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Notas previas: Estas notas corresponden a una introducción al Caṕıtulo 0
del módulo A31 (Curvas Algebraicas) de la asignatura A3 (Geometŕıa Algebrai-
ca y Anaĺıtica). Desde el punto de vista matemático, es necesario tener algunos
conocimientos de Álgebra Básica y Geometŕıa Proyectiva.Se incorporan nocio-
nes básicas de Topoloǵıa Algebraica y Álgebra Conmutativa para hacer más
autocontneido el texto.

Como es habitual, el material está organizado en cuatro secciones. Cada sec-
ción contiene una lista de ejercicios para la autoevaluación de la comprensión del
material. Las subsecciones o párrafos marcados con un asterisco (*) presentan
una mayor dificultad y pueden omitirse en la primera lectura.
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0.1. Prefacio del caṕıtulo B310

Las curvas algebraicas son un tópico muy antiguo. A nivel básico es dif́ıcil
realizar una contribución relevante. Por lo tanto, no pretendo que el contenido
sea original. Las primeras menciones de cónicas (como secciones de un cono)
aparecen hace ya 2400 años. La introducción de las coordenadas cartesianas en el
siglo XVII fue clave para desarrollar un “diccionario�” entre figuras geométricas
y expresiones algebraicas.

La introducción de coordenadas permitió una comprensión más profunda de
los lugares geométricos. La geometŕıa cartesiana sentó las bases para numerosos
desarrollos aislados relacionados con configuraciones de puntos y ĺıneas, y sus
aplicaciones mecánicas y ópticas a finales del siglo XVII y principios del XVIII.

Los primeros estudios sistemáticos más allá de las cónicas planas se centra-
ron en el estudio de las curvas de tercer grado, realizado esencialmente por I.
Newton desde un enfoque métrico, si bien su clasificación resulta redundante
para muchos tipos cuando se adopta un enfoque geométrico. Estos studios ini-
ciales abren la puerta para la clasificación de las curvas en impĺıcitas de grado
bajo que se aborda a principios del siglo XIX.

(*) Las curvas algebraicas muestran ciertas relaciones entre las curvas planas
y espaciales que facilitan la comprensión de las “curvas evolutivas” vinculadas a
problemas mecánicos u ópticos. El “control” de estas curvas requiere una para-
metrización efectiva ligada a caracteŕısticas del movimiento o de la interacción
descrita en términos de EDP (KdV o KP en frentes biparamétricos d ondas).

La parametrización de curvas algebraaicas por funciones regulares (polino-
mios o funciones holomorfas) con diferenciales l.i. plantea problemas para curvas
no-racionales desde principios del siglo XIX. En el caso complejo, las funciones
eĺıpticas e hipereĺıpticas requieren herramientas adicionales asociadas a funcio-
nes casi-periódicas sobre ret́ıculos Λ ⊂ Cg . Los primeros estudios de tipo local
se deben a Jacobi quien introdujo las funciones theta (exponenciales a lo largo
de las “ĺıneas” que soportan el ret́ıculo) para obtener una parametrización. La
primera extensión global fue llevada a cabo por B.Riemann usando la topoloǵıa
de la superficie real subyacente.

La parametrización explicita (racional o trascendente) permite abordar el
ajuste de “formas” mediante polinomios. Este ajuste se puede interpretar en
términos de deformaciones de curvas de grado d ≤ 3, conectando con fenóme-
nos de propagación. En particular, las “curvas evolutivas” fueron inicialmente
representadas por familias uniparamétricas (“deformaciones” de formas canóni-
cas). Su extensión a curvas de grado geq4 se desarrolló más de un siglo después,
usando θ-funciones para curvas eĺıpticas e hipereĺıpticas 1

Las curvas planas algebraicas se describen de formaimpĺıcita mediante la
anulación de un polinomio f(x, y) = 0 de dos variables con coeficientes en un
cuerpo k. Las curvas alabeadas algebraicas en un espacio de dimensión n se
definen localmente mediante n − 1 polinomios funcionalmente independientes

1 Para una presentación reciente de estos aspectos clásicos, véase [Bri86].
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en cada punto (es decir, sus diferenciales son l.i. en cada punto). El ejemplo
básico es al curva racional normal Cd de grado d en Pd definida por la imagen de
la d-ésima inmersión de Veronese de grado d de la recta proyectiva dada como:

V1,d : P1 ↪→ Pd | [x0 : x1] 7→ [xd0 : x
[
0d− 1]x1 : . . . : x0x

d−1
1 : xd]

que se expresa en el espacio de llegada Pd con coordenadas homogéneas z0 : z1 :
. . . zd] por la anulación de los menores de tamaño 2×2 de la matriz perssimétrica(

z0 z1 . . . zd−1
z1 z2 . . . zd

)
2

es decir
z0
z1

=
z1
z2

= . . .
zd−1
zd

que corresponde a la intersección de cuádricas Qij ⊂ Pd definidas por

zizj+1 − zjzi+1 = 0 para 0 ≤ i < j ≤ d− 1.

