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This chapter correspond to an introduction to the matter A4 (Differential
Topology) and some applications. It is necessary to have some basic knowledge
of General Topology, Analysis of Several real and complex Variables, Differen-
tial Geometry A1 and Algebraic Topology A2. Some meaningful examples are
taken from objects appearing in Algebraic and Analytic Geometry A3, but most
GAGA methods are not used in this module.

As usual, in addition of this introduction, materials of this chapter are or-
ganized in four sections. Subsections or paragraphs marked with an asterisk (∗)
display a higher difficulty and can be skipped in a first lecture.
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0.1. Introduction to the chapter A400

Differential Topology can be considered as an extension of General Topology
to the differentiable case or, more precisely, as the introduction of topological
methods for the study of smooth manifolds M and smooth maps f : N → P
between them. In the same way as Differential Geometry can be understood as
an extension of Multivariate Analysis to the global case of manifolds, Differential
Topology is also labelled as Global Analysis, for readers arising from Analysis.

Both approaches are naturally extended to eventually singular algebraic or
analytic varieties X and non-necessarily Cr-maps f : X → Y between them.
Source X and target space Y for f are initially considered as piecewise smooth
(PS) manifolds. Systems of equations Eb which are Cr-dependent on the ba-
se point b ∈ B are modelled in terms of different kinds of locally trivial su-
perimposed structures (bundles, sheaves, fibrations). The local triviality is the
key to extend the Cr-structre from the base space B to the whole total space
E = ∪b∈BEb of the superimposed structure.

The fundamental goals of Differential Topology are the characterization and
classification of “objects” using differential methods. “Objects” of class Cr can
be manifolds M or varieties X, Cr-maps f : X → Y , superimposed structures
ξ = (E, π,B, F ), locally trivial on a base space B with generic fibre F , and (not
everywhere well defined) morphisms φ : ξ → η between superimposed structures
(representing systems of Cr-equations on the base space B). Characterization is
a too hard problem, and by this reason we will be focused towards classification.

The first attempts to formulate a Differential Topology are due to Poin-
carÃ© at the beginning of the 20th century. However, an appropriate forma-
lism was not yet available, since not even the notion of a smooth manifold was
well defined. The first contributions for superimposed Cr-structures were deve-
loped throughout the first half of the 20th century by Poincaré, Cartan, Morse,
Lefschetz, Hopf, Pontrjagine, Whitney, Chern, among others. They culmina-
te in the first synthesis carried out by Steenrood in the early 1950s, and first
reformulation in terms of sheaves A33.

The confluence of formalism from Bundle Theory, and Local Algebra (Com-
mutative and Homological Algebra), were the key to the introduction and expli-
cit computation of Cr-invariants for equivalence classes of “objects”. The most
relevant results concern to the relation between local characters and global Cr

invariants, involving the base space B and the superimposed structure E.
Next steps concern to the classification of Cr-maps and morphisms Φ : ξ− →

η between superimposed structures. They start with the regular case (submer-
sions, immersions, embeddings), to be extended next to increasingly complex
singularities, with a special regard to the (smooth vs analytic) Cr-classification
of singular map-germs f ∈ Cr(n, p). Most of the first great theorems are develo-
ped between 1950 and 1975 by Arnold, Atiyah, Chern, Mather, Milnor, Novikov,
Smale, Thom and Wall (alphabetical order, not chronological) throughout the
sixties and seventies, extending the work of Hopf, Lefschetz, Morse, and Whit-
ney, between others.
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The unification of different techniques is performed in algebraic terms as a
by-product of the algebrization program proposed by A.Weil for the Algebraic
Topollogy A2. Instead of developing a purely algebraic approach as in GAGA
A33, most results of Local and Global Differential Topology are developed on
the real R or the complex field C, where one uses standard tools arising from
the Analysis and Topology.

Invariants are given by cohomology classes of the base space H∗(B;R), whe-
re R is usually Z, Z2, Q, R or C. Their relation with topological invariants
H∗(E;R) of the total space arise from the Kunneth formulae, having in ac-
count the “almost triviality” of the cohomology H∗(B;F ) of the fiber F (a
Cartesian space Rn, initially), for the ordinary or the compact support cohomo-
logy. Characteristic classes provide invariants for the real structure (Whitney),
the complex structure (chern), relations between real and complex structures
(Pontrjiagin) or the evolving volume form (Euler) for smooth manifolds.

Some elements for the unification of the basic types of interactions appearing
in Quantum Mechanics are linked to

Relations between the topology of base space B and superimposed struc-
tures E (bundles, fibrations, sheaves, e.g.), including their classification
up to Cr-equivalence;

the explicit computation of Cr-invariants linking the topology of B and
E, and relations between them linked to Cr-maps or, more generally,
morphisms to classify, also;

the expression in terms of differential complexes (DeRham, Dolbeault,
signature, Dirac);

the interpretation in terms of optimal solutions for variational problems
(Hodge)

the introduction of integral operators of the curvature of an affine connec-
tion ∇a on a Principal Bundle as an ideal support for the interaction.

