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This draft is a short version of the introduction to the module A42 (Fiber
Bundles) of the matter A4 (Differential Topology).

Prerequisites.- It is necessary to have some basic knowledge of Differential
Geometry A1 and Algebraic Topology A2. Analogous to the Differential Geo-
metry approach for Banach spaces, we consider some differential operators on
function spaces with minimal elements of Functional Analysis.

As usual, in addition of this introduction and a final chapter with Comple-
ments , materials are organized in four sections. They contain a list of exercises
for self-verification of understanding of materials. Subsections or paragraphs
marked with an asterisk (∗) display a higher difficulty and can be skipped in a
first lecture.
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0.1. Introduction to the module A42

A general motivation for superimposed structures on a base space B is locally
given by the existence systems of Cr-equations Eb “depending” on the base
point b ∈ B, and the need of giving criteria for existence of solutions, and
explicit methods for their resolution.

Typical values for r correspond to r = 0 (topological equations), r =)∞
(differentiable equations), r = rat (Algebraic Geometry) or r = ω (Analy-
tical Geometry).. In correspondence with these examples. the base space
B can be a topological space X, a smooth manifold M , or an algebraic or
analytical variety X.

From the global viewpoint, systems of local equations are modelled as
local sections s : U → E |U of a bundle, a sheaf or a fibration, where E
represents the total space obtained as a “recollement” of fibres or stalks.

Resolution of systems of Cr-equations has two parts linked to existence
(or alternately, obstruction) and characterization of sets of solutions, in
terms of properties of the base space B (initially a manifold M or a variety
X).

In the topological or smooth categories, local systems of solutions for Cr-
systems of equatons can be extended to yh global case, by using partitions
of unity. This result is no longer true in the algebraic or the analytic case.
There can appear “obstructions” to prolongation. even in the complex case.
They are expressed in terms of the non-vanishing of the first cohomology group.
So, vanishing cohomology groups is key to warrant the absence of any kind of
“obstructions”.

Locla systems of equations can involve to “higher order” derivations or dif-
ferentials. Their resolution is formulated in terms of higher degree cohomology
groups, whose vanishing plays again a central role for existence of prolongation
issues. So, the introduction of cohomology groups is the key to express for the
space of solutions for systems E of equations. The cohomology is an homotopy
type invariant (to be interpreted as some kind of “deformation”). Hence its rank
(or the dimension if they are vector spaces) provides topological invariants. So,
the main results linked to the corresponding Cr-categories are

Vanishing theorems for the cohomology which are linked to the non-
existence of “obstructions” to the existence of solutions or the prolongation
of local solutions in the analytic case.

Identification of obstructions to solvability in terms of the cohomology of
the base space B.

Explicit computation of the dimension of spaces of solutions in terms of
intrinsic invariants, with the Index Theorems as the central paradigm of
this module.
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Relations between invariants corresponding to maps f : N → P between
smooth manifolds or morphisms Φ : E → F between superimposed struc-
tures (bundles, sheaves, fibrations).

As always, we start with the regular case, before extending to more general
cases. These extensions are justified because the “dependence” w.r.t. the base
point b ∈ B can be regular or not. Irregular cases display “jumps” or disconti-
nuities in “fibers” which are modelled as singularities and developed from the
module A43. In the regular case, the Cr-equivalences in the base space are “lif-
ted” to the total space E = ∪b∈BEb of the superimposed structure ξ on B by
using local triviality conditions.

For r = 0 (topological case), regular transformations on the base space
B are given by homeomorphisms (bijective and bicontinuous transforma-
tions); they are useful to compare discrete structures, and superimposed
symbolic structures (graphs, e.g.).

for r = ∞, regular transofrmaitons are given by diffeomorphisms (dif-
ferentiable homemorphisms with inverse differentiable); they provide the
support to compare different kinds of superimposed geometric structures
(Riemannian, Conformal, Symplectic, Contact) or other G-structures;

for r = ω, regular transformations are given by bianalytic maps, which
allow to compare the local behaviour around singularities of varieties or
analytic maps between analytic spaces;

for r = alg, regular transformations are given by birational maps (rational
maps with rational inverse) for r = rat, which allow finite-dimensionality
reduction in terms oflocal k-algebras.

Fiber Bundles, Sheaves and Fibrations provide a support for connecting local
and global aspects in terms of superimposed locally trivial Cr-structures on Cr-
varieties. The simplest case corresponds to vector bundles which are given by
a 4-tuple ξ = (Eξ, πξ, Bξ, Fξ) where Eξ is the total space, Bξ is the base space
πξ : Eξ → Bξ the projection map, and Fξ the generic fiber, fulfilling the following
conditions:

There exists an open covering U = (Ui)i∈I such that π−1ξ (Ui) 'Cr Ui×Fξ
for all i ∈ I.

The above Cr-equivalence is restricted to an isomorphism π−1ξ (b) 'b {b}×
Fξ between the specific fiber π−1ξ (b) at b and the generic fiber Fξ which
depends on the base point b ∈ B (is not canonical).

The restriction to b ∈ B of Cr-equivalences (φj ◦ φ−1i ) : φi(Ui ∩ Uj) →
φj(Ui∩Uj) on the overlapping of the base space, induce an automorphisms of the
specific fiber π−1ξ (b) at the base poitn b ∈ B, which is represented by a regular
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matrix gij ∈ Aut(Fξ) belonging to some classical subgroup G og GL(r;R). The
simplest case corresponds to a vector bundle ξ of rank r = dim(Fξ) ' Rr, where
Aut(Fξ) = Aut(Rr) = Gl(r;R) can be represented by regular (r × r)-matrices,
i.e. with non-vanishing determinant. Typical examples already seen in A12 are
tangent and cotangent vector bundles, and their tensor products.

Local triviality conditions π−1(Ui) 'Cr Ui × F for the open sets Ui of a
covering U of the base space B, and the algebraic structure of fiber Fb :=
π−1(b) 'Cr F (generic fiber), are the key to reduce a difficult topological pro-
blem (relative to Cr-equivalences) to an easier algebraic problem in terms of
isomorphisms between simple algebraic structures (vector spaces. groups, rings,
modules) corresponding to fibres on different points.

In particular vector bundles can be interpreted as the result of matching
“lifted local systems” of linear equations given on open subsets Ui ⊂ Bξ to the
total space Eξ of the bundle ξ. This interpretation explains the ubiquity and
the utility of Fiber Bundles (including vector and principal bundles) or more
general “fibrations”.

The chapter provides a support for Differential Geometry A1, Algebraic and
Analytical Geometry A3, or Conformal Geometry, between other for the static
case. Furthermore, it can be applied to Symplectic and Contact Geometries
on the Phase Space P as basic patterns for Analytical Mechanics. Algebraic
Topology A2 and some topics of Functional Analysis, and their applications to
Theoretical Physics.

More formally, in the continuous framework the lifting is given by local
sections, i.e. Cr-maps s : U → Eξ such that πξ ◦ s = 1U (identity map on U).
Typical examples are vector and co-vector fields (differential forms). Intuitively,
a Cr-vector bundle (resp., a fibration) is a collection of vector spaces (resp. Cr

-varieties) parameterized by the Cr-variety Bξ, which is the base space.
This very general description eases the extension to applications of the dis-

crete or probabilistic framework, Theoretical Physics and Engineering areas in-
cluding Fluids Mechanics B1, Computer Vision B2, Robotics B3 and Computer
Graphics B4 and mutual interrelations through transversal areas such as AI and
Advanced Visualization, e.g.. 1

The Simplest examples of Fiber Bundles are given by the Cartesian product
X × Y of two topological spaces; these examples are called “trivial” because
they are globally given as a Cartesian product, i.e. do not display any kind of
“twisting”. The simplest model of non-trivial twisting is given by an infinite
Moebius band on the central circle S1 corresponding to the “equator”.

More general Fiber Bundles and fibrations are obtained by matching local
trivializations by using compatibility between local charts (Ui, φi) in the base
space Bξ. Thus, the total space inheritates a Cr.structure, also. Similar strate-
gies can be adapted to the discrete case and to parametric Statistics (useful for
the Geometric Information Theory).

1 The adaptation to the discrete framework will be developed in several modules of the part
II of these notes.
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To fix ideas, we initially assume that the base space B is initially a smooth
manifold M , where we have developed examples given by tangent bundle τM =
(TM, π,M,Rm) and the cotangent bundle τ∗M = (T ∗M,π,M,Rm) whose pro-
perties have been described in the module A12 (Linearization) of Differential
Geometry A1. Their extension to Tensor Bundles has been developed in the
module A13.

This approach is immediately extended to the Algebraic and Analytic Geo-
metry A3. by replacing local diffeomorphisms on open subsets equivalent to Rm,
by birational or bianalytic equivalences by using the affine structure instead of
(pseudo-)Euclidean spaces. Similarly, vector and covector fields are replaced by
derivations and differentials on quotients A/I of a ring A by an ideal I.