Este ejemplo muestra que no es posible definir una curva únicamente con n− 1
polinomios. El caso más sencillo es la curva racional normal de grado 3 en P3

dado como la inteersección Q12∩Q13∩Q23 de tres cuádricas en P3;; en este caso
Qi∩Qj = C3∪`ij donde `ok son 3 rectas con intersección vaćıa. .Este ejemplo se
extiende de forma natural a cualquier curva racional normal de grado d. Estas
curvas son las “piezas básicas” para construir “snakes” (curvas racionales con
pesos) y las variedades asociadas como B-splines (producto de dos nakes) y
T-splines (producto de 3 nakes) 2

En la Geometŕıa Elemental las curvas algebraicas se consideran inicialmente
reducidas (todas sus componentes tienen multiplicidad igual a uno) e irreduci-
bles (solo tienen una componente conexa). Ambas restricciones se eliminan en
Geometŕıa Algebraica,. Aśı, un punto doble (dado por x2 = 0 en la recta y = 0)
o dos puntos simples en una recta (x = +a en la recta y = 0) son ejemplos de
cónicas no reducidas ó no conexas, respectivamente, en el eje Ox.

En presencia de singularidades, la irreducibilidad local no se cumple: cada
rama se considera como una componente desde el punto de vista anaĺıtico local.
En particular, un nodo ordinario y2 = λx2 +x3 o una cùspide ordinaria y2 = x3

(“especialización” para λ = 0) tiene dos componentes anaĺıticas en un pequeño
entorno del punto singular.

Estas ideas se extienden de formanatural a la Geometŕıa Algebraica de Va-
riedades utilizando métodos algebraicosy trascendentes(vinculados a integrales
sobre formas definidas sobre variedades). La unificación entre diferentes apro-
ximaciones ha motivado el desarrollo de un lenguaje algebraico cada vez más
abstracto para englobar objetos y resultados procedentes de áreas muy diversas.

Por ello, es conveniente tener siempre presente el caso 1-dimensional. En el
estudio de curvas algebraicas con métodos algebraicos confluyen el Análisis Ma-
temático, la Topoloǵıa de superficies reales, la Teoŕıa de Números, el estudio de

2 Detalles en el módulo B41 (Diseño Geométrico) de B4 (Informática Gráfica).
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polinomios y su lugar de anulación. Las nociones de ideal, anillo y módulo fue-
ron introducidas por la Escuela Alemana (Brill, Dedekind, Kronecker, Noether,
Weber) en la segunda mitad del siglo XIX.

El enfoque algebraico proporciona la primera unificación de los métodos
utiilizados en Geometŕıa Algebraica y en Teoŕıa de Números. El Teorema de
los Ceros y el Teorema de la Base de Hilbert ocupa un lugar central en la
fundamentación de la Teoŕıa de Variedades y los desarrollos que han tenido
lugar sobre todo a lo largo del s.XX. Permite establecer un diccioinario entre
propiedades básicas de tipo algebraico y geométrico-

A pesar de su indudable importancia para resolver problemas de invariantes y
de clasificación, este enfoque relega a un segundo plano las profundas conexiones
con el Análisis Complejo y con la Topoloǵıa Algebraica. Como consecuencia
aparece una parcelación del saber que es ajena al desarrollo histórico de la
Geometŕıa Algebraica y sus relaciones con otras áreas de conocimiento. Un
objetivo de la algebrización de la Topoloǵıa (A.Weil, 1950) es proporcionar un
marco para recuperar esas relaciones.

La Geometŕıa Algebraica surge inicialmente como una extensión de los resul-
tados conocidos para cónicas desde la Antigüedad. Una primera aproximación
se lleva a cabo en términos del grado d de la curva. El primer caso corresponde
a d = 2. Una cónica regular general se determina a partir de 5 puntos (o , dual-
mente, 5 ĺıneas) en posición general en P2 , resolviendo un sistema homogéneo
de 5 ecuaciones con 5 incógnitas (6 salvo factor de proporcionalidad) en P5.

La primera clasificación de las cúbicas planas se lleva a cabo por I.Newton
(1642-1717) quien, utilizando propiedades métricas y proyectivas da un total de
72 tipos. Los métodos de Geometŕıa Proyectiva redujeron el número de tipos
a 3 en CP2. La introducción demétodos trascendentes de 2 tipos: racionales vs
irracionales. La clasificación birracional descompone el segundo tipo en eĺıpticas
e hipereĺıpticas.