All of them are key for the development of the Standard Model, which unifies
Electromagnetic, Weak and Strong interactions along 1960s. As a pending big
challenge, it remains the Great Unification Theory with a quantized model of
gravitational interaction where supersymmetry (a model incorporating breaking
symmetries for different interactions) plays a central role 1

The development of superimposed structures from the mid-20th century was
accompanied by the introduction of new notions that formalized previous ideas
due to different schools of mathematicians. Some of the most important con-
tributions are linked to the interrelationships between local and global aspects
including the main objects corresponding to

1 See the last chapters of the module A42 (Bundles) for more details.
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bundles (or, more generally, fibrations to include possible degenerations)
for distributions D of vector fields or dual differential systems S of covec-
tors;

the explicit calculation of invariants corresponding to fields (index, e.g.) or
differential forms (characteristic classes, e.g.) initially for smooth varieties
M ;

G-structures including homogeneous and locally symmetrical spaces, with
principal bundles as the central “example”;

sheaves as a global version of systems Cr-equations that allow representing
the irregularities in fibrations corresponding to spaces of solutions for D
or S, e.g. item Deformations of any of the above Cr-structures for r =∞,
r = ω or r = alg;

the Global Variational Calculus corresponding to the study of the extremal
values of integral functionals (distance, area, volume, energy, curvature,
e.g.).

Differential Topology develops tools for the Cr-classification for

possible Cr-structures on the base space B corresponding to a manifold
M or a variety X, and relations between different kinds of Cr-structures
on the base space F ;

superimposed structures (bundles, sheaves, fibrations) up to isomorphism
in the smooth, analytical and algebraic categories;

the global matching of local data extending basic topological approaches
to more advanced theories of cobordism;

the introduction of classifying spaces BG linked to classical groups G or
more general algebraic groups, with a special regard to the semisimple,
reductive and unipotent cases;

the analysis and classification of singularities associated with each of the
previous problems;

All of them are useful in regard to applications to Theoretical Physics (uni-
fication theories), Mechanics and other Engineering areas, including the speci-
fication of hierarchies associated with map-germ singularities.

The preceding list is not exhaustive, but it is illustrative of many of the
problems developed in the second half of the 20th century by a large number
of mathematicians, some of whom received the Field Medal for their contribu-
tions to the aforementioned problems. In this introduction we only comment on
some “snapshots” that are intended to motivate reading the expanded version
(currently only available in Spanish). Before showing them, we remember some
basic ideas.
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The most important areas correspond to the differentiable r =∞, analytical
r = ω or algebraic r = rat categories. The geometric description in terms of
groups of automorphisms of the fiber is insufficient, since the group of auto-
morphisms of analytical spaces can be reduced to the neutral element. To do
this, it is necessary to develop a topological approach that is a natural extension
of the geometric approach.

The Cr-classification is carried out in terms of Cr-equivalence that affects
spaces as well as Cr-structures. Initially, the classification is carried out
modulo the action Cr-subgroups of homeomorphisms, such as the diffeo-
morphisms for r = ∞, the bi-analytical transformations for r = ω or the
birational transformations for r = rat.

The Cr-equivalences acting on the source and target spaces of maps f :
X → Y , or on the graph Γ(f) of f . The best-known case corresponds to
the action of automorphisms on the fiber (transition functions) indicated
by Cr-equivalences on the intersection Ui ∩ Uj of open a trivialization
of the Cr-structure. The basic example is given by the transition fun-
ctions of a vector bundle. This approach extends to the Cr-classification
of morphisms between Φ : ξ → η between overlapping structures.

Finding effective criteria for the Cr-classification of objects (manifolds or
structures) and morphisms between objects is a highly non-trivial problem. This
problem is similar to that described in Algebraic Topology A2 where the classi-
fication module homeomorphism is “reflected” to the classification by the type
of homotopy, where the homotooy A21 or (co)homology A22 techniques provide
more computable criteria.

In this matter, the classification is performed modulo diffeomorphism, but
even so the problem remains very difficult; one strategy is to “add more struc-
ture”. The analogue to closed paths are periodic integral curves of vector fields;
the extent of the PL-decompositions (symplicial vs cuboidal) is given by the
cellular complexes A23. The analogue of the PL-cohomologies is given by the
DeRham cohomologies for the real case or Dolbeault for the complex case A24.

The smooth manifolds M , the differentiable maps f : N → P , and the
vector bundles provide the “initial basic objects” for Differential Topology. The
Cr-transformations described above act on these objects. The unification is
carried out using some basic algebraic notions. In particular, the graded algebras
associated with the (co)tangent space are the basic building blocks.

An important difference w.r.t. the approach developed in the previous mat-
ters is that the tangent space refers not only to a variety, but to a space of
functions or maps defined on them, as well. Even for simply connected varie-
ties, the classification of differentiable structures is a highly non-trivial problem
(Milnor). The extension to the non-simply connected case was one of the moti-
vations for introducing topological K-theory (classification of bundles in terms
of cleavage properties), but with limited results.
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0.1.1. The interplay between local and global issues

Local issues are formulated in terms of open subsets Ui belonging to a co-
vering U of the base space B which is initially given by a Cr-manifold or an
algebraic vs analytic variety X. Two extreme cases corresponds to r = 0 (Ge-
neral Topology) and r =∞ (Differential Geometry). Roughly speaking, r =∞
is “dense” 2 in the Cr-topology for r ≥ 1; by this reason, the “extreme” cases
are the most meaningful ones to start with.

The clarification of relations between smooth, PL and topological structures
was one of the central problems along the sixties and seventies. From the global
viewpoint, characteristic classes provided criteria of “negative type”, but not
constructive. From an experimental viewpoint, data are initially unorganized
and irregularly distributed. After introducing grouping criteria, it is necessary
superimpose PL-structures (simplicial or cuboidal complexes, e.g.), jointly with
their symbolic structures (lattices, networks, graphs) to ease their management.
Regularization strategies provide PS models where Differential Topology can be
applied.