In the same way as for other areas of Geometry and Topology, classification
issues occupy a central place. Absolute classification involves to “intrinsic” data
of the base space B given usually by a smooth manifold M or a Cr-variety
X; intrinsic means that it is independent of the embedding or the immersion.
In a complementary way, the relative classification involves to superimposed
structures on maps f : X → Y on the bases of fibrations. An important problem
is to find relations between intrinsic invariants (for the base space, e.g.) and
“extrinsic characters” (depending on embedding, e.g.). Typical “examples” are
given by

The first and second fundamental forms (for intrinsic and extrinsic geo-
metry, respectively) of a smooth surface in R3 in the Differential Geometry
of Surfaces which are related through Gauss-Peterson-Mainardi-Codazzi
formulae (see chapter 3 of A10 for more details).

Plucker formulae for algebraic curves linking the genus with projective
character linked to a projection (see the chapter 6 of the module A31 for
more details). These formulae were extended to complex algebraic surfaces
which are generic projections of a regular surface in P5 by Salmon, Cayley,
Zeuthen and Pieri (modern proof by R.Piene, 1977). Along the decade of
1930s, Roth has given more than 50 formulae involving relations between
intrinsic and extrinsic characters, but some of them are wrong. A complete
proof for complex threefolds with ordinary singularities in CP4 has not
proven, still 2.

Intuitively, extrinsic approaches have in account “interactions with the envi-
ronment” which are linked to immersions or submersions. The interplay between
intrinsic and extrinsic approaches is crucial for applications in Physics and En-
gineering. In geometric terms, the normal bundle is the support for modelling
interaction with the environment. In presence of singularities, the normal bundle
must be replaced by the conormal bundle introduced in A33.

Some related problems concern to the 3D + 1d modelling of evolving so-
lid deformable objects, and their corresponding applications developed in B36

2 See the module A36 (Algebraic and analytic Complex Threefolds) for an introduction,
including my own proofs for some of these formulae.
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(Three-dimensional Video) in B3 (Computer vision), B45 (Animating the Hu-
man Body) and B46 (Animats) of B4 (Computer Graphics). Vector bundles or,
more generally, fibrations provide simplified models for all of them. In all the-
se cases “events” are modelled in terms of singularities of Cr-maps (or more
general fields), for which one must describe the corresponding tangent spaces 3.

For Vector Bundles on smooth manifolds, “differential characters” are given
by “characteristic classes” of vector bundles (measuring their “twisting” e.g.).
Formally, they are cohomology classes Hq(M ;R) of the base space (by the
topological triviality of the fibers), where R is usually Z, Z2, Q, R or C. Their
extension to eventually singular algebraic or analytic varieties is more complex,
and requieres some elements of Stratification Theory A45.

The non-vanishing of characteristic classes express the “obstruction” to solve
system of equations or to extend local solutions corresponding to the superimpo-
sed structure ξ. From the dual viewpoint, they can be geometrically interpreted
as dependence loci of initially independent sections of the vector bundle (in-
cluding the vanishing or indeterminacy of some of them). A general treatment
of characteristic classes is performed in the chapter 8. Schubert cycles provi-
de a geometric interpretation in terms of loci where different sections become
dependent between them 4

An important tool for classification of vector bundles is given by (relations
between) Cr-invariants. For r = 0 one finds the simplest topological invariants
(such as Betti numbers or Euler-Poincaré characteristic, e.g.), whereas for r =∞
(resp. r = ω) one has differentiable (resp. analytic) invariants given by the
number of l.i. smooth ve holomorphic q-forms. As always, smooth structures are
simpler than analytic ones, and consequently, must be explained before to take
them as an “ideal model”. In this way, “characteristic classes”provide a quite
general approach to compute invariants of the real, complex,or cuasi-complex
structure, e.g.

This introductory chapter gives a coarse idea about the basic strategies for
the calculation of invariants associated with Cr-structures, as well as the outline
of some applications to Theoretical Physics and Engineering. The initial moti-
vation for the study of these structures comes from considering the simultaneous
resolution of systems of equations (differential, algebraic, analytical) given on a
base space B (initially a PS-manifold M ; later, an algebraic or analytic manifold
X) that depend on the base point b ∈ B.

In the framework of Local Differential Analysis, the systems to be considered
are locally given by differential systems S that are solved by using analytic
(integro-differential methods), algebraic (Lie groups) or numerical methods. The
extension of local methods to the global case (Differential Topology) leads to
give integrability conditions for distributions D of vector fields vi(x) or systems
S of differential forms wj(x) = vj(x)∗ defined on an initially smooth manifold
M and, later, on an algebraic or analytical variety X.

3 See details in the mdoules A43 (Singular function germs) and A44 (singular Map Germs).
4 A classical version is developed in the module A34
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(*) Next steps are linked to the study of modules over a ring D of differen-
tial operators. Some motivations arise from the study of linear PDEs by using
topological and algebraic methods (Algebraic Analysis initially developed by
Sato). This theory, labelled as D-modules, appears as a natural extension of the
Grothendicek approach applied to polynomials on D. It was initially developed
by Kashiwara at the early 1970s. Some general issues have been developed in the
chapter 6 of the module A33 (Sheaves, Cohomology, Schemes). Some connections
with PDEs appear at the end of the mdoule A46 (Dynamical Systems).

Some more basic motivations concern to the simultaneous consideration of
several trajectories γi(x) (integral curves of vector fields); the finite collection
of vector fields generate a distribution D on a manifold M . Similarly, one has a
finite collection of constraints which are given as the integral hypersurfaces of
differential forms ωj ; they generate a differential system S on M .

However, “most” distributions D and systems S are non-integrable, because
the Frobenius Theorem imposes high codimension constraints to be fulfilled.
A basic strategy consists of identifying “near” integrable distributions D or
systems S, acting as “organizesr” for the dynamics. Deformations of changing
tensors to be tracked on manifolds M of more general varieties X. All of them
are initially represented by deformations of local sections of a tensor bundle 5.

In the simplest cases, partial integrability is “translated” to locally trivial
decomposition of “foliatioins” (in their horizontal and vertical parts) which ex-
press partial or global “decoupling” for solutions of distributions and systems.
Due to the presence of singularities, their space-time evolution can display any
kind of irregular behaviours, whose hiearchies are analyzed in terms of singular
map-germs A44.

In advanced applications to Physics and Engineering the decoupling in ho-
rizontal and vertical components, involves to partially integrable distributions
and systems representing traceable paths under constraints which are managed
in terms of tensors. So, Differential Topology deals with the study of proper-
ties of the space-time “evolution” of tensors on PS-manifolds to be extended to
varieties X in the absolute and the relative frameworks.

0.1.1. Goals and applications

The focus of this module A42 follows a models-based or top-down approach.
Tensor fields are the natural extension of multilinear maps in Linear Algebra.
Tensors provide the general approach to non-liner multi-variable models having
in account multiple weighted trajectories and constraints. So, tensor fields are
ubiquitous in all scientific and technological areas, including AI with TensorFlow
as paradigm in recent developments of Deep Learning.

By this reason, the section 4 of this introduction outlines selected applica-
tions related to some Engineering areas labeled as B1 (Continuous Media Me-
chanics), B2 (Computer Vision), B3 (Robotics ) and B4 (Computer Graphics).

5 See the modules A45 (Stratifications) and A46 (dynamical systems) for more details.



8

All of them are developed in the part II of these notes. Furthermore mathema-
tical modeling, the main problem is the estimation and tracking of tensor fields,
which is performed by Tensor Voting procedures.

Obviously, multilinear approaches are not enough for a lot of geometric pro-
perties whose evolution can require higher order derivatives which are not beha-
ved as tensors. Jets spaces Jk(n, p) and their corresponding fibrations provide
the right framework for their treatment 6

Beyond the mathematical considerations that are developed along the whole
module A42, there are currently a growing number of applications from fiber
bundles to very diverse areas of knowledge. The best known and sophistica-
ted applications are related to Theoretical Physics; Yang-Mills nonlinear PDEs
provide the framework for the standard model (unification of electromagnetic,
weak and strong interactions) and the hard core of the Fiber Bundles that was
developed in the mid-1960s.

The interaction of Theoretical Physics with Differential Topology has been
one of the most important sources for the joint development of both. Fields-
based approaches for Vector Bundles and connections on Principal Bundles play
a fundamental role for all these issues. Propagation models based on symmetries
play an important role for replication of basic patterns; breaking symmetries
will be introduced later. In view of the “universal” character of G-homogeneous
spaces, a challenge is the extension of fields and connections to other knowledge
areas. In the part II of these notes, we adapt some of these ideas to Mathematical
Engineering; it is worth highlighting applications to areas as diverse as

An assistance to design and 3D modeling (including CAD/CAM models)
from a finite set of views by using groups of rigid transformations whose
foundations are developed in the module B11 (Computational Geometry).
A more detailed approach by using deformations of rational varieties given
as product of weighted rational curves (Algebraic Geometry) is developed
in the B41 (Modelling) of B4 (Computer Graphics).