Aśı, p.e. en A2. una cúbica plana se representa como una combinación lineal

Ax3 +Bx2y + Cx2 +Dxy2 + Exy + Fx+Gy3 +Hy2 + Iy + J = 0

de los 10 monomios no-homogéneos de grado ≤ 3. Para determinar los diez
coeficientes (en realidad, 9 salvo factor de proporcionalidad), se introducen 9
puntos pi = (xi, yi) para 1 ≤ i ≤ 9 en “posición general” lo cual da un sistema
de 9 ecuaciones en 9 incógnitas A, . . . , J . La resolución de este sistema require
invertir matrices de tamaño 9×9, algo que va más allá de la capacidad de orde-
nadores concencionales. La versión homogénea de esta construcción se formula
en términos de ∑

0≤ik≤3

ai0i1i2x
i0
0 x

i1
1 x

j2
2 = 0 i0 + i1 + i2 = 3

pero la dificultad es la misma. A lo largo del siglo XVIII se desarrollan diferen-
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tes sistemas mecánicos para el trazado de curvas cúbicas 3. Sin embargo, estas
descripciones carećıan de una principio general aplicable a curvas de grado ar-
bitrario (Euler). En particular, a medida que aumenta el grado, la resolución
exacta efectiva por coeficientes indeterminados para polinomios de grado d se
convierte en irrealizable desde el punto de vista computacional. Dos estrategias
alternativas consisten en

desarrollar (y clasificar) parametrizaciones locales (algebraicas o trascen-
dentes) que conducen al enfoque birracional basado en cuerpos de funcio-
nes, que predomina desde Riemann. Este enfoque es intŕınseco, si bien la
identificación de la parametrización más adecuada no es elemental.

calcular “puntos especiales” (singularidades) que imponen “restricciones
adicionales” para disminuir el número de “grados de libertad” de la curva,
que conduce al enfoque basado en “cuvas adjuntas” (Casteñnuevo) y a la
descripción de las curvas en términos de sistemas lineales que pasan por
un conjunto finito de puntos (regulares vs singulares) con multiplicidad
pre-asignada.

La idea intuitiva de “serie lineal” aparece al extender la parametrización
de una ĺınea a un curva, calculando las intersecciones C ∩ `y con una familia
uniparamétrica de rectas `t que pasan por un punto p. En particular C puede
ser una recta `0, proporcionando aśı una parametrización de `0. Un ejemplo
menos trivial está dado por la polar de una cuerva con respecto a los puntos
situados sobre una recta (resp. curva) que da lugar a un pencil (resp. net) de
curvas. Otros casos sencillos son:

El haz de rectas {`t}t∈A1 a través de p ∈ C2 proporciona una parametri-
zación de C (repasar la generación proyectiva de las cónicas).

La curva nodal y2 = x2(x + 1) presenta la misma propiedad tomando p
como el nodo.

Los haces de circunferencias que pasan por el origen con centro en un
punto de (x− y)(x+ y) = 0 que parametrizan la lemniscata de Bernouilli
[Sha76].

Sin embargo, para curvas de grado d ≥ 3 aparecen otros tipos algebraicos de
intersección que ya no se pueden parametrizar por (cuerpos de funciones sobre)
la recta proyectiva P1 (curvas “racionales”), aunque śı por polinomios sobre
curvas trascendentes. Aunque no exista un Teorema de la Función Impĺıcita, śı se
pueden considerar diferenciales l.i. sobre la curva, cuyas integrales proporcionan
una parametrización local sobre la curva. Esta idea se debe originalmente a
Jacobi, quien introdujo las funciones θ para parametrizar curvas eĺıpticas. La
sistematización algebraica se debe a Brill y Noether.

3 https://sites.google.com/site/tesislinkages/evolucion-historica/histora4
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(*) Una estrategia alternativa consiste en calcular de forma aproximada (en
lugar de exacta) las ráıces de un polinomio. En el caso real, el primer algoritmo
general se debe a Sturm (1835), quien introducjo una colección de desigualdades
polinomiales (método sugerido inicialmente por Sylvester) para acotar el rango
de variaiblidad de las ráıces de polinomios en una sola variable.

(*) Este método semi-algebraico fue extendido a continuación por Hermite
para el caso de varias variables. La evaluación de los signos de las derivadas
sucesivas de los polinomios que definen las desigualdades, permite caracterizar
las regiones en las cuales el sistema de inecuaciones tiene un número prefijado
de soluciones (complementario del lugar discriminante 4. Actualmente, forman
parte de los métodos que aparecen en las bases de Groebner y que utilizan los
signos de las derivadas de los polinomios en las soluciones.

0.1.1. Complementos de Geometŕıa Proyectiva

La sistematización de la Geometŕıa Proyectiva Lineal llevada a cabo por la
escuela Francesa a principios del siglo XIX culmina con el tratado de Poncelet
(1821). Los resultados obtenidos proporcionan un paradigma que da lugar a
desarrollos para el análisis de variedades algebraicas de grado bajo, con una
especial atención a curvas inmersas en P2 y superficies inmersas en P3.

Las dos herramientas fundamentales de la Geometŕıa Proyectiva están liga-
das a las operaciones de de proyectar sobre un subespacio y cortar por subespa-
cios. La “genericidad” juega un importante papel en ambos casos. Los análogos
en el marco diferenciable corresponden a submersiones e inmersiones cuyas pro-
piedades se han descrito en A12 (Linealización). Lamentablemente, en el marco
algebraico o anaĺıtico la hipótesis de ‘suavidad” (smoothness) no se verifia. Por
ello, estas operaciones adoptan diferentes formas hasta la actualidad.