Matching of local data to generate a base space is performed by using local
coordinate charts φ : Ui → Km, fulfilling “good constraitns” on interections
Ui ∩ Uj of open sets of an open covering U . good constraint conditions are
formulated by using Cr-equivalences φi(Ui ∩ Uj) → φj(Ui ∩ Uj) between open
sets of Km whose properties are well-known from Multivariate Analysis. The
basic model has been described in Differential Geometry A1.

Compatibility between coordinate charts are “lifted” to superimposed struc-
tures (E, π,B, F ) by means locally trivial conditions, i.e. π−1U 'Cr U×F (in a
non-canonical way). Typical examples are given by vector bundles or principal
bundles in Differential Geometry A1, and their extensions to presheaves and
sheaves in GAGA A33. In this way, locally trivial conditions on the base space
are naturally extended to the superimposed structure where one has a simple
algebraic structure on the fibre.

Global issues involve to non-trivial topological structure for the base space
B or, alternately, non-integrability of the superimposed structure (non-unique,
discontinuous solutions, or bifurcations phenomena, e.g.). All of them are ubi-
quitous in all scientific or technological areas. Last chapters of each module of
this matter are devoted to sketch some applications in Natural Sciences, Engi-
neering and Health Sciences.

Differential Topology provides a general framework for a unified treatment in
terms of models arising from almost all mathematical areas. Some of the most
difficult theoretical issues concerns to the classification of non-regular maps.
Stratifications A45 allow to consider as nested matching of regular maps such as
embeddings, immersions and submersions. classification issues are related with
the recognition of shapes and behaviours.

2 A more precise statement will be given in the chapter 2 of the module A41 (Basic Diffe-
rentiall Topology) in terms of Baire sets.
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(*) A non-trivial problem consists of the semi-automatic identification of
local regularity. Recent advances in AI linked to learning manifolds (resp. maps
between manifolds) representing objects (resp. behaviours). A basic strategy
consists of “reducing information” which is formulated in terms of composition
of submersions (going from the SOM framework of nineties to more recently in
OpenAI solutions, e.g.).

(*) Inversely, the simplest topological models to generate new multimedia
contents are formulated in terms of a composition of immersions. Some solu-
tions have been developed in the DALL-E framework by using transformers and
Stable diffisuion, as a neural model or diffusion-reaction equations. Currently,
one tries of developing a more consistent mathematical formulation for these
computational developments 3.

Some more classical challenges correspond to try of extending local to global
models of non-simply connected manifolds M . In addition of the above matching
strategies for local data, one can use global relations between characteristic
classes and Hermitian forms on the fundamental group π1(X) of the manifold
and the homology H∗(X;R) These relations play a fundamental role for linking
local and global aspects.

In particular, the use of functional methods (on Sobolev spaces), topological
methnods (homotopy invariance of characteristic classes) and algebraic proper-
ties (involving Hermitian forms on co-chains with an involution) illustrate the
interplay between different matthematical areas to solve hard classificaiton is-
sues.

An “ external” motivation for the growth of the interplay between local
and global issues is motivated by a “convergence” between algebraic (group
representation theory), topological (Differential Topology) and Analytical areas
(Global Analysis). This “convergence” paves the way for the unification between
the different types of interaction that appear in Theoretical Physics 4 . The
unification also affects the strategies for solving the systems of equations specific
to each theoretical framework. For this reason, this topic appears recurrently in
several sections and, obviously, throughout the entire module.

In particular, the resolution of differential or integral equations is a central
topic in Engineering. This observation motivates the introduction of some more
recent applications to different areas of Engineering. In this more technological
framework, some topics related to the different subjects Bj that are presented
in block II of these notes have been selected. These topics include a geometric
approach to Continuous Media Mechanics B1, Computer Vision B2, Robotics
B3 and Computer Graphics B4 which are presented below (section 3).

3 See the last paragraph of this subsection for some additional details
4 A first approach to the problems of unification is presented in section 3 of this chapter
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0.1.2. Extending group actions to Functional Operators

Vector bundles play a fundamental role to unify differential aspects involving
distributions D of vector fields and systems S of differential forms. Integrabi-
lity results (Frobnius theorems) ease the geometric interpretation in terms of
foliations F whose maximal dimension solutions (leaves L) can be interpreted
in terms of solutions parametrizing “multipahts” or “multiconstraints”.

The multilinear combination of weighted products of s vector fields and r
covector fieldds gives tensors of type (r, s), which are interpreted as the simulta-
neous fulfilment of paths and constraints for simplified evolving system. When
transformations between local data follow standard multilinear rules A13, tensor
are interpreted as sections of a tensor bundle T r,sM on M . This interpretation
explains the ubiquity of tensors in almost all scientific or technological areas,
including AI, recently.

Often, the support is not a manifold M , nor even an algebraic or analytic
variety X. Thus, we have not a vector space on the fiber corresponding to an
evolving system of equations E on the base space B. typical examples appear
in discrete models, which can be managed in terms of “particle systems” (as
it occurs in Quantum Mechanics, e.g.). To solve classification issues, one must
lokk at some kind of local homogeneity on the base space B to be described in
terms of local symmetries.

In presence of a group action α : G× C → C acting on configurations C ∈ C
with “goood properties”, one can replace vector bundles by principal bundles
P = (P, π,B,G), with similar locally trivial conditions π−1(U) 'Cr U × G for
opoen sets U of a covering U of the base space B. In this case, the structural
group G plays a similar role to the generic fibre F of a vector bundle, i.e. the
above Cr-equivalence is restricted to an isomorphism π−1(b) 'b {b}×G between
groups.