The simulation of smooth deformations for PL-structures in the CMCM
(Computational Mechanics of Continuous Media) developed in B1. The
goal is to identify dynamical behaviors of flexible structures in terms of
PDE with diverse applications (aircraft bodies or fuselage, for example).

The development of dynamical models in Biomedicine, including biome-
chanical devices (from exoskeletons or reciprocators to cardiac devices,
e.g.), the modeling of filamentous structures in artificial muscle tissues.

The functional modeling and simulation in ANN (Artificial Neural Net-
works) in terms of tensor products of bundles, e.g. In our approach, de-
tectors and descriptors in AI are modeled in terms of sections of bundles,
whereas classifiers are modeled in terms of isomorphism classes of bundles.

6 Some basic “examples” have been introduced in the chapter 3 (Intrinsic properties of
Surfaces) of the module A10 (Differential Geometry of Curves and surfaces).
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The development of local vs global models in Economic Theory, including
topics such as micro and macroeconomic adjustment, International Tra-
de or Financial Economics, e.g;. in terms of Foliations or more general
Fibrations linked to structural systems of equations for each subarea of
Economic Theory.

Simplified models in Meteorology to facilitate understanding of the dy-
namic interaction between atmosphere, sea and land, as fiber bundles on
three-dimensional PS-manifolds.

Unfortunately, there is no a unified treatment of all the above topics in the
literature. Along these notes, we will limit ourselves to some applications in
an Information Society Technologies (IST) framework. The first integration of
Differential Geometry and Parametric Statistics has been performed in GIT
(Geometric Information theory) by S.T.Amari et al [Ama16]. In the part II
of these notes, one sketches several extensions to Topological (TIT), Kinema-
tic (KIT) and dynamic Information Theory (DIT), by using the corresponding
discrete veersions for each one of them.

Some transversal Engineering areas to all these topics and the matters Bi
(mentioned above) are given by Advanced Visualization and Artificial Intelli-
gence. A highly non-trivial challenge is the development of reliable models and
software tools for automated tasks in both transversal areas. Advances in this
dom are being performed in AI terms by using automatic generation of multi-
media contents in Deep Learning.

Some of the most interesting examples are related to Machine Learning Sys-
tems that began to develop in the 1990s. In particular, the formulation of simul-
taneous learning of “evolving quantities” (applicable in all the above “ examples
”) is formulated in terms of learning k -dimensional subspaces in the SOM fra-
mework [Koh97] 7.

In our approach, learning subspaces becomes a problem of convergence in a
superimposed statistical Grassman bundle, or more general, Flag bundles. Both
of them can be easily extended to their corresponding algebraic versions in terms
of Modules. For Grassmann Bundles see [Gro71] 8. Flag bundles are modelled
in a similar way.

0.1.2. From absolute to relative cases

The commented examples of the precedent paragraph, show how in despite
the abstract nature of most materials presented here, there is an enormous
amount of interactions between scientific and technological aspects that are
transferred to everyday applications in the real world. An “example” is given by
Adaptive Subspaces for Self-Organizing Maps [Koh97], which can be understood

7 T. Kohonen: Self-Organizing Maps (SOM), 2nd ed , Springer-Verlag, 1997
8 A.grothendieck and J.Dieudonné: Eléments de Géometrie Algébrique I, GMW 166,

Springer-Verlag, 1971.
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as an AI-based reformulation of the Gauss map. It can be understood as a
precedent of more advanced Learning Manifolds techniques commonly used in
Deep Learning.

To achieve this goal, it is convenient to remember some basic notions relating
several Cr frameworks. To fix ideas we will restrict ourselves to the topological
case r = 0 and the smooth case r = ∞, because the last one is roughly spea-
king“dense” (Baire sets) in Cr for r ≥ 1. Some connections with the ubiquitous
Data Mining in Engineering arise from the superposition of PL-structures to
discrete data distributions, and the evaluation of differences between PL and
PS-structures which are developed in this module.

From a theoretical viewpoint, the weakest situations for a Cr-bundle struc-
ture corresponds to r = 0, i.e. a m-dimensional topological space X endowed
with a covering U = (Ui)i∈I such that Ui is C0-equivalent (homeomorphic) to
Rm via ϕi, where the compatibility condition ϕj ◦ ϕ−1i is a C0 -equivalence
(homeomorphism) between the open sets ϕi(Ui ∩ Uj) and ϕj(Ui ∩ Uj) for Rm.

In the relative case, classification of Cr-maps F : X → Y is performed in
terms of Cr-equivalences acting on the source and target spaces, or, alternately,
on the graph of the Cr-map. This gives the right-left action or the contact
classification. This sounds very nice, but the problem is that, up to very simple
cases, there are no effective criteria for constructing Cr-equivalences for usual
values of r = ∞ (diffeomorphisms), r = ω (Bianalytic equivalence) or r =
rat (birational equivalence) corresponding to Differential, Analytic or Algebraic
Geometry. Thus, we introduce additional constraints.

A Cr-morphism Φ : ξ → η between two vector bundles is a pair (φ, f) where
f : Bξ → Bη and φ : Eξ → Eη are Cr-maps such that φ(Fξb) ⊆ Fη(f(b)),
and πη ◦ φ = f ◦ πξ. The description for Principal Bundles P = (P, π,B,G) is
similar, but by replacing linear maps between vector spaces by homomorphisms
between groups. The equality between composition of maps can be represented
by the commutativity of the following diagrams:

Eξ → Eη
↓ ↓
Bξ → Bη

and
Pξ → Pη
↓ ↓
Bξ → Bη

corresponding to vector and principal bundles. Morphisms between fibrations
can be thought as relations between “behaviors” (locally given by systems of
equations) on two related base spaces. In general the restriction map of φ the
fibers is not injective or surjective, in such way that we have a short exact
sequence

0→ Ker(φ |Fξ (b))→ Fξ(b)→ Fη(f(b))→ Coker(φFη (f(b)))→ 0

If Ker(φ |Fξ (b)) = 0 one saya that φ is a monomorphism (or injective
morphism) at b ∈ Bξ. If If CoKer(φ |Fξ (f(b))) = 0 one saya that φ is an epi-
morphism (or surjective morphism) at f/b) ∈ Bη. In the smooth case, the above
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maps are called immersions and submersions, respectively, and provide criteria
for constructing submanifolds, e.g. In both cases, the Jacobian matrix repre-
senting the differential is regular, i.e. has maximal rank. The natural duality
between Ker(ϕ) and Coker(ϕ for vector spaces is translated to superimposed
structures corresponding to fiber bundles.

In general, the morphism ϕ : ξ → η between bundles “linearizing” the map
f : Bξ → Bη is not necessarily regular, and the lack of regularity of the morphism
Φ = (φ, f) is “measured” in terms of loci where the Kernel or the Cokernel is
null. These conditions can correspond to changes of state in the base space or
“phase transitions” in the total space of the vector bundles. In terms of dy-
namical systems they correspond to bifurcation phenomena, In terms of group
actions they correspond to breaking symmetries. Their combination gives phe-
nomena of G-equivariant bifurcations. Last ones are very common in all the
modules of the part II of these notes.

Very often, the condition of vector or principal bundle is too strict and ideal,
because the structure of the fiber is too strict, and can not be fulfilled from
experimental data. A relaxation of topological constraints involving the fiber
leads to the notion of Cr -fibration (see A24 for a more extensive treatment) or
“sheaf” (see A33 for more details and references).

Intuitively, a Cr-fibration is a “family” of Cr-varieties that varies conti-
nuously with respect to a Cr-base space B. More formally, we denote a Cr-
fibration by means a 4-tuple ξ = (Eξ, Bξ, Fξ, πξ), where Eξ is the total space,
Bξ the base space, Fξ the fiber of ξ and πξ : Eξ → Bξ the projection maps
verifying that

the topological local triviality π−1(Ui) 'Cr Ui×F for the fibered structure,
where (Ui)i∈I is a covering U of open trivialization subsets of the base
space B; and

a non-canonical algebraic isomorphisms π−1(b) ' {b} × F (i.e. depending
on the base point b ∈ B) between the general fiber F and the specific
fibre π−1(b), which is the restriction of the precedent Cr-equivalence to
the base point b ∈ B.

The notion of “local section” s : U → π−1ξ (U) 'Cr U × F is the key to
“lift” the information from the base space Bξ to the total space Eξ. A local
section is characterized by the condition πξ ◦ s = 1U (identity map on U),, and
allows relating the Cr-properties of the fiber, and their regular transformations.
If fibrations have discrete fibers, changes of sheets correspond to “different deter-
minations” and are described by monodromy groups, which is initially thought
as a local representation of symmetric and/or alternating groups. Last ones play
a fundamental role for connecting continuous and discrete approaches which are
developed in the part II of these notes.

The local triviality conditions introduce a local decoupling between the base
space B and fiber F of a fibration that is very useful for maps with “similar”
behavior. In topological fibrations it is only required that the type of homotopy
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be kept constant, so that the dimension of the fiber can “jump” and change its
shape: a point and any contractible space have the same type of homotopy, e.g.