En las Escuelas Alemana y Francesa predomina inicialmente el enfoque
sintético (basado en configuraciones de puntos y rectas), es decir, independiente
de sistemas coordenados (Chasles en Francia; Steiner y Von Staudt en Alema-
nia). Este punto de vista le da cierta independencia con respecto a argumentos
basados en expresiones anaĺıticas. De forma complementaria en las Escuelas
Italiana (Bertini, Cremona, C.Segre, Veronese) y Británica (Cayley, Salmon),
predomina el enfoque anaĺıtico.

La descripción anterior no se debe tomar en sentido estricto, pues Pluecker
y, más adelante, Hurwitz y Klein utilizan diferentes técnicas basadas en pro-
piedades de funciones anaĺıticas y funcionales integrales definidas sobre curvas
algebraicas. Una presentación de los métodos anaĺıticos de la Geometŕıa Pro-
yectiva con breves incursiones a variedades no-lineales de grado bajo se puede
ver en [Sem52] 5. El tratamiento más completo de Curvas Algebraicas Planas
hasta mediados del siglo XX se puede ver en [Coo59].

4 Un caso particular corresponde a la localización aproximada con respecto a sistemas de
rectas en un plano afin cuya versión computacional se desarolla en B11 (Geometŕıa compu-
tacional).

5 J. Semple and G. Kneebone: Algebraic Projective Geometry. Oxford Univ. Press, 1952.
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El enfoque sintético culmina en la obra de H.Schubert (1879) quien utiliza
argumentos topológicos y de Geometŕıa Sintética para la determinación
del número de hipersuperficies de grado bajo con condiciones prefijadas
(Geometŕıa Enumerativa). No obstante, debe señalarse que los argumen-
tos sintéticos de “posición general” y topológicos relativos al análisis de
“casos degenerados” (para contar propiamente las soluciones con su mul-
tiplicidad correspondiente) utilizados frecuentemente no encuentran una
formulación rigurosa hasta mucho tiempo después. Este trabajo es im-
pulsado por S.L.Kleiman y W.Fulton a partir de 1977 en el marco de la
moderna Teoŕıa de Intersección [Ful84].

El enfoque anaĺıtico utiliza expresiones expĺıcitas para deducir propieda-
des de las variedades algebraicas sin hacer uso del formalismo algebraico
desarrollado inicialmente por la Escuela Alemana desde la segunda mitad
del siglo XIX. Esto da lugar a una elevada casúıstica donde resulta dif́ıcil
identificar el rigor de las demostraciones. Un gran número de resultados
de este enfoque se puede ver en los 6 volúmenes de Baker [Bak61] 6 ó el
compendio más reciente [Sem49] 7.

En ambos enfoques persiste la duda sobre la validez de los argumentos to-
pológicos relativos a “degeneraciones” que pueden presentar las familias de cur-
vas o, con más generalidad, de variedades algebraicas. El “control” de estas
posibles degeneraciones se lleva a cabo en términos de “invariantes” locales. El
desarrollo de las herramientas d la Topoloǵıa Algebraica y Geometŕıca A2 por
un lado y del Álgebra Local (Conmutativa y Homoloógica) hasta mediados del
siglo XX motivan el lanzamiento del Programa de Algebrización de la Topoloǵıa
(A.Weil) que se aborda en el parágrafo §0,1,3

A pesar de las deficiencias señaladas, el enfoque basado inicialmente en va-
riedades inmersas en un espacio proyectivo Pr muestra una riqueza excepcional
que afecta tanto a los métodos (secciones y proyecciones), como a las transfor-
maciones “naturales” entre objetos:

Las operaciones básicas basada en proyecciones sucesivas o secciones se
reformulan en términos de morfismos propios entre variedades y criterios
de amplitud para evaluar restricciones sobre suvarieades (eventulamente
con componentes inmersas). La genericidad se describe en términos de
un abierto para la elección de centros de proyección o de subespacios
“transversales¡¡.

Las transformaciones proyectivas, además de la razón doble, preservan el
grado o la clase, p.e.. Se utilizan para identificar formas canónicas para las
que resulta más fácil calcular invariantes. A partir de mediados sel siglo
XIX se reemplazan por transformaciones birracionales que preservan el
cuerpo de funciones racionales k(X) definidas sobre una variedad X (en
particular, el género).

6 H.J.Baker: Principles of Geometry, f. Ungar, New York, 1961
7 J. Semple and L. Roth: Introduction to Algebraic Geometry. Clarendon Press, 1949.
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En la Geometŕıa Proyectiva las transformaciones lineales están inducidas por
la acción del proyectivizado PGL(n+1;K) := GL(n+1;K)/K∗ del grupo lineal
general- Facilitan los argumentos basados en condiciones de incidencia (resp.
tangencia) para configuraciones genéricas de puntos (resp. ĺıneas tangentes) para
curvas C ⊂ CP2 en el plano proyectivo complejo.

(*) En el caso del plano af́ın A2, la versión af́ın GL(2;R)nR2 del grupo de las
colianeaciones PGL(2;R) se reemplaza por el grupo especial lineal o unimoudlar
(Moebius). La versión discreta SL(2;Z) es clave para el estudio de las curvas
eĺıpticas (en términos de funciones doblemente periódicas) y su extensión a las
hipereĺıpticas (funciones múltipelmente periódicas).