In practice, the structural group G does not remain the same, and there can
appear “breaking symmetries” phenomena. They can correspond to changes of
state in the base space B, phase transitions in the space of the first order va-
riation rates for data which is called the Phase space (Poincaré), or even the
second order variation rates which we call the Euler space E. In all cases, brea-
king vs capturing symmetries corresponds ideally to de- vs re-compositions are
formualted in terms of the description of an initial structural group in products
of subgroups. Thus, the classification of groups plays a central role.

The precedent description is formulated in regard to the basic hierarchy
for Theoretical Mechanics given by geometric, kinematic and dynamic aspects
corresponding to the “localization”, their space-time evolution (velocities, acce-
lerations) and the analysis of interactions (forces and moment) between confi-
gurations. A naive representation for this hiearchy is formulated in terms of a
manifold M , its Phase space PM given by the total space of the tangent bundle
τM (or its dual), and the Phase space P 2

M of PM . So, local symmetries at the
base space can be lifted to “succesive extensions” to Phase space P or τP .
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The description based on successive “extensions” has not good functorial
properties, and it can not incorporate the high complexity of shape or behaviour
mutations. By this reason, we introduce the space of k-jets Jk(n, p) of Cr-
map germs [f ] ∈ Cr(n, p). From a local viewpoint, a k-jet jkf of a function
f ∈ Cr(n, 1) is given by the formal Taylor development truncated at order k.
This reduction to a formal polynomial is the key to apply algebraic techniques for
the classification of finite determined k-jets, i.e. those which are Cr-equivalent
to its k-jet by the action of Cr-equivalences on the source and target space.

The k-jet of a map finCr(n, p) is defined as the k-jets of components
fi ∈ Cr()n, 1 for 1 ≤ i ≤ p. Furthermore, they can be extende to superim-
posed structures E → B where JkE denotes the “set” of k-jets jks of local
sections s : U → E. In this way, one can define morphisms JkE0 → JkE1 for
superimposed structures on the same base space B. The k-jets formalism allows
not only the extension of local ODEs and PDEs, but a reformulation of varia-
tional principles which are the key to connect local and global aspects in the
functional framework.

0.1.3. Weakening regularity conditions

Increasingly complex strategies start start with smooth manifolds M and
regular maps f : N → P maps (immersions and submersions) between smooth
manifolds. Lastones provide general strategies to construct manifolds. These
are ideal conditions to be replaced to ease their adaptability to more realistic
morphological and functional aspects. The next step corresponds to the analysis
of functions f : M → R of real valued functions de3fined on a compact m
-dimensional manifold M .

The singular locus is given by the vanishing of the gradient field ∇f ; the
simplest non-trivial case corresponds to quadratic singularities characterized
by a non degenerate Hessian matrix, where the index of the resulting quadra-
tic form (Taylor development) determines the local topology of cells (ek, ∂ek) '
(Dk),Sk−1 to be adjointed by each non-degenerate critical points. Typicla exam-
ples of Morse functions are given by scalar linear (height, depth, e.g.) or qua-
dratic functions (different types of distance, maps, e.g.).

in this way, it is possible to recoonstruct the global topology of the manifold
M , and inverssely. First versions of this study was performed along the third
decade of the 20th centiury by M–Morse for the real case, and by S.Lefschtez for
the complex case. Global invariants (as the euler-PoincarÃ© characteristic, e.g.)
can be described in terms of local characterisitics (index of the gradient vector
field). Functions having non-degenerate critical points are “dense” (any other
functions with arbitrary singularities can be “approached” by Morse functions).
Hence, “generic deformations” of more complex functions display only Morse
singularities.

This viewpoint is naturally extended to the Phase space P , which is modeled
in terms of the total space of the (co-)tangent bundle τM giving the ambient
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space for most issues in Classical Kinematics. The energy functional provides a
Morse function on the Phase space P . In this case, by replacing the ordinary gra-
dient ∇ by the symplecti gradient ∇J := J∇ one obtains the Hamilton-Jacobi
equations to describe the space-time evolution of particles. Similarly to the sta-
tic case, level surfaces of ∇J provide the support for a lot of issues regarding
staiblity. This “example” is naturally extended to higher degree Hamiltonian
functions H : P → R, but the topological analysis displays higher trobules due
to the apparition of more complex singularities than quadratic ones.

The moment map provides a natural G-equivariant extension of conserva-
tive mechanical systems linked to Hamiltonians. The added value consists ot
re-introducing a G-equivariant approach (solutions as unions of orbits). which
is compatiblle with G-equivariant bifurcations. The specification of this program
requires an identification of adjacency orbits appearing in the adherence of re-
gular strata. An advantage of this viewpoint consists of the availability of tools
for extending local propagation models to the whole decomposition of the space
as a union of orbits. So, hierarchies between group actions (llinked to trees of
groups, e.g.) can be translated in a natural way to hierarchies between solutions
of differential systems or their dual distributions.

The support for this hierarchical G-equivariant approach is given by locally
symmetric spaces, whose basic examples have been already introduced in the
module A24 (Geometric Topology). Here, we put the accent on differential aspec-
cts, involving eventually nested subgroups. Basic techniques can be considered
as an extension of the structure of flag manifolds, which reappear in different
ways in the module A45 (Stratifications).

Some recent developments involve to the discretization of smooth models
classically developed in the second half of the 20th century. Discrete versions
can be motivated by the very large diversity of phenomena appearing in solid
structures in regard to gases al liquids. Last ones are modelled in terms of
particles systems with a random structure, where stochastic processes (initially
modelled as random perturbations of ODEs) play a central role.

However, solid materials require different clustering strategies at different le-
vels (molecular vs atomic), with different physical-chemistry laws to each level.
A basic distinction consists of crystalline vs amorphous solids. Roughly spea-
king they correspond to regular arrangements of crystalline micro-structures
vs non-regular structures. Their detection is performed by using operators for
thermodynamical modelling.