This vague notion adapts to the management of information both in the
continuous case and in the discrete case. It is also compatible with changing
symbolic representations. In particular, as trees (graphs without cycles) are
contractible in any dimension. Hence, they have the same type of homotopy,
which allows the development of expansion-contraction strategies using appro-
priate graph cuts, e.g.. In more advanced stages, we introduce superimposed
structures on graphs (including hypergraphs, e.g.) to incorporate “emebdded
behavioiurs” at different depth levels.

0.1.3. Fields-based approaches

If the base space B is a PS-manifold M , one has an accurate description of
(scalars, vector or covector) fields or more generally, tenros fields as the local
sections of a bundle, and their space-time evolution. This description provides
the key to relate the properties of M with those of the total space Eξ of the
overlapping structure ξ = (Eξ, πξ, Bξ, Fξ) over the base space Bξ. Typical exam-
ples are given by vector fields, differential forms or tensor fields; all of them are
examples of local sections of vector bundles.

Sections and projections are typical operations of Projective Geometry, and
correspond to ubiquitous ascent and descent strategies in many areas of Mathe-
matics and their applications for inverse and forward problems. The insertion
and deletion algorithms provide the corresponding simpler computational tools
to relate processes holding in spaces with different dimensions. Ideally, if we
take a field-based approach to connecting local and global aspects,

a scalar field f is given by a Cr-assignment that takes each base point
b ∈ B in the value that a Cr-local function f : U → R takes in b ∈ U ⊂ B;
In bundle terminology, it is said to be a “ linear bundle ” or line bundle
with range 1. Some typical examples can be the height, depth, or energy
of a particle system, among others.

A vector field v is given by a Cr-assignment that takes each base point
b ∈ B in a vector v(b) ∈ Fξ(b) ' Rm; if the base space B is a manifold M .
The simplest example is given by a tangent vector tbM a M at the base
point b ∈ M to a curve γ through b ∈ M and has a contact of order ≥ 2
with M in b. The set of tangent vectors generates the tangent vector space
TbM toM in a base point b ∈M . A r-dimensional distribution D overM is
a collection of r vector fields that are “ generically ” independent. Typical
examples are given by the simultaneous consideration of trajectories for
different moving points.

A co-vector field h = v∗ represented by a linear form (corresponding to
an evolving hyperplane) is given by a Cr -assignment that to each point
base b ∈ B takes you in a co-vector h(b) ∈ Fξ(b)∗ ' ( mathbbRm)∗, that
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is, a linear form varphi : Fb → R defined on the fiber Fb. If B is a smooth
manifold M and Fb = TbM is the tangent space, then a covector is a
1-differential form ω defined on M , that is, a linear constraint given by a
hyperplane at each point. A s -dimensional S system onM is a collection of
s differential forms that are “ generically ” independent. Typical examples
are given by the external restrictions in a scene or the internal ones of the
mechanisms in charge of generating movement, e.g.

A Ck-tensor field t of type (r.s) is given by a Ck -assignment that at each
base point b ∈ B assigns a formal product of r vector fields and s differen-
tial forms with coefficients given by scalar fields. Intuitively, it corresponds
to consider r trajectories and s (eventually evolving) constraints at each
base point b ∈ B. The application to traffic scenes with r mobile agents
and s evolving constraints provides almost obvious examples of tensors
(see §4,3 for more details).

The classical description of different types of fields is local. Let us remember
that a local section of τM or τ∗M is always locally integrable. However, this
result is not longer true when one takes several vector of covector fields. One
needs strong integrability conditions (Frobenius theorems). In particular, the
Global Topology of Varieties poses additional constraints for integrability, which
are interpreted in terms of “singularities, existence of “ holes ” or “ tunnels ”
in dimensions 2 and 3, e.g.. Therefore, the global topology (holes or tunnels,
orientation) of the base space Bξ of the fibration plays a fundamental role.

In Cartesian space Kn there are no “ holes ” or tunnels (any cartesian space
it is contractible to a point). If the base space B does not have the “ homotopy
type ” of a point, the appearance of these significant events (holes or tunnels,
non-orientability) is translated analytically into the existence of multivalued
functions or topologically in the existence of to k -dimensional cycles that cannot
be contracted to a point .. This “ duality ” is already found in Riemann’s
writings and provides one of the keys to understanding the relationships between
homology and cohomology (see the module A22 for more details and references).

0.1.4. Elements for an intra-history

The interrelation between local and global aspects was well known since
the middle of the 18th century (Fagnano, Euler, Legendre). So, for example,
at the beginning of the 19th century the impossibility in Differential Geometry
to express the length of the arc of an ellipse was well known, giving rise to the
development of elliptic functions that are doubly periodic (analytical approach).

Another more sophisticated example is the formal manipulation of the in-
tegrals of complex differential forms (H. Abel, 1826) in terms of non-integrable
differential forms on the torus T2 = S1 timesS1 or, later, of the connected sum
of tori (B.Riemann, 1857). This “ example ” is the first sample of a “ global
obstruction ” to the resolution of an analytical problem due to the non-trivial
topology of the support manifold M .
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The introduction of cuts for surfaces (B.Riemann, 1856) along non-contractible
cycles to a point converts a multiply connected surface to simply connected and,
consequently, to multivalued functions in univalued functions. For this reason,
the topological and analytical approaches are interrelated, providing support
for a local and global information transfer; This idea is due to B. Riemann
(1826-1866).

At the end of the 19th century and the first decade of the 20th century, both
approaches (analytical and topological) were extended to any type of surfaces,
with special attention to the case of algebraic surfaces (Picard) 9.

The formal study of the integrals
∫
γi
ωj of differential forms ωi on a complex

curve C on the non-contractible cycles γj of the Riemann surface X = MC
that represents it becomes a central topic for the algebraic and transcendent
approaches to algebraic curves. Throughout the 20th century, the analytical
and topological approaches were extended to varieties of arbitrary dimension,
both from the local point of view (Analytical Functions of Several Complex
Variables, for example) and global (Vector Fiber Cohomology, for example).

In this module A42 the global topological approach predominates w.r.t. the
algebraic one, that is, we are closer to the global transcendent approach than
to the local algebraic approach (see A31 for a comparison). Anyway, the most
relevant contributions of the second half of the 20th century correspond to the
development of results that relate local and global aspects:

The local aspects appear linked to the “ singularities ” of the distributions
D of vector fields, or of the systems S of differential forms. item The global
aspects appear linked to the topology of the base space B of the bundle (or
more generally a “fibration”) that imposes restrictions on the prolongation
or dependency between sections of the distributions or systems .

The information exchange between local and global aspects has given rise to
some of the most brilliant developments of the second half of the 20th century,
with the Index Theorems (Atiyah-Singer), e.g. For applications, local singulari-
ties appear as “ events ” in the base space B (as changes of state, for example)
or in the total space of some of the associated fibrations (as phase transitions
in the tangent space TM or in the cotangent T ∗M , e.g.).

Systems S of differential forms ωi allow to represent and manipulate the
simplest EDP systems (Equations in Partial Derivatives) given on varieties. For
this reason, the topological invariants associated with the S systems provide
information about the existence or not of solutions for those systems. When S
can not be solved in an exact way, the cohomology (dual of homology) allows
to identify the submanifold over which the system is not soluble (obstruction to
the integration of the system) and to work with said submanifold in a formal
way.

9 The technique based on cuts is also used to convert a graph into a tree in Discrete
Mathematics and Computational Geometry B11.
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Note.- In Engineering it is sometimes said that such problems are “ill-posed”
(Hadamard’s terminology) and it is wrongly concluded that they are intractable.
According to this argument, it would be impossible to predict the behavior of
most systems appearing in Nature (which are non-integrable), in particular the
system formed by the Sun, the Moon and the Earth. Also, most biomechanical
models would be “ill-posed” in Hadamard’s terminology. Therefore, we will not
use this terminology.

If the system S generated by s differential forms ω1, . . . , ωs is integrable 10,
the existence of a solution is represented locally by s “ independent functions ”
fi (whose differentials dfi are linealry independent) at an initial point b0 ∈ B.
Under regularity conditions, the solution locally parameterized by (f1, ldots, fs)
is extended to the points of a small environment U ⊂ M (by using standard
prolongation of solutions).

In the absence of integrability conditions (for distributions or systems) or
regularity conditions for the tangent map, the existence of solutions or their local
extension is not always possible. This may be due to “pathologies” involving the
local dependency between the sections si : U → π−1ξ (U) for 1 ≤ i ≤ s or to
singularities of the B support. Following a strategy of increasing complexity, we
first consider the case in which there are independent r solutions (representing
the generic range of the fiber system or dimension). Next, the “ bonding ”
conditions between local data (transition functions) are shown and, finally, the “
pathologies ” corresponding to the support or behavior in the fiber are analyzed.

In the first developments, one assumes initially that the base space B is
a smooth manifold M ; the existence of local sections induces a structure of
smooth manifold over the total space E of any other vector bundle or principal
bundle ξ on M , by using the local inverses of π. This description is extended
to Cr-fibrations where conditions about the fibre are not so good ones. So, the
Cr-global structure on Eξ is obtained by pasting the Cr -local structures defined
on π−1(U) 'Cr U × F through local sections.