Las transformaciones birracionales (como extensión de las birregulares) sólo
conservan propiedades vinculadas al cuerpo k(X) de funciones racionales sobre
X, incluyendo las asociadas a las diferenciales meormorfas. Estas últimas per-
miten construir el divisor canónico KX (y sus potencias tensoriales) como el
invariante fundamental para clasificar variedades. Un “ejemplo” de transforma-
ciones birracionales viene dado por la transformación de Cremona:

P2− → P2 | [x0 : x1 : x2] 7→ [x1x2 : x0x2 : x0x1] = [
1

x0
:

1

x1
:

1

x2
]

(triple inversión) con la extensión del śımplice estándar (generado por tres pun-
tos de fuga estándar) como “lugar fundamental” para la correspondencia 8. Las
transformaciones cuadráticas ordinarias son una versión af́ın de las de Cremona.

La Geometŕıa asociada a frentes de ondas se basa en el estudio de las envol-
ventes de las tangentes (evolventes) y las normales (evolutas). habitualmente,
presentan singularidades que “evolucionan” dependiendo de los parámetros del
sistema. La versión local de las trasnformaciones de Creoman permite interpre-
tar visualmente la resolución de las singularidades más simples 9

Asociadas a estas construcciones se tienen asimismo otros ejemplos interesan-
tes de transformaciones birracionales ϕ : C1 → C2 (que conectan con aspectos
básicos de la Geometŕıa Proyectiva) inducidas por

la aplicación de dualidad C → Cν definida como el cierre el grafo de p→
tϕ(p)C ∈ Cν proporciona el punto de partida para un enfoque geométrico
de la Cinemática (evolución espacio-temporal de primer orden).

la aplicación ψ : C → Ce (evoluta) en Geometŕıa Diferencial que a cada
punto p ∈ C le lleva en el centro de curvatura op. La curvatura expresa
propiedades de las componentes “normales” vinculadas a la Geometŕıa
Extŕınseca. Por ello, proporciona el punto de partida para la dinámica
(interacción con el entorno).

8 Este “ejemplo” es clave para gestionar el lugar de indeterminación en Reconstrucción Tri-
duimensional B22 en Visión Computacional B2 y en Navegación Automatica B32 en Robótica
B3.

9 Este argumento se extiende de forma inmediata a transformación cúbica de Cremona
(cuádruple inversión) con la extensión del śımpllice estándar como lugar fundamental para la
correspondencia de Cremona en P3
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Las transformaciones birracionales permiten resolver singularidades y mues-
tran diferentes modelos equivalentes de los mismos “objetos”. Por ello, facilitan
la puesta en correspondencia entre elementos geométricos (problema de clasifica-
ción), incluso en presencia de indeterminación ó de múltiples correspondencias.
Por ello, proporcionan algunas de las herramientas fundamentales para los pro-
blemas de clasificación en Geometŕıa Algebraica.

En parte II de estas notas las transformaciones birracionales se utilizan para:

1. Identificar simetŕıas infinitesimales (KdV) o simplificar sistemas de EDP
no-lineales a formas más sencillas en Mecánica Computacional de Medios
Continuos B1

2. Suprimir la indeterminación en Reconstrucción 3D o para resolver am-
bigüedades en seguimiento de objetos móviles B23 o en Reconocjmiento
de objetos B24 a partir de contornos en Visión Compjutacional B2.

3. Gestionar mapas de visibilidad en presencia de oclusiones parciales, detec-
ción de eventos en mapas de perspectiva en Navegación Automática B32

en Robótica y automatización de Procesos B3.

4. Facilitar el pegado de datos locales, propagar los datos en ausencia de
ifnromación ó generar nueva información a partir de “modelos similares”
en aplicaciones de la IA generativa a Informática Gráfica B4.

Los métodos basados en transformaciones birracionales y en las operaciones
proyectivas usuales (“cortar” y “proyectar”) se aplican tanto a variedades par-
ticulares como a las dos ĺıneas de trabajo de la Geometŕıa Proyectiva Clásica
relativas a configuraciones de variedades y al estudio de la Geometŕıa Extŕınse-
ca.

0.1.2. Geometŕıas Intŕınseca y Extŕınseca

Empezamos recordando una distinción básica entre las geometŕıas intŕınseca
y extŕınseca en GAGA:

La Geometŕıa Intŕınseca es independiente de la inmersión, mientras que
la Geometŕıa extŕınseca depende de la inmersión. El marco general para
relacionarlas está dado por la “traslación” de los análogos de los fibra-
dos tangente y normal al marco de la Geometŕıa Algebraica. La geometŕıa
Intŕınseca se expresa en términos de invariantes birracionales como el géne-
ro en el caso de curvas, p.e.