(*) In particular, the presence of “defects” (very rare in Nature) can be
modelled in terms of singularities linked to propagation models. Crystallization
phenomena appearing at critical ambient conditions (pressure,l temperature,
e.g.) are some of the most interesting issues to be modelled in the interplay
between smooth and discrete structures. For more details see [Fah23] 5.

5 B.D. Fahlman: Materials Chemistry (4th ed), Springer, 2023.
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0.1.4. Controlling the evolution of living systems

Complex living systems evvle from birth till death. The large diversity of
patterns requires a very flexible approach able of identifying structures, their
evolution, bifurcations, decompositions and regrouping. The simplest mathema-
tical quasi-static models have been described in the precedent matters. Differen-
tial Topology provides models and tools for their static grouping-decomposition,
internal kinematic evolution along the space-time, dynamical patterns for the
interplay with the environment. These aspects can be considered as a natural
extension of Static, Kinematics and Dynamics appearing in Mechanics.

Differential Geometry provides a mathematical framework for Classical Me-
chanics, Optics and Electromagnetism. Differential Topology extends this fra-
mework to some more complex phenomena appearing in Quantum Mechanics.
Simplest models for successive levels (Statics, Kinematics, Dynamics) of the
hierarchical approach to Mechanics have been developed in the precedent mat-
ters. They have been initially described in terms of “regular” maps, i.e. maps
whose differential has maximal rank (immersions and submersions provide typi-
cal examples), and their extensions to superimposed structures (fiber bundles,
fibrations, e.g.). Irregular models are developed from A33.

In the first paragraph of this subsection, we have commented the role played
by immersions and submersions in artificial life, or more precisely, in Artificial
Intelligence. In particular, learning in the SOM (Self-Organizing Maps) frame-
work [Koh97] 6 can be understood as a composition of submersions holding on
discrete structures with a similar behavior to a discrete vector bundle.

Reduction dimensionality preserving the regularity is a goal which can be re-
formulated in terms of submersions. Typical clustering self-adaptive techniques
use clustering in subspaces labeled as ASSOM (Adaptive Subspaces in SOM).
Thus, SOM-based learning strategies can be immediately translated to learning
on a (discrete version of a) Grassmann manifold. If we admit the existence of
reinforcement learning by following successive steps, is clear that (a discrete
version of) Flag manifolds provide the right framework.

In a complementary way, the generation of new multimedia contents can
be understood as a composition of immersions in extensions of the DALL-E
framework by using transformers and Stable diffisuion) illustrate possible appli-
cations of this viewpoint which lack of a riguour foundation, still. An intuitive
idea consists of thinking of the generation as a composition of encoders (given
by successive Gaussian blurring) and decoders (given by successive Gaussian
filtering) from initial multimedia data.

A “toy model” is suuported by y = ax2 where encoders (resp. decoders)
located along the left (resp. right) branch. Obviously, the parabola can be re-
placed by a paraboloid or a discrete veerson, which is the support not only for
good metrical properties 7, but by diffusion properties (Heat Equation, e.g.).

6 T. Kohonen: Self-Organizing Maps (2nd ed), Springer-Verlag, 1997.
7 See the chapter 6 (Voronoi diagrams) of the module B11 (Computational Geometry) of
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0.2. An overview of the matter

In accordance with the previous observations, the subject is organized around
issues related to differential classification and basic properties of

1. Smooth manifolds and basic operations A41 with special attention to the
regular case (immersions and submersions), the subregular case (Morse
Theory) and gluing or segmentation techniques (bordism vs surgery).

2. Simpler bundle structures A42 with special attention to vector bundles and
principal bundles, associated with systems of equations or linear operators,
as well as linear actions with their applications to Theoretical Physics.

3. Function germs A43 to classify the singularities that can appear, with
special attention to the case of simple singularities (finite number of types
of orbits), with Thom catastrophes as basic types.

4. Application germs A44 where the methods developed in the previous mo-
dule are extended (using Local Algebra techniques) to the “vector” case
(finite number of components). Some applications to Continuous Media
Mechanism are outlined.

5. Analytical stratifications A45 where the methods of the previous modules
are extended to (semi-)analytical varieties, superimposed structures and
morphisms between structures. A geometric approach is adopted to faci-
litate adaptation to engineering applications and interpretation in terms
of deformations.

6. Dynamic systems A46 where basic models of interaction with the envi-
ronment are developed in local terms (ODE or PDE systems and their
extension to the global case.

0.2.1. Some methodological issues

A first basic taxonomy involves to morphological and functional aspects. In
global terms it is initially re-formulated in terms of the support (a PS mani-
fold, a cellular complex, a variety, a functional space) and the superimposed
structures (systems of equations, vector bundles, principal bundles, sheaves, fi-
bratioins, functional operators). Morphological and functional aspects display
a dual behaviour which has been developed in the matter A1 for the smooth
frameworks and in A2 in the PL-framework.

We follow an increasingly complex methodology starting with spaces, next
maps or more generally fields, then superimposed structures, and finally morphisms
between them. A novelty (to be visualized as flows) of this matter consists of

the matter B1 (Computational Mechanics of Continuous Media)
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incorporating “irregular” spaces and behaviors in terms of singularities invol-
ving the support and generalized systems of equations corresponding to the su-
perimposed structures. In this way, one can incorporate well-known “features”
(changes of state, phase transitions) to structural models appearing in different
kinds of evolving flows.