A lot of results for vector bundles on smooth manifolds were extended to
bundles on algebraic or analytical varieties X. The extension is formulated in
terms of sheaves of modules on a ring, where initial extensions of local sections
given by derivations ΘX and differentials Ω1

X have a natural structure as OX -
modules. In more general cases (fibrations appearing in Engineering, e.g.), the
fibers can be discrete spaces (such as those corresponding to finite group actions
or covering spaces, e.g.) or continuous ones with the corresponding algebraoc
structures (vector spaces, groups, rings, modules on a ring or distributions of
different types of fields, e.g.)

Since the fiber of a Cr-fibration is not in general a topologically trivial
space, the extension of the results from bundles to fibrations requires a more
careful study. From the topological viewpoint it is carried out using Higher
Order Homotopy A23, which extends the topology based on closed path spaces

10 The integrability conditions for field distributions and systems of forms have been deve-
loped in the modules A11 and A14, respectively, of matter A1 (Differential Geometry)
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to a topology based on sphere spaces. On the other hand, the extension of
these results to Hilbert spaces H is trivial, since H with the usual metric is a
Riemannian manifold with null curvature

Let us remark that the projectivization of a Hilbert space has a metric (like
Fubini-Study) that gives rise to a curved manifold with singularities in quantum
phase transitions. For more general functional spaces in regard to higher order
differential operators, it is necessary introduce additional elements to restrict the
variability of solutions. In this module we only consider the case corresponding
to Fredholm spaces (bounded linear operators between two Banach spaces) that
occupy a central place in the Index Theorems (chapter 8 of this module).

0.1.5. Vector bundles from Geometry to Engineering

The theory of Vector Bundles (VB in the successive) provides the first global
version for systems of equations defined on a Smooth Manifolds M . Later, along
the late 1940s to the 1960s. Its extension to the GAGA framework (Algebraic
Geometry and Analytical Geometry) began in the sixties within the framework
of the Locally Free Sheaves Theory. These extensions are not trivial ones (mo-
dules are not necessarily free); they are motivated by the need to solve systems
of internal equations on eventually singular varieties, whose dependency loci
present a “stratification”.

The algebraic extension to non-locally free superimposed structures allows
to describe “pathological behaviors” for solutions of systems, and identify it
there are deformations to “visualize” simpler structures for such solutions, as
in classical PDE or ODE. Thus, they are key to explain “qualitative” changes
involving the Geometry, Kinematics and Dynamics for interacting agents.

From a more formal point of view, the first difficulties is linked to the fact
that the kernel or cokernel of a map between vector bundles on smooth manifolds
are not necessarily a vector bundle. In more down-to-earth terms, there appear
jumps in the dimension of the spaces of solutions or the fulfilled constraints 11,
nor even when the support it is a smooth manifold M . Hence, it is necessary to
give a weaker version of the notion of bundle by replacing it with the notion of
sheaves in GAGA or fibration in more general topological cases.

The GAGA approach is developed mainly in the module A33 (Sheaves, Co-
homology, Schemes) of the matter A3 (Algebraic Geometry) and is a natural
extension of the VB approach (since any bundle is a locally free bundle) . To
simplify the formalism, to fix ideas we prior a vector bundle based approach
along most chapters of this module 12

Despite the extension to the GAGA approach uses a description of tangent
and co-tangent structures in terms of (non-necessarily free) modules of local
derivations ΘX,x and differentials Ω1

X,x, with their corresponding structure of

11 M.W.Hirsch gives some counterexamples
12 The sheaf-theoretical version of the Riemann-Toch theorem (due to Serre for curves,

Hirzebruch and Grothendieck for varieties) has been develloped in A33.
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“sheaf”. Classification issues are solved as usual in terms of Cohomology Theo-
ries; in particular the Čech cohomology (linked to a covering U with “good
properties”) provides a common support for the GAGA framework 13.

In the smooth case, one proves that Čech cohomology and DeRham coho-
mology are isomorphic between them. The proof is based on the introduction of
a Spectral Sequence, i.e. a double graded complex relating both “cohomological
resolutions”. Roughly speaking, they can be understood as a simultaneous ex-
tension of classical Differential and Integral Calculus from Cartesian spaces to
bundles on smooth manifolds (see the chapter 3 for more details).

The relationships between local (typically differential) and global (typically
comprehensive) aspects is one of the most important sources of results and
motivations for a large number of problems. The obstruction to solving systems
of equations or to prolonging definite local solutions over an open is expressed
using “characteristic classes” which are cohomology classes of the base space,
representing the loci where sections are dependent between them (the module
is not free).

Nevertheless, in this module we will restrict ourselves to the simplest cases
corresponding to linear maps between bundles (extending linear operators to
the global case). A more complete approach requires a reformulation in terms
of jet bundles; some basic aspects will be introduced in the module A45 (Stra-
tifications).

Along most chapters we prior applications to Theoretical Physics de to the
interplay developed from the 1950s. The most ccomplete reference is [Nak90].
This mutual influence has motivated the development of applications to Engi-
neering areas, and the challenge of adapting to other knowledge areas such as
Theoretical Biology or Economic Theory, e.g. In view of irregularities for the
base space and flows on them, it is convenient to use weaker structures than
vector bundles or sheaves; a typical example is given by pre-sheaves.

From the beginning, Vector or more general Fiber Bundles have been applied
to Geometry and Analysis in regard to the description of structural properties
involving linear operators. They are related with the simplest deformation or
propagation models on Cr-varieties. Some more difficult challenges concern to
non-linear models, such those appearing in non-linear diffusion-reaction models,
which are crucial to understand more complex interaction models. The interplay
between discrete and continuous structures is developed in the part II of these
notes.

Furthermore, linearization strategies A12 (and the corresponding multilinear
reformulation A13) have been extended to Differential A14 or integral Calculus
A15 on Manifolds M . A challenge in Differential Topology and their applications
is to understand relations between local and global aspects having in account
“irregularities” in matter distribution and their modifications in Flow Analysis.

Vector and Principal bundles provide a structural initial framework to relate
local and global aspects. However, they can be “too rigid” ones Things beco-

13 For more advanced cohomology theories (étale, crystalline, e.g.) see A33.
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me easier when one introduces the action of some (discrete, finite- or infinite-
dimensional) group G, because it provides a support for extending local proper-
ties by virtue of the group (or linked algebra) action.

Most initial applications of Vector or Principal Bundles have been develo-
ped in a parallel way to the Standard Model in Theoretical Physics, i.e. the
unification of Electromagnetism, Weak and Strong interactions, along the 1960
and 1970s. More recently, some extensions of Bundles have been introduced in
several Engineering areas including

1. Computational Mechanics of Continuous Media B1 including basic aspects
of Computational Kinematics B14, or Hydrodynamics and Elasticity in
Computational Dynamics B15 in terms of Tensor Fields.

2. Computer Vision B2 involving bundles adjustment for 3D Reconstruction
B22, Image and scene flow in Motion Analysis B23 or a reformulation of
Deep Learning for automatic recognition B24.

3. Robotics B3 involving motion analysis in terms of principal bundles B31,
control issues for Automatic Navigation B32, Symplectic Geometry for
Robot Kinematics B33, to start with.

4. Computer Graphics involving geometric propagation models for 3D ob-
jects B41 and scenes B42, Radiometric models as “superimposed layers”
for objects and scenes B43 or local vs global techniques for Animation and
Simulation B44.

Applications to other areas such as Economic Theory or Biomedical Sciences
are more scarce. A preliminary version for applications to Economic Theory has
been developed in the last chapters for each module of Differential Geometry A1.
They include some developments in several areas related to Micro- and Macro-
Economics, International and Financial Economy. Biomedical applications will
be developed in the last chapter of each module of the matterB1 (Computational
Mechanics of Continuous Media), because one needs additional computational
resources.

In the precedent section we have displayed some impressive applications
of Fiber Bundles to Theoretical Physics, including some recent contributions of
TQFT (Topological Quantum Field Theory) to unify Gravitation and Quantum
Theory in an extension of Differential Topology. Recent developments suggest
a joint treatment of “finite collection of sets and maps” instead of individual
sets and functions (on operators on functoin spaces). Even if these developments
appear in regard to Theoretical Physics issues, the application of the same ideas
to Engineering is almost obvious.

Thus, one can ask abut the possibility of extending basic principles going
from Set Theory to more advanced structures (as Fiber Bundles or Sheaves,
e.g.) to other technological areas. In abstract terms, topological field theory
is viewed as a functor, not on a fixed dimension but on all dimensions at the
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same time. Thus, their basic principles can be applied for the management of
fluctuating systems where the dimensionality is changing. Nevertheless, to fix
ideas, we will adopt a more down-to-earth approach, nearer to an extension of
basic set-theoretical formalism.