La Geometŕıa Extŕınseca concierne al estudio de las propiedades que de-
penden de la inmersión realizada (o asociadas a proyecciones sobre P2 ó
P3). La Geoemtŕıa Extrnseca se epresa en términos de “caracteres” aso-
ciados a algún tipo inmersión como el grado d, la clase dν , el número δ
de puntos dobles ordinarios, el número κ de cúspides ordinarias (y sus
duales).
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Las relaciones entre ambas geometŕıas desemepñan un papel fundamental
en GAGA y en Geometŕıa Diferencial, aśı como sus aplicaciones a otras áreas.
Algunas prolongaciones actuales de estas relaciones aparecen en Geometŕıa Enu-
merativa, la Teoŕıa Geométrica de Invariantes y la Teoŕıa de Moduli.

En el caso de curvas, el grado d y la clase d∗ (número de tangentes que se
pueden trazar desde un punto exterior) son “caracteres” proyectivos extŕınsecos.
El género es un invariante birracional intŕınseco, es decir, no depende de la
inmersión de la variedad en un espacio amgiente.

Las fórmulas de Pluecker relacionan los caracteres extŕınsecos y elos invai-
rantes inŕınsecos, en términos del número de nodos o de cúspides que aparecen
para una curva proyectiva plana C ⊂ P2. Si C ⊂ P2 es una curva plana con δ
nodos y κ cúspides ordinarias, la primera fórmula de Plucker es:

d∗ = d(d− 1)− 2δ − 3κ (1)

donde los coeficientes de δ y κ corresponden a la “multiplicidad” con la que
deben ser contados estos puntos. Si C̃ es un modelo no-singular de C, admite un
embebimiento en P3 cuya imagen se denota meidante C. Existe una proyección
πC : P3 → P2 talq ue π(C) = C.

Los nodos o puntos dobles ordinarios corresponden a las rectas bisecantes
pq a C que pasan por el centro de proyección C de π.

Las cúspides ordinarias son la proyección de puntos de tangencia ordinaria
a C de tangentes tpCque pasan por C y no cortan a ningún otro punto de
C

Los nodos ordinarios se visualizan en términos de las bisecantes que pasan
por el centro C de una proyección central πC : P3 → P2. La variedad de secantes
definida como el cierre de

{x ∈ P3 | x ∈ pq para (p, q) ∈ C × C −∆C}

es irreducible y tiene dimensión 3. En particular, la restricción a una curva
alabeada C de cualquier proyección central πC : P3 → P2 da lugar a un número
finito de nodos sobre la curva plana C = πC(C). Análogamente, la variedad de
tangentes definida como el cierre de

TpC := {x ∈ P3 | x ∈ tpC para algún p ∈ C}

tiene dimensión 2. Por ello, siempre se puede elegir un centro de proyección
C ∈ P3 que no pertenezca a la variedad de tangentes (espacio total TC del
fibrado tangente τC en la terminoloǵıa de la Geometŕıa Diferencial). Obviamente,
si el centro de proyección C se elige sobre rectas multisecantes o tangentes,
aparecen puntos singulares con mayor multiplicidad que la correspondiente a
nodos o cúspides ordinarios. La segunda fórmula de Pluecker expresa el dual κ∗

dle númeor de cúspides en términosde los caracteres de de la curva original:
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κ∗ = 3d(d− 2)− 6δ − 8κ. (2)

La dualidad entre puntos y ĺıneas del plano proyectivo P2 y su dual (P2)∗,
da lugar a una expresión del grado en términos de la clase

d = d∗(d∗ − 1)− 2δ∗ − 3κ∗, qquad(3)

y ánalogamente, se tiene la expresión dual para la segunda fórmula de Pluecker
dada por

κ = 3d∗(d∗ − 2)− 6δ∗ − 8κ∗. (4)

El género d de la curva es esencialmente el único invairante birracional.
Inicialmente, se definió como la “deficiencia” de C dada por

g =
1

2
(d− 1)(d− 2)− δ − κ (5)

un entero positivo que se puede describir en términos duales como

g =
1

2
(d∗ − 1)(d∗ − 2)− δ∗ − κ∗ (6)

Las relaciones entre caracteres extŕınsecos d, δ, κ (o sus duales) y el inva-
riante birracional g expresan relaciones másprofundas entre “ciclos” que son el
sooporte de dichas “cantidades”. En particular, expresarn la relación entre el
lugar de ramificación Ram(π) en el espaico de partida y su imagen como lugar
discrimannt

Estas construcciones se trasladan de forma natural a morfismos(propios o
dominantes) más generales f : X → Y entre variedades de la misma dimensión
o, con más generalidad, a fibraciones algebraicas o anaĺıticas. Todas eollas se
engloban en el tópico de Fórmulas de Puntos Múltiples que se desarrolla en
Geometŕıa Enumerative A34 en el marco algebraico.

(*) El estudio de “familias” conexas de curvas de grado fijo d o con sin-
gularidades pre-asignadas en un espacio proyectiveo Pr debe incluir posibles
“degeneraciones” y facilitar la “epsecialización” de un elemento “genérico” de
la familia en curvas no-reducidas o que puedan presentar componentes inemrsas.
Estos requrimientos moivan la introducción de

La variedad de Chow Xd,r de las curvas C en
mathbbP r caracterizadas por tener intersección no vaćıa Lr−2∩C 6= ∅ con
la curva C para subespacios L∗ r−2 de la Grasmanniana Grass(r−2, r).