The most relevant ideas are a natural extension of other ones appearing in
the precedent matters. They involvin to

Replace the linearization of manifolds in terms of (co)tangent bundles
by graded structures but involving now to spaces of function. Jets spaces
provide methods and tools to develop this idea. The underlying topological
structure is more intrincate that those of cell or CW-complexes A23, but it
can be managed as an extension of orbifolds to infinite-dimensional spaces.

Replace the action of Lie groups and algebras on manifolds or super-
imposed structures (bundles, coverings, sheaves, fibrations) by infinite-
dimensional groups of diffeomorphisms acting acting on vector maps or
more general operators. This gives some kind of euivariant stratifications.

Develop the interplay between an evolving topology of the base space B
and the fiber F by introducing stratifications for the base space, and rela-
tions between different kinds of eventally infinite-dimensional Lie algebras
for controlling the evolution of systems, including possible “degenerations”
linked to dissipative phenomena (by using nilpotent operators, e.g.)

0.2.2. A basic hierarchy

The basic hierarchy of Mechanics affects Geometry on a manifold, Kinema-
tics on the phase space P (initially the total space TM of the tangent bundle τM
of a PS-manifold M), and Dynamics on E = TP (labelled here as the “Euler”
space) which includes the interaction with itself or with the environment. This
approach gives rise to a “natural hierarchy” that is ubiquitous in all applications
developed in part II of these notes.

The hierarchy that appears in Mechanics is translated into the action of dis-
crete groups, finite-dimensional continua and infinitesimals of infinite dimension,
also. The characterization of possible “raising” or “lowering” of the different ty-
pes of symmetries that can appear at a discrete, continuous or infinitesimal level
is formulated in terms of bifurcations (very relevant for dynamical systems A46).
The characterization also affects the types of structural equations that can ap-
pear for the simplest cases. The behaviour of models and systems of equations
(or, more generally, of Cr-fibrations) is analyzed in terms of Cr-equivalences
(diffeomorphisms, bi-analytical or birational morphisms).

A typical example is given by the Newton-like approach for motion in M , the
Hamilton-Jacobi equations in P = TM (natural extension of the gradient field),
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or the Euler-Lagrange equations in TP (extending computation of extrema for
functions). Let us reiterate that, in the absence of external forces, the Euler-
Lagrange forces are equivalent to the Hamilton-Jacobi forces (the fiber of TP →
P behaves globally in a trivial way).

The discrete symmetries of the rigid solid, the Euclidean group SE(n) and
its Lie algebra se(n) provide the basic patterns for actions to consider on M ,
P = TM and TP . This well-known example extends to any other classical group
and its discrete and infinitesimal versions.

Most developments appearing in the first chapters of each module A4k have
a theoretical character, where top-down or models-based approach is the most
relevant one. along the last chapters of each module, one introduces some ap-
plications to other scientific or technological areas, where bottom-up (based on
data or “features”, e.g.) is the most relevant ones.

Connections between them are formulated in symbolic terms, by using ex-
tensions of analytical graphs G = (G,OG) ∈ G to represent basic elements and
relations between them. The introduction of morphisms E0− → E1 between su-
perimposed structures Et ∈ E is the key for a simultaneouss management of
complex phenomena appearing in applications.

0.2.3. Comparing classification criteria

The absolute and relative modelling of “objects” (manifolds, varieties), su-
perimposed structures (fiber bundles, sheaves, fibrations), maps f : X → Y
between objects and morphisms Φ : ξ− → η between superimposed structures
are highly non-trivial problems. Classification is performed w.r.t. equivalence
relations which can be done in terms of algebraic actions (given by groups or
algebras, e.g.) or operations (K-theory, e.g.).

The topologiccal classification is a very hard problem, because there are no
enough general effective criteria for classification up to homeomorphisms. Thus,
one uses weaker criteria (homotopy type, e.g.) or, alternately, one restricts to
diffeomorphisms preserving “some geometric quantity” linked to the (Rieman-
nian, Symplectic, Contact) structure linked to a Classical Group. So, relations
between groups are translated to hierarchies between classifications. A similar
approach can be performed for algebras of operators.

If we start with “objects”, PL- or PS-manifolds (eventually singular) are used
as well as their Cr-transformations. Often, there are an uncountable infinity
of types, which motivates the study of the topology of moduli spaces, which
can have a Cr-structure, also. Typical“examples” are given in the modules A31

(Algebraic Curves) and A35 (Algebraic Surfaces); both show the difficulty of the
problem.

The most favourable conditions from the mathematical point of view co-
rrespond to the smooth objects and their differentiable transformations, which
are the key for the Topology of Differential Invariants to be developed in k-jets
spaces Jk(N,P ), and the corresponding k-jet bundles Jk(E,F ). Up to some ex-
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ceptions [Olv84], they have received less attention than the Geometric Invariant
Theory. The best reference is [Olv95].

Objects of class Cr are locally described in implicit terms (as a place of
function override, e.g.) or explicit terms (including parametric representations)
on spaces or functions. An independent formal presentation of the system of
generators (using prime ideals for irreducible varieties) has been developed in
Algebraic Geometry A3. Their adaptation to the smooth case can be read in
[Tou72]. The Cr-equivalences are defined locally in terms of regular maps with
regular inverses that act on the space or pairs of Cr-equivalences that act on
the starting and arrival spaces or on the graph.

The homeomorphisms are the C0-equivalences for the topological case.
General Topology deals with the classification modulo homeomorphisms.
Algebraic Topology introduces more effective but weaker criteria for clas-
sification, such as homotopy or (co-)homology groups on PL-structures
(simplicial vs. cuboidal) in A22 or, more generally, cellular complexes A23.