In particular, the idea of managing “finite collections of sets” has some an-
tecedents in the simplest vectorial case (subspaces as points of a Grassmannian
or nested subspaces as points of flag manifolds, classes of varieties as points of
a moduli space, e.g.). However, when one takes morphisms between these finite
collections of sets, there are some deeper aspects which deserve more attention.

Some remarks appear in a sporadic way in some excerpts of Grothendieck’s
reflections, which receive a more systematic treatment in [Bae97] 14. It is al-
most obvious that the study of simultaneous behavior of several “smart agents”
interacting in some region can be reformulated in these terms.

Furthermore and in a more specific way in regard to contents of this moduile,
some initial applications of Bundles to Engineering appear in IST areas from
the early nineties. According to the organization of materials of the Bi matters
in my web page, one has grouped them around several topics which are related
to Computational Mechanics of Continuous Media B1, Computer Vision B2,
Robotics B3, and Computer Graphics B4 (in a broad sense). In all of them
there is an overlapping of advanced physical tools and mathematical models
which provide a support for extending some basic aspects of fiber bundles which
have been sketeched above.

Most materials presented in this section are developed with more detail in the
forementioned matters Bi, but there is no a systematic treatment, still. Thus,
our presentation has some fragmentary character, waiting for smarter unifyting
approaches. Each one of sketched applications is developed as a specific matter
with more details (involving models and computational tools) in my web page
15, where one can find more details and references. Thus, one has preserved the
language and specific notation corresponding to the introduction of Bi matters.

The introduction of fiber bundles in several Engineering areas is motivated
by the need of extending local results to a global framework. The local approach
to propagation and interaction phenomena uses different kinds of fields which
are nothing else than local sections of fiber bundles. So, scalar, co-vector and
tensor fields defined on a Cr-variety X can be matched together to give global
reuslts involving more complete representations of dynamic phenomena. In the
simplest case corresponding to a manifold M these objects are well known from
the Differential Geometry of Manifolds 16

Hence, the first problem to solve is how to match local data corresponding
to fields in global Cr-structures in a coherent way, i.e., compatible with state
changes or phase transitions holding on the original space or their “first-order”

14 J. Baez: “An introduction to n-categories”, in E. Moggi and G. Rosolini (eds): 7th Confe-
rence on Category Theory and Computer Science, eds. , LNCS 1290, Springer Verlag, Berlin,
1997, pp. 1-33.
15 https://www.mobivap.es/miembros/javier-finat/
16 Details and references along the matter A1 in my web page.
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variations. Differential Geometry and Topology provides the most structured
framework which is initially based on (maps or morphisms between) smooth
manifolds and vector bundles. Thus, along this section one can consider diffe-
rentiable frameworks as the most intuitive framework to apply these techniques
to Engineering areas.

0.2. Reducing the Classification Problem

The central topological problems are the classification and characterization
of Cr -varieties X. This module does not address the characterization problem
(too difficult). The classification problem follows a classical dichotomy which is
based on

Morphological strategies based on the structure of the base space denoted
as B in the topological case, M in the smooth case or Xin the GAGA
framework. Several strategies have been developed in Algebraic Topology
A2, Algebraic Geometry A3 and the precedent module A41

Functional strategies based on superimposing additional structures (vec-
tor vs principal bundles, fibrations, sheaves) F on the base space and to
study morphisms between structures. The existence of a collection of Cr-
invariants for the topological, differentiable, algebraic and analytic cases
provides test beds for their extension to structures superimposed on the
manifolds.

The “lifting” of Cr-invariants from B to the total space E of the super-
imposed structure or inversely, the “descent” from E to B, rquires additional
results involving the “contraction of the fibre” F . There are different strategies
involving products and integration along the fibre. All of them are formally ex-
pressed in terms of the cohomology of the superimposed structure as a tensor
product of cohomologies of the ase B and the fibre F (Kunneth theorems).

Anyway, all classification results based on cohomology are of “negative type”,
i.e. if two manifolds or superimposed structures have different invariants, they
cannot be Cr-equivalent between them, but the converse is not true 17. In despite
of this limitation, an advantage of the cohomology based approach consists of
providing “ effective computations” for homotopy type invariantes.

0.2.1. Comparing topologies

From a geometric viewpoint, if we restrict ourselves to Cr-topologies, the
simplest case of association of cohomological invariants to a smooth manifold M
corresponds to the cotangent bundle τ∗M as a dual version of the linearization of

17 Some similar problems have already appeared in Algebraic (co)Homology A22, where one
uses additional criteria (Reidemeister torsion, e.g.) for finer classifcaiton criteria
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the structure of the base space M . The DeRham cohomology has been developed
in the modules A14 (Exterior Differential Calculus) and A15 (Integration in
Varieties) of the matter A1 (Differential Geometry.

The above methods are extended in this module to the Ordinary and com-
pact DeRham support cohomologies of a bundleon a PS-manifold M . The exis-
tence of a local trivialization for the cotangent bundle τ∗U , allows to extend the
Exterior Differential Calculus defined on U ⊂M to each π−1(U) 'Cr U × Rm,
“ by matching local data.

Kunneth-type theorems allow the computation of topological invariants of
the total space E in terms of tensor products of cohomology classes of the
base space B (usually a Cr-variety) by cohomology classes of the fiber F . The
homotopy type invariance of the bundle classes obtained for the bundle is a con-
sequence of the similar result for any cohomology (as invariant of the homotopy
class).

Spectral sequences (initially developed by Leray) allow comparing the results
obtained using different cohomologies or comparing results associated with dif-
ferent structures (real vs complex, for example). The basic idea for spectral
sequences consists of considering a doubly graded complex linked to the tensor
product of the two structures to be compared, and fix the “total degree” of
tensor product. Next, one must construct the “homotopy operator” (preserving
the total degree) which relate each pir of consecutive elements by combining
differentiation and integration transformations 18. If the fiber is “almost topo-
logically trivial” (as for vector or sphere bundles, e.g.), then all we need is to
know how compute the cohomology of the base space.

There are different procedures to calculate the cohomology of manifolds or
more generally of “ triangulable ” topological spaces 19. In an intuitive way,
cohomology provides a general method to identify when a system of equations
is solvable and, if so, a strategy for its resolution (by means of complex gradua-
tes). Therefore, cohomology provides the appropriate language that extends the
point of view presented above as motivation for bundles and their extensions
(as solving systems of equations).

In particular, the vanishing of the cohomology (of the base space B or of the
fiber F ) gives solvable systems in the Cr-category. Contrarily, the non-vanishing
of the cohomology results in an “obstruction” to solve the system or to extend
the solutions calculated for a small neighborhood of a point. The existence of
an additional Cr -structure (corresponding to each one of theCr -Geometries)
means that a system can be solvable in one category (differentiable, for example)
and not be so in another (the algebraic, e.g.). This explains the usefulness of
cohomological techniques not only for solving systems of equations, but for
comparing Cr-structures.

18 A very good exposition appears in the part II of [Bot83]
19 A topological space is triangulable if it is homeomorphic to a simplicial complex
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0.2.2. Comparing classifications

The coarsest classification is the topological one, that is, up to homeo-
morphisms. It is developed in General Topology with weak criteria (compact-
ness, connectedness, separation). In Algebraic or Geometric Topology A3 one
develops more effective methods, which are based on the superposition of topo-
logical structures such as generalized loop spaces, different types of complexes,
and/or homological vs cohomological relationships between both of them 20.
The basic combinatorial nature of the resulting structures facilitates explicit
calculations in terms of the homotopy or (co) homology groups that have been
presented in modules A21 (Basic homotopy) and A22 (Homology and Cohomo-
logy), respectively.

Whatever the environment category, as the classification up to homeomorphisms
(or any of its Cr-subgroups) is stricter than the classification up to homotopy
type, the cohomology classes of bundles only provide criteria of “negative ty-
pe” for the classification. In other words, if two superimposed structures have
non-isomorphic cohomology, then they cannot be homeomorphic and, therefore
they are not Crequivalent. However, the converse is not true; that is, equality
between Cr-invariants does not mean that the Cr-structures are equivalent.
Thus, one must specify which is the corresponding Cr-structure linked to each
characteristic cohomology class.

Beyond the classification of manifolds or varieties, we are interested in clas-
sifying superimposed structures given by bundels of fibrations. This problem in-
volves to an extension of ”relative classification” of maps between manifolds or
varieties. In more formal terms, this involves to maps between bundles Φ : ξ → η
given by pairs (φ, f) of maps making commutative the diagram

Eξ → Eη
πξ ↓ ↓ πη
Bξ → Bη

i.e., πη ◦ φ = f ◦ πξ. Similar constructions (including direct and inverse images)
have been developed in the module A33 (Sheaves, Cohomology, Schemes), which
provide a unified language for all usual Geometries.

The relative (co)homology allows to compare superimposed structures co-
rresponding to the restriction to a subspace A with those of the ambient space
X. They can be understood as a topological extension of the study of extrin-
sic properties of a submanifold in the smooth case. . This reaosning scheme is
naturally extended to more general Cr-maps f : Y → X in a natural way.