El esquema de Hilbert Hd,g,r de las curvas de grado d y género g en Pr
asociado a las curvas con la misma función de Hilbert-Samuel p(n) =
nd− g + 1.



12

(*) Ambos “objetos” reproducen la complementariedad entre los enfoques
extŕınseco (la curva como variuedad de incidencia) e intŕınseco (la curva como
entidad abstracta). Los puntos de la variedad de Chow (representando curvas)
ignoran la información sobre componentes 0-dimensionales de C incluyendo mul-
tiplicidad, puntos inmersos o esquemas no-reducidos. Sin embargo, proporcionan
una parametrización en términos de los subespacios de codimensión 2 que cortan
a C y que determinan un divisor ΣC en la Grassmanniana G = Grass(r− 2, r).
Por ello, son un múltiplo del divisor canóonico KG sobre la Grassmanniana; es
deci, se expresan como la potencia d-ésima OC(ΣC) de la imagen rećıproca de
la clase del fibrado universal sobre G.

(*) Por el contrario, Hd,gr se describe en términos de las“ hipersuperficies”
que contienen a la curva C (en lugar de los subespacios incidentes). Mientras
que la varuedad de Chow “hereda” una “estratificación” procedente de la des-
composición celular de la Grassmanniana (dual de la Grassmanniana de rectas
en Pr).

El esquema de Hilbert presenta una “estratificación inductiva” asociada a
valores crecientes de n. Esta simple observación permite desarrollar argumentos
de tipo inductivo sobre valores m ≤ n. Por ello, Hd,g,r es más apropiado para
describir posibles compactificaciones del espacio de moduli de curvas.

0.1.3. Aspectos topológicos y anaĺıticos (*)

El modelo topológico de una curva proyectiva compleja algebraica C viene
dado por una superficie compacta orientable, denominada superficie de Riemann
SC . La clasificación topológica de superficies compactas se ha realizado en los
módulos A21 (Teoŕıa de Homotoṕıa) y A22 (Homoloǵıa y Cohomoloǵıa) de la
materia A2 (Topoloǵıa Algebraica y Geométrica).

Cualquier variedad compleja es orientable. Por lo tanto, el modelo topológico
de la superficie de Riemann viene dado por la suma conexa #gT2 de g toros
bidimensionales T2 := S1 × S1 (visualizados como la superficie borde de una
rosquilla), donde g ≥ 0 es el género topológico. En particular, para g = 0 se tiene
la esfera ordinaria S2 (también llamada esfera de Riemann). Una ventaja de esta
descomposición topológica es el desacoplamiento de los sistemas de ecuaciones y
sus soluciones. La aprición de singularidades se traduce en “ciclos evanescentes”
que se visualizan como “toros pinchados”.

Las propiedades generales de Topoloǵıa General (conexividad, compacidad,
separabilidad) se abordan usando la estructura topológica subyacente de las
curvas algebraicas proyectivas complejas como superficies de Riemann compac-
tas. El caso no-compacto se aborda en Variedades Afines, aśı como un estudio
general de propiedades topológicas (Topoloǵıa General) en el caṕıtulo 5 de A32.

Las cuestiones de separabilidad son más sensibles con respecto a la topoloǵıa
utilizada, pues la topoloǵıa de Zariski es menos fina que la topoloǵıa de los co-
eficientes. La aparición de componentes inmersas requiere introducir topoloǵıas
más finas (Grothendieck) sobre el soporte subyacente (esquemas; verA33).
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Desde un punto de vista anaĺıtico intŕınseco, la inmersión canónica C ↪→
Cg viene dada por el divisor canónico KC . Este divisor está generado por g
diferenciales holomorfas l.i. en M = #gT2. Estas diferenciales “representan”
(formas cerradas módulo exactas) a las 2g formas diferenciales reales. Son las
duales de los generadores a1, b1, . . . ag, bg del primer grupo de homoloǵıa).

(*) El divisor canónico KC es el soporte para las clases de equivalencia lineal
de divisores positivos de grado g − 1 en el espacio proyectivo correspondiente
CPg−1 (proyectivizado del espacio de formas diferenciales holomorfas). Aśı, la
superficie de Riemann M asociada a la curva algebraica C se realiza como una
subvariedad anaĺıtica irreducible (g − 1)-dimensional, dada como una hipersu-
perficie irreducible Wg−1 ⊆ J(M del toro complejo Tg asociado al Jacobiano
g-dimensional Jac(M).

(*) De hecho, Wg−1 es birracionalmente equivalente al producto simétrico
(g − 1)-ésimo Mg−1/Sg−1, es decir, el cociente de la superficie de Riemann
M por el grupo simétrico en g − 1 variables. Aśı, las clases de equivalencia
lineal de divisores en el toro complejo Jac(M) son las mismas que las clases de
equivalencia anaĺıtica compleja de fibrados complejos lineales en Jac(M).