The diffeomorphisms are the C∞-equivalences for the differentiable case.
The basic notions have been developed in the module A11 (Differentiable
Varieties) and A12 (Linearization). Differential Topology deals with the
classification of varieties and applications module diffeomorphisms.

The bianalytic transformations are the Cω-equivalences for the analytical
case (convergent series development at each point). Analytical Geometry
deals with classification module analytical equivalence. When the base
body is C the analyticity condition is equivalent to holomorphy.

The birational transformations that characterize Algebraic Geometry can
be considered as a truncation of differentiable and analytical strategies.
The truncation strategy adapts to the differentiable case in terms of the
k-jet spaces that can be interpreted as (finite collections of) truncated
formal Taylor polynomials.

In Differential Topology the classification of map-germs f ∈ Cr(n, p) is per-
formed up to diffeomorphisms giving two main types corresponding to double
conjugacy or A-equivalence, and the contact of K-equivalence. They correspond
to decoupled vs coupled actions. They can be applied to map-germs between
smooth M , algebraic, or analytical varieties X. The existence of Cr-structures
on a topological manifold, the characterization and the relationships between
classifications for different values ââof r are some of the central problems.

To study objects and transformations of class Cr it is appropriate to introdu-
ce additional structures (bundles or bundles, for example) that provide support
for the linearization of objects or their transformations, facilitating the adapta-
tion of methods from Linear Algebra and elementary Differential Analysis. To
fix ideas, in this matter the attention is initially focused on the “smooth” case
or class C∞ whose objects and morphisms (including regular transformations)
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form the differentiable category. In later phases, different Cr-structures on the
same topological variety for r =∞ are considered.

From the nineties, inverse problems play an increasing role in Applied Diffe-
rential Topology. roughly speaking, instead of performing an analysis, they try
of making a “synthesis” of shapes and behaviours.

Shape synthesis involves to different scales and structures going from the
atomic or molecular till industrial prototyping or multimedia graphic con-
tents B4. All of them use symbolic representations (graphs, e.g.) to repre-
sent relations between components, at different depth levels. An efficient
design and computational implementation of Learning Manifolds are the
key for these issues-

Behaviour synthesis involves to different kinds of functionals defined at
each level, with the corresponding optimization strategies, where one must
identify critical levels corresponding to changes of state, phase or interac-
tions between components. Tensor flows provide a first general framework
in Deep Learning for their management. The most diffiult issues are lin-
ked to the simulation control of chemical reactions at molecular vs atomic
levels.

The most immediate applications are related to Physical-Chemistry and
Pharmacological Design 8. In both knowledge subareas the interplay between
discrete and continuous representations of the support and the corresponding
dynamics plays a fundamental role.

0.2.4. An overview of the chapter

This chapter has four sections labelled as follows:

1. Goals and methods including a description of the smooth category, re-
soluton strategies, a discussion about methodological issues and effective
strategies for the resolution.

2. Some applications to Theoretical Physics starting from a reformulatioin
of basic aspects of Classical Analytical Mechanics (following the French
tradition of Lagrange, Legendre, Liouville, PoincarÃ©) and their synt-
geitc reformulation by Hamilton and Jacobi (differential formulation) or
E.Noether (variational approaches). Their unification is performed in terms
of group actions extending to diffeomorphism groups, giving the first steps
for Gauge theories according to H.Weyl 9. A short presentation of appli-
cations to other areas is sketched in the subsection §2,4.

8 Some additional details are introduced in A406 (differential Topology in Physics, Che-
mistry and Engineering) and A408 (Differential Topology in Life Sciences).

9 A gauge field is initially undertood as a connection on a fiber bundle on the space-time
as the base space.
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3. The third section is devoted to introduce some applications to different
applications to IST areas, with a special emphasis on Computational Me-
chanics B1, Computer Vision B2, Robotics B3 and Computer Graphics
B4, whcih will be developed in the part II of these notes. The introduction
of symbolic representations given by graphs provides a nexus supporting
tools and methods for usual query, extraction, recognition and classifica-
tion issues to be applied in the part II.

4. The last section is devoted to explain the contents of the six modules of
this matter, where we adopt a circular scheme , including connections bet-
ween global, local and infinitesimal problems involving objects (varieties
vs superimposed structures) and morphisms between them. One follows
an increasingly complex strategy starting with regular, non-degenerate vs
degenerate singularities, their package in stratified spaces and maps, and
finally, the description of evolving systems in terms of the Topology of
Dynamical Systems.

The descirption of smooth structures includes some comments about the
superposition of the nearet ones topological and PL-categories, levels of detail
for their analysis, and some relations between geometric and topological as-
pectss. They provide demarcation criteria helping to develop “approximations”
which are commonly ued in other scientific or technological areas. According to
the precedent remarks, we have organized this matter around the following six
modules:

1. Basic Differential Topology A41 with Intersection Theory,, Morse Theory
and basic Cobordism as the main goals.

2. Fiber bundles and cohomology A42 with structural classification results
(including universal maps) and Index theorems as the main goal. Non-
vanishing cohomology classes provide a support for a topological manage-
ment of non-integrable systems wwhich have been described in the module
A14 (Differential Forms).

3. Singular function germs where one extends the Morse theory to more
complicated singularitiess of smooth function germs with Catastrophye
Theory as the main paradigm. We follow a coarse-to-fine strategy going
fromgeneric to “increasingly specialized” phenomena by introducing mo-
dels for changes of state, phase transitions or sudden changes in interaction
dynamical models.

4. Singular map germs, extending the precedent construction, where defor-
mations, stability and classificaitons play a functamente role with a view
to classification issues, and explicit constructions for versal deformations
helping to stabilize complex non-linear phenomena.