To fix ideas, let us remember that in the smooth case the relative cohomo-
logy H∗(A,X;R) makes it possible to compare equivlalence classes of co-chains
of multilinear maps on “aggregate quantities’. Formal manipulation is perfor-
med in terms of graded algebras linked to the subspace A with those of the

20 Their foundations have been developed in the modules A23 (Cell complexes) and A24

(Geometric Topology) of the matter A2 (Algebraic and Geometric Topology)
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ambient space X. In both cases (homology and cohomology) involving (X,A),
the fundamental result is the Excision Theorem that allows us to “ separate ”
the “non-essential” part (open contractible subset) from the most meaningful
part corresponding to the behavior at the boundary. This idea is extended to
superimposed structures (bundles vs fibrations) in this module.

The extension of the relative co-homology corresponding to maps f : (A,X)→
(B, Y ) with f(A) ⊂ Y to pairs to maps (almost always defined) is almost ob-
vious. The extension of these applications to the study of the relative behavior
of tensor fields given by sections of bundles ξ or η on the corresponding base
spaces f : (A,X) → (B, Y ) is pure routine. However, it is very meaningful for
some advanced aspects of Robotics B3 involving the Automatic Navigation of
Autonomous Vehicles B32.

An almost obvious application of this point of view is to take A (resp. B as
the space occupied by a set of mobile agents ai(t) for t = 0 (resp. t = 1. The
simultaneous consideration of evolving trajectories and constraints in a traffic
scene with the corresponding “relative weights” is represented by means a tensor
on X, whose type (r, s) varies according to “events” involving trajectories (inte-
gral curves of vector fields) and constraints (integral hypersurfaces of covector
fields). This approach is developed in the module B32 (Automatic Navigation)
of the matter B3 (Robotics ).

0.2.3. Vector Bundles on Homogeneous Spaces

A homogeneous space is given by a quotientG/H of a Lie groupG by a closed
Lie subgroup H. First examples are linked to classical (cartesian, affine, pro-
jective) Geometries with the (Euclidean, Pseudo-Euclidean, Hermitian) metrics
linked to Classical Groups. Other important examples with non-trivial topology
are given by (real vs complex) spheres, Stiefel manifolds (parameterizing spaces
of references), Grassmannians (parameterizing k-dimensional subspaces, or Flag
Manifolds (representing collections of nested subspaces).

The homogeneous nature of G/H allows to study its properties at an base
point b ∈ G/H, and translate them to any other base point b′ ∈ G/H by the
action of G. In this way, the hierarchies associated to a “cellular decomposition”
can be replicated at every element. Furthermore, the inverse image g−1S of
the tautological bundle S via the generalized Gauss map g : M → G/H on
the Homogeneous Space, is isomorphic to the tangent bundle τM on M . More
precisely, the isomorphism classes of vector bundles can be described in terms
of homotopy classes M,G/H, and inversely. Less simple situations correspond
to the extension of this approach to generalized symmetric spaces 21.

With the above notation, if G/H is a homogeneous space, then (G,G/H,H)
is a fiber bundle, where G is the total space, G/H is the base space and H
is the fiber. The resulting structure is a “principal bundle”, where the fiber is
given by a group instead of a vector space. By using the locally structure as a

21 See the module A24 (Geometric Topology) for more details.
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product, one can compute the topology of the principal bundle P = (P, π,B,G)
by using tools (Kunneth theorems) arising from the (co)homology and homotopy
theory for the base space and the fiber. Equivariant bifurcation problems linked
to breaking symmetries will be introduced in the modules A45 (Stratifications)
and A46 (Dynamical Systems).

In the PS framework, explicit computations for the cohomology of classical
groups were developed by Maurer and E.Cartan in terms of invariant differential
forms 22. The homotopy groups of Classical Groups was computed by R.Bott,
and requires additional elements of Spectral Sequences to compute Higher Ho-
motopy Groups 23.

If we look at the base space G/H, cellular decompositions of homogeneous
spaces G/H (see module A23 for an extensive treatment) and their extensions
to symmetric Riemannian spaces, play a fundamental role to obtain an explicit
description for structural symmetric models. Cellular decompositions provide
a support for propagation models by using “replication strategies” for g-orbits.
This geometric construction can be extended to the analytic framework by using
differential operators (generalized Laplacians, e.g.) and integral operators (ap-
pearing in Variational Calculus, e.g.).

From the differential viewpoint, advanced Morse theory (linked to variatio-
nal problems provides a nexus between the diagrams of symmetric Riemannian
spaces G/H and homological properties of loop spaces which are linked to a
cellular decomposition (Schubert cells) of homogeneous space 24. Extended va-
riational calculus will be generalized at the end of this module in terms of
bigraded variational complexes, extending the treatment of Emmy Noether ba-
sed on infinitesimal symmetries for PDEs linked to the minimization of integral
functionals.

The cellular decomposition of the GrassmannianGrass(k, n) of k-dimensional
subspaces of a n-dimensional vector space V was initially described by H.Schubert
(around 1880) in terms of incidence conditions of subspaces w.r.t. aa complete
flag. This decomposition plays a fundamental role in Enumerative Geometry
(module A35 of Algebraic Geometry) and along the current module. Schubert
cellular decompositions for G/H are a natural extension of the cellular decompo-
sitions of Grass(k, n) which ease query processes of optimal solutions on spaces
of matrices.

Furthermore the ubiquity of Stiefel and Grassmann manifolds in Theoreti-
cal Physics, they are increasingly used in several Engineering areas such those
appearing in the part II of these notes. Artificial Intelligence is a “transversal
topic” to all of them. Self-Organizing maps (SOM) develop learning methods for
adaptive subspaces in supervised vs unsupervised strategies. The adaptive con-

22 See chapter 5 of the module A14 (Differential Forms) of the matter A1 (Differential Geo-
metry of Manifolds)
23 See module A24 (Geometric Topology) of the matter A2 (Algebraic and Geometric Topo-

logy)
24 Basic Morse theory has been developed in the Chapter 5 of the precedent module A41

(Basic Differential Topology) of the module A4 (Differential Topology)
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trol maximizes the fitting of subspaces to and optimal subspaces, which can be
guided in terms of incidence conditions parameterized by appropriate Schubert
cycles. Beyond this simple remark, in view of the variability of the dimension, in
the module A45 we develop a stricter hierarchy which is based on Flag Manifolds
as universal space for varieties with “good stratifications”.

0.2.4. Topological classification

The first step is the proof of the role played by the tautological bundle S
on Grass(k, n) as a universal bundle for (homotopy classes of) Gauss maps
g : M → Grass(k, n). By using basic properties involving the topology of Clas-
sical Groups A24 one can construct similar classifying spaces for real, complex
and symplectic smooth compact manifolds for classical groups constructed for
R, C and H (quaternions) connecting classification problems involving Real vs
Complex Geometry and Kinematics.

Following this approach, furthermore the classical approach in terms of ge-
neralized Schubert calculus. This viewpoint can be illustrated in terms of the
higher homotopy groups of the corresponding Classical groups SO(n), SU(n)
and Sp(n) constructed on the real R, unit complex C and unit quaternions H
numbers,. Their representations provide the benchmark for developing algebraic
aspects of the four interactions appearing in the Nature. Obviously, they provi-
de ideal or “toy” models to be recombined in more advanced symmetric spaces
where an extension of differential and integral calculus are developed.

The topology of homogeneous spaces and Riemannian symmetric spaces can
be described in terms of (tensor products of) the topology of Lie groups, where
“group reduction” plays a fundamental role. The simplest example corresponds
to the “polar decomposition” of a regular real (resp. complex) matrix as a
product of an orthogonal (resp. unitary) matrix and a symmetric matrix; as the
set of symmetric matrices is a vector space, it is contractible from the topological
viewpoint and therefore, one can reduce the action of the general linear group
to the action of the Orthogonal (resp. Unitary) group, which is essentially the
Gram-Schmidt orthogonalization procedure.

More generally, by virtue of the Cartan-Maltsev-Iwasawa theorem any con-
nected Lie group is homeomorphic to the product of one of its compact sub-
groups and an Euclidean (hence contractible) space. In other words, one can
perform a description of the topology of connected Lie groups in terms of the
topology of its compact Lie subgroups. This remark justifies the study of repre-
sentations of Compact Lie Groups which was developed along seventies of the
20th century.

The description and development of effective computations for cohomology
classes of Cr -structures on varieties (vector and principal bundles on mani-
folds. along this module) has been carried out (initially manually) since the late
1940s. The most important landmarks correspond to real (Stiefel and Whitney,
independently), quasi-complex (Pontrjagin) and complex (Chern) structures.
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All of them use symmetric functions for explicit computations. Their appli-
cation to algebras of differential operators poses additional challenges. Global
issues are developed in the D-modules framework A33. Local aspects involving
classification of function- and map-germs are developed in the modules A43 and
A44, respectively. The introduction of computational tools at the end of the
eighties makes it possible to automate these calculations (in some cases very
tedious and prone to errors) 25.

