robotics B3, and
advanced rendering models B44 in Computer Graphics B4.

0.2.4. A short description of contents

The module A43 contains the following chapters:

1. Local Algebra for Function spaces Basic notions- The classification pro-
blem. Nakayama’s lemma. Local algebra of a singularity. Weierstrass Pre-
paratory Theorem. Impact phenomena

2. Stability. Actions of homeomorphisms and diffeomorphisms. Topological
stability and infinitesimal stability. Unfolding.

3. Milnor Theory. Revisiting Morse Theory. Isolated singularities of hyper-
surfaces. Milnor algebra. Tjiurina algebra. Invariants. Relations between
invariants

4. Algebraic Classification Equivalence relations. Tangent to Function Spa-
ces. Finite determinacy. Normal neighborhood. Canonical forms. Homo-
geneous singularities. Quasi-homogeneous singularities.

5. Catastrophe Theory. Some motivations. Basic types. Unfoldings. The ADE
classification of simple singularities. different characterizations. Relations
with groups.

6. Applications to Natural Sciences: Geometric Optics. Analytical Mecha-
nics. Catastrophes in Biology and Geology.

7. Applications to Engineering: Wave fronts in Fluid Mechanics. Evolving
contours in Computer Vision. Envelopes in Mechanics. Rendering for sce-
nes and characters.

8. Applications ot Economic Theory: Speculative bubbles in microeconomics.
Business Cycles. Stagflation in Macroeconomics, Limits of growth in Inter-
national Economics, following [Ros91]. Volatility and speculative financial
markets. Cryptocurrencies.

9. Applications in Biomedical Sciences: Basic Physical-Chemical reactions.
Pharmacological design. Epidemiological models. Chaotic cycles in over-
lapping generations models
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0.3. References for this introduction

References must be understood as an invitation to complete the reading of
these notes. They are not exhaustive, nor the most recent ones. Each reader must
reconstruct his/her own “visioin” according to his/her interests and preferences.

0.3.1. Basic bibliography

One includes only manuals or textbooks which are relevant for subjects deve-
loped along this chapter. More specific references appear along the text, and at
the end of the chapter. Only some general references related to the more “clas-
sical” aspects related to the Differential Topology of Applications Singularities
framework up to the early 1980s are included.

With these restrictions, most of the literature is dominated by the works of
V.I.Arnol’d and his school on the Russian side and C.T.C.Wall and his area of
influence on the Western side. For a more complete bibliography, the references
of the books by Arnol’d, Poston and Stewart or Wall cited below should be
consulted. We include only bibliographical references to ease the introductory
character of these notes. Original results can be traced out from these references.

[Arn84] V.I.Arnold: Catastrophe Theory, Springer-Verlag, 1984.
[Arn90] V.I.Arnold: Huygens and Barrow, Newton and Hooke. Pioneers in

Mathematical Analysis and Catastrophe Theory. From evolvents to quasi-crystals,
Birkhauser, 1990.

[Arn91] V.I.Arnold: The Theory of Singularities and its Applications, Lezione
Fermiani, Pubblicazioni della Classe di scienze, Scuola normale superiore, Pisa,
1991.

[Bru92] J.W.Bruce and P.J.Giblin: Curves and Singularities (2nd ed), Cam-
bridge Univ.Press, 1992.

[Dim92] A. Dimca: Singularities and topology of hypersurfaces. Springer-
Verlag, 1992.

[Loo84] E.J.N. Looijenga: Isolated singular points on complete intersections,
Cambridge University Press, 1984.

[Ros91] J.B.Rosser, Jr: From Catastrophe to Chaos: A general theory of Eco-
nomic Discontinuities, Kluwer, 1991.

[Tho75] R.Thom: Structural Stability and Morphogenesis. Benjamin, 1975.

Other more advanced references which will be used along in next sections
and chapters are the following ones:

[Arn85] V.I.Arnol’d, A.Varcenko and S.Gusein-Zade: Singularities of Dif-
ferentiable Mappings (2 vols transl, by I.Porteous), Birkhauser, 1985 (French
translation in Mir, 1982).

[Bro75] T.Broecker, and L.C. Lander: Differentiable Germs and Catastrophes.
LMS Lecture Notes Vol. 17. Cambridge University Press, 1975
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[Gol73] M.Golubitsky and V.Guillemin: Stable Mappings and Their Singu-
larities, Springer-Verlag, GTM 14, 1973.

[Mil63] J. Milnor:Morse Theory, Princeton Univ. Press, 1963.
[Mil68] J. Milnor: Singular points of complex hypersurfaces, Ann.of Math.

Stud.,61, Princeton University Press, 1968.
[Orl92] P. Orlik and H. Terao: Arrangements of hyperplanes, GMW 300.

Springer-Verlag, 1992.
[Pos78] T.Poston and I.Stewart: Catastrophe Theory and its Applications,

Pitman, 1978.
[Wal04] C. T. C. Wall: Singular points of plane curves, Cambridge University

Press, 2004

0.3.2. Software resources

Singular provides a support for a lot of applications based on Local Algebra.
To my knowledge, there are no still software tools for classification issues in
Jets spaces Jk(n, p). The avaialbility of this software woudl simplify a lot of
tedious computations used for classification issues in the smooth or the analyticc
frameworks.

Usual software resources are based on symbolic Programming or their ex-
tensions to Functional Programming. Connections with OOP (Object Oriented
programming) are very scarce, and they are waiting for their development still

Mapple V: https://www.maplesoft.com/products/Maple/

SINGULAR: https://www.singular.uni-kl.de/Manual/4-4/

... any suggestion is welcome

Final remark: Readers which are interested in a more complete presentation
of this chapter (in spanish laguage) or some chapter of the module A43 (Singular
function-germs),please write a message to javier.finat@gmail.com.