5. Stratifications invovling spaces and maps, where one recovers again so-
me connections between local and global issues, specially for the (semi-
)analytic case which will reappeear along the part II. Qualitative theory
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of folications provide some deep insight about the geometry, kinematics
and dynamics.

6. Topology of Dynamical Systems where one extends integrability issues ap-
pearing in the module A14, but extending them now to the global case,
to try of understanding complex interaction phenomena appearing in Na-
tural Sciences or different Engineering areas. Hyperbolic systems play a
central role which is linked to the characterization of stable vs unstable
behaviour.An extension of characteristic classes A42 provides some con-
nections between local and global issues. Codimension one phenomena
are well known, but our knowledge for higher codimension is much more
limited.

The most important motivations for the two first modules are linked to Theo-
retical Physics. The other modules are being applied to Edifferent technological
areas with a speial regard to the four areas Computational Mechancis of Con-
tinuous media B1, Computer Vision B2, Robotics B3 and Computer Graphics
B4 of the part II (by following an increasingly complex difficulty).

Some basic applications to Natural Sciences or Economic Theory will be sket-
ched in soms paragraphs from the section 2. Other more advanced applications
related to the topology of solutions on crystal liquids, and the corresponding
phase transitions (including liquid helium at low temperatures, e.g.) will be
ignored in this chapter.

0.3. References for this introduction

References are not exhaustive, nor the most recent ones. They are included
as an invitation to the reeader to acqquire a more complete insight of this
knowledge area, according to his/her own interests.

0.3.1. Basic bibliography

Only some textbooks are included. For more enlarged bibliography, see the
subsection §5,4. References for meaningful research articles are included as foot-
notes.

[Bot82] R.Bott and L.W.Tu: Differential Forms in Algebraic Topology, GTM,
Springer, 1982.

[Bro72] W.Browder: Surgery on Simply-Connected Manifolds. Ergeb. Math.
65, Springer-Verlag 1972.

[Che79] S.S.Chern: Complex manifolds without potential Thoery (2nd ed),
Springer-Verlag, 1979.

[Gil84] P.B.Gilkey: Invariance theory, the Heat Equation and the Aityah-
Singer Index thoorem, Publish or Perish, 1984.

[Gui74] V. Guillemin and Pollack: Differential Topology, Prentice Hall 1974.
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[Hir76] M.W.Hirsch: Differential Topology, GTM, Springer-Verlag, 1976.
[Hir66] F.Hirzebruch: Topological Methods in Algebraic Geometry, Springer-

Verlag, 1966.
[Hus73] D.E.Husemoller: Fibre bundles, GTM, Springer-Verlag, 1973.
[Kir77] R.Kirby, and L. Siebenmann: Foundational essays on topological ma-

nifolds, smoothings and triangulations. Ann. Math. Stud. 88, Princeton Univ.
Press, 1977.

[Mad79] I.Madsen and R.J.Milgram: Classifying Spaces in Surgery and Co-
bordism of manifolds, Annals of mathematics studies no.92, Princeton University
Press, 1979.

[Mil62] J. Milnor: Morse theory, Ann. of Maths Study 51, Princeton Univ.
Press, Princeton, NJ, 1962.

[Mil65] J. Milnor: Topology from a differentiable viewpoint, Virginia Univ.
Press 1965.

[Mil74] J.W.Milnor and J.D.Stasheff: Characterisstic classes, Princeton Univ.
Press, 1974.

[Mil71] J.W. Milnor: Morse Theory, Princeton Univ. Press, 1971.
[Nak90] M.Nakahara: Geometry, Topology and Physics, Adam Hilger, IOP,

1990.
[Nov97] S.P.Novikov: Topology I, Springer-Verlag, 1997.
[Olv95] P.J.Olver: Equivalence, Invariants and Symmetry, Cambridge Univ.

Press, 1995.
[Ste51] N. Steenrood: The Topology of Fibre Bundles, Princeton Unive. Press,

1951.
[Sto68] R.E.Stong: Notes on Cobordism Theory. Princeton, N.J.: Princeton

Univ. Press, 1968.
[Tou72] J.C.Tougeron: Idéaux de fonctions différentiables, Springer-Verlag,

1972.
[Van90] J.Van Mill and G.M.Reed (eds): Open Problems in Topology, Else-

vier, 1990.
[Wal70] C.T.C.Wall: Surgery on compact manifolds. Lond. Math. Soc. Mo-

nogr. 1. Acad. Press 1970.
[Wel80] R.O.Wells: Differential Analysis on Complex Manifolds (reprt),Springer-

Verlag, 1980.

0.3.2. Software resources

To my knowledge, there is no a freely available Open Source library for
Differential Topology, but some functionalities can be extracted from the entry
“List of open source software for mathematics” in Wikipedia. Some general
references including specific applicatioins to Differential topology are

Mapple V: https://www.maplesoft.com/products/Maple/

SINGULAR: https://www.singular.uni-kl.de/Manual/4-4/
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... any suggestion is welcome

In the module B13 (computational Differential Topology) we will develop
a more computational approach to the above issues. Their foundations can be
found in

[Ama16] S.T.Amari: Information Theory and Applications, Springer-Verlag
2016.

[Her13] M.Herlihy, D.Kozlov, S.Rajsbaum: Distributed Computing Through
Combinatorial Topology, 2013.

[Zom05] A.J. Zomorodian: Topology for Computing. Cambridge Univ. Press,
2005.

Final remark: Readers which are interested in a more complete presentation
of this chapter (currently available in Spanish language, only), please write a
message to javier.finat@gmail.com