The unification of explicit computations is performed by hand for cohomo-
logy of vector bundles along this module. It allows the discrmination between
different structures (real, complex, quasi-complex, e.g.) is carried out by using
graded differential complexes associated with DeRham (real differentiable ma-
nifolds), Hodge-Dolbeault (complex manifolds), Pontrjagin (symplectic mani-
folds), signature (Hirzebruch, Dirac). The great synthesis was carried out by
Atiyah and Singer in a geometric-functional framework of elliptical differential
operators (Fredholm operators) on compact manifolds.

A Fredholm operator is a bounded linear operator T : X → Y between
two Banach spaces with finite-dimensional kernel kerT and finite-dimensional
(algebraic) Coker(T ), and with closed range for T . The index of a Fredholm
operator is the integer

T := dim kerT − codim rank

or in other words,
indT = dim kerT − dim cokerT.

Let us remark that the Coker is the ker of the adjoint operator T ∗. Hence,
we are measuring the difference between the dimensions of solutions sets for
differential operators In the real case, they correspond to spaces of real-valued
differential l-forms. The expression of the Euler-Poincaré characteristic χ(E) as
an alternating sum, can be written as a sum of even degree cohomology, minus
the sum of the odd degree cohomology; in the smooth case cohomology classes
are represented (Hodge’s theorem) by harmonic differential forms, i.e solutions
of the operator D2 = (d+ d∗)2 = dd∗ + d∗d.

From the functional viewpoint, the expression of the Laplace-Hodge operator
as D2 = dd∗ + dd∗, and the representation of cohomology forms by harmonic
forms (solutions of the Laplace operator), one has that the odd degree terms
are nothing else than Ker(D∗) = Coker(D). In the global complex case, they
correspond to the dimension of spaces of sections of holomorphic vector bundles.
In this way, one sees that the Atiyah-Singer Index Theorems are “quite natural”
for the real (DeRham) cohomology and complex (Dolbeault) cohomology. At
the end of this module we give some additional details, including signature
(Pontrjagin) and Dirac differential complexes.

25 The computational approach is presented in the B12 (Computational Algebraic Topology)
module of the matter B1 (Computational Mechanics of Continuous Media)
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0.2.5. Some problems to solve

As in any Geometry or Topology, the general problems to solve are the classi-
fication and characterization, both of varieties and of maps. The characterization
problem is, up to the 1D case, very difficult to solve in general. Therefore, we
focus on the classification problem that is solved by calculating Cr-invariants
associated with the Cr - structure of the total space E; the local topological
triviality of the bundle allows to express the invariants of E in terms of the
invariants of the base space B and of the fiber F by virtue of Kunneth-type
theorems A22; they express the (co)homology of a local trivialization in terms
of the tensor product of the (co)homologies of the base and the fiber.

The most relevant invariants are initially of a co-homological type, that
is, they INVOLVE the classes of co-cycles (linear operators on cycles) defined
locally on the base manifold. Therefore, they are invariants of the homotopy
class of the base space B or of the total space E of the bundle; in the differential
framework they are analyzed in terms of equivalence classes for fields defined
on the variety. In general, they can be interpreted as invariants modulo Cr

-deformations of the base or of the Cr-overlapping structure 26.

The non-vanishing of characteristic classes “measures the deviation” of a lo-
cal (real, complex, quaternionic) structure from a trivial product structure. They
were initially introduced by E.Stiefel and H.Whitney (1935) to study the topo-
logy of vector fields over a smooth real manifold M , and extened by S.S.Chern
to the complex case along the 1940s.

In the general case, characteristic classes are associated to graded (complex)
structures built from differential operators in the smooth framework. Similar to
what happens for any invariant of the homotopy class, the classification based
on these invariants only provides criteria of “ negative type ”; that is, if two
bundles have different invariants they cannot be C r-equivalents, but if they
have the same invariants an analysis using other types of criteria is necessary.

In this introduction a historical approach is adopted, starting with some
relationships with other areas of Mathematics, where Vector Bundles and Fi-
brations have already shown their usefulness. This approach is complemented
with applications to Theoretical Physics as a consequence of the advances in the
standard model that unifies the electromagnetic, weak and strong interactions.
The classical equivalence (in absence of external forces) between differential
(Hamilton-Jacobi) and integral (Euler-Lagrange) approaches to Analytical Me-
chanics, is reformulated now as to the minimization of the curvature functional
(a variational problem) in the space of connections on a Principal Bundle (ho-
mogeneous differential approach).

First unified formulations are proposed by Yang and Mills (1954), giving the
starting point for an explosive growth of this topic from the 1960s. From this
time, there appears an overlapping and mutual fertilization between different

26 For details and references on basic results and examples, see module A22 (Homology and
Cohomology) of the matter A2 (Algebraic Topology)
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areas (geometric, topological, analytical) of Mathematics and Theoretical Phy-
sics. Roughly speaking, bundles can be said to provide a global framework to
assess whether the local resolution of any kind of Cr -equation systems can be
extended or not to a whole Cr-manifold or a space of functions. This argument
justifies the ubiquity of bundles (or their generalization to bundles) in all areas
of Mathematics.

The simplest example for a vector bundle is given by the trivial vector bundle
εr := (M timesRr, π,M,Rr) of range r over a base variety M . In this case, the
system of equations to be solved is always the same; that is, the resolution for
a point extends to all points of the base variety M ; therefore, it is reduced
to a Linear Algebra problem. If the manifold is not topologically trivial (the
torus T2, for example), integration obstructions may appear from both the base
manifold and the fiber.

Over a smoothly trivial manifold like the circumference S1, e.g. you can have
a trivial bundle ε1 = S1 timesR1 ' τS1 corresponding to the tangent bundle or
a non-trivial bundle γS1 (extended Moebius band) both of rank 1. This example
shows the importance of comparing the fibers corresponding to closed paths over
a variety. The distribution can always be locally embeddable, but not globally.

Therefore, it is necessary not only to solve different systems of equations,
but to “match” the local data each time closed paths are completed. When the
rank r of the system of equations or the dimension of the solution space (kernel
of an operator) is constant, a local product structure is obtained for the set of
solutions. The set of solutions is then said to be a locally free module on the
local ring of regular functions OX,x at x ∈ X.

If the (co-)dimension or (co-)rank f : X → Y is locally constant up to homo-
topy, we only have a structure of Cr-fibration, (pre-)sheaf or analytical space.
Fibrations and analytical spaces are covered in module A45 (Stratifications) of
this matter A4. The (pre) beam structure is studied in more detail in module
A33 of the matter A3 (Algebraic Geometry). The key in all these cases is the
study of local sections s : U → E verifying π ◦ s = idU of the Cr-fibration on
an open U of the base space.

The study of sections allows addressing issues such as

the prolongation of local structures and their gluing in Cr -global struc-
tures of different types;

the existence or not of non-trivial deformations in Cr-categories

the “ obstructions ” to the existence of a Cr -Non-trivial deformation for
a prolongation of solutions.

Obstructions are expressed in terms of non-vanishing of Cr-invariants called
characteristic classes. The most relevant ones for PS-structures are labeled as
Stiefel-Whitney, Chern, Pontrjagin and Dirac. As any cohomological class the
are invariants of the homotopy class. The operations defined on these groups or
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the exact sequences e.g. they play a fundamental role for classification issues of
superimposed structures (vector vs principal bundles, fibrations).

These motivations explain the ubiquity of Vector Bundles and their gene-
ralizations in all scientific areas, Engineering or Economic Theory. The most
spectacular applications correspond to Theoretical Physics developed in a sys-
tematic way from the sixties in relation to the standard model.

The Grand Unification of the Standard Model with the gravitational inter-
action (the weakest of all) continues to be the most difficult challenge to solve,
as there is still no satisfactory model for the quantization of this interaction.
More recently, an exponential growth of applications to Engineering is taking
place, some of which are presented in the modules Bi of these notes.

0.3. References for this introduction

References are not the most recent ones, nor exhaustive. They are included
only to give the reader some more complete or alternative insights, in order to
construct his/her own vision of this subject.

0.3.1. Basic bibliography

Only some textbooks are included. For more enlarged bibliography, see the
subsection §5,4. References for meaningful research articles are included as foot-
notes.
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0.3.2. Software resources

In the module B13 (Computational Differential Topology)of the matter B1

(computational Mechanics of Continuous Media) we develop a computational
approach to basic aspects of Differential Topology. Their foundations can be
found in

[Her13] M.Herlihy, D.Kozlov, S.Rajsbaum: Distributed Computing Through
Combinatorial Topology, 2013.

[Zom05] A.J. Zomorodian: Topology for Computing. Cambridge Univ. Press,
2005.

It is necessary to develop more specific software for a computational treat-
ment of most aspects developed in this module. To my knowledge, the only
reference is Singular. Additional information about other software packages is
welcome.

Final remark: Readers which are interested in a more complete presentation
of this chapter or some chapter of the module A42 (Fiber bundles), must write
a message to franciscojavier.finat@uva.es or to javier.finat@gmail.com