(*) Utilizando esta equivalencia, se obtiene una descripción expĺıcita de cual-
quier hipersuperficie de Jac(M como el lugar geométrico cero de una función
anaĺıtica compleja en el recubrimiento universal Cg de Jac(M) con propiedades
de periodicidad espećıficas, que se denominan funciones theta θ en Cg.

Una cuestión central en la Teoŕıa de Curvas afecta al estudio de deforma-
ciones que aqúı se aborda en los terminos de [Har82] 10. Como es habitual,
se puede plantear de forma extŕınseca (en términos del fibrado normal a una
inmersión) o bien de forma intŕınseca (la curva como variedad abstracta):

El enfoque extŕınseco basado en la variedad de Chow Xd,r es más intui-
tivo, pero da lugar a una casúıstica asociada a la inmersión elegida; una
estrategia tipica utiliza las “formas asociadas” (Chow y Van der Waerden)
en la variedad de Grassmann correspondiente. Las propiedades universales
son las asociadas al fibrado tautológico universal sobre la Grassmannia-
na. Por ello, ignora las propiedades vinculadas a componentes inmersas.
Para recuperarlas seŕıa necesario introducir una estructura graduada más
fina asociada a módulos sobre variedades de banderas generalizadas (que
incluyan componentes inmerdas).

El enfoque intŕınseco utiliza una porpiedad universal del esquema de Hil-
bert para los morfismos S− → Hd,g.r que se corresponden biyectivamente
con los subesquemas d C ⊂ S × Pr cuyas fibras sobre S son curvas de
grado d y género g. Este enfoque permite visualizar las deformaciones de
primer orden del subespquema C ⊂ Pr como el espacio tangente de Zariski
a Hd,g,r en C. 11

10 El enfoque diferencial se desarrolla a partir del módulo A43 (Gérmenes de Singularidades
de fucniones) de A4 (Topoloǵıa Diferencial)
11 Más formalmente, a partir del haz normal N := HomOPr (IC/I2C ,OPr ), las deformaciones
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0.1.4. Algebraic Curves in Engineering

Some classical applications appear in regard to problems in Geometric Op-
tics and Mechanics. In both cases, there appear transcendent aspects linked to
solutions for ODEs linked to propagation models and transmission effect, e.g. In
addition, from the last years of the 18th century, algebraic curves and surfaces
play a fundamental role in Descriptive Geometry (Monge), which are translated
to the Projective Geometry framework after the first synthesis performed by
Poncelet (1821).

Typical projective methods based on sections and projections are exten-
ded to all branches of Geometry, under different labels. From the algebraic
viewpoint,they extend the notions of injective and surjective maps which is na-
turally adapated to thesmooth, algebraic and analytic frameworks. They are
ubiquituous also in Applied Sciences and Engineering, where they are used to
enlarge or reduce information. Regular conditions for both of them, must be
extended o the singular case, where different “pathologies” can appear.

Some of the most relevant problems for explicit computations involving Al-
gebraic Geometry of Curves are

Exact vs approximate computation for roots of polynomials, where symbo-
lic vs numerical tools have been developed from the eighties with standards
such as Maple V, Macsyma, or Singular between others.

Common roots for two polynomials, where the Resultant plays a central
role. The computation of multiple roots can be understood as a particular
case involving a polynomial and its derivative (Discriminant Loci).

Explicit computations for the intersection of two or more polynomials,
where the Bézout theorem is the starting point. Relations between alge-
braic, differential and analytical approaches for itnersections issues are
developed in the module A34 (Enumerative Geometry) in strong relation
with methods arising from Differential Topology A4

Computation of Algebraic invariants and relations between them (syzy-
geas), beyond finiteness results developed initially by D.Hilbert in the last
decade of the 19th century; the first systematic modern approach is per-
formed in [Stu93]12

Most approaches were initially developed for the complex case. Some appli-
cations to Engineering require the development of methods and software tools
for the real case, which is usually performed in the Semi-Algebraic framework
(to bound the query region for solutions). A classical reference is [Arn89] 13

Along the part II of these notes, we develop some applications to several
Engineering areas including:

de primer orden están dadas por TCHd,g,r = H0(C,N ).
12 B. Sturmfels: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Compu-

tation, Springer-Verlag, 1993.
13 D.Arnon: Computational Methods in Real Algebraic Geometry. Academic Press, 1989.
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Computational Mechanics of continuous media B1 where they are used
for effective parametrization (by using theta functions) o solutions for
KP equations involving two interacting wavefronts, e.g., in Computational
Dynamics B15 or to visualize complex interaction phenomena at molecular
level in Advanced Visualization B16 (following Bajaj).

Computer Vision B2 for semi-automatic recognition of objects B24 from
silhouettes and their lifting (by using projecting cones) to 3D space curves.
An invariant-based approach is developed in [Mun91] 14

Robotics and Automation B3 where they are used to solve polynomial
equations in trigonometric functions for grasping objects by Anchored ro-
bots B31, management of polynomial constraints in non-linear Optimiza-
tion and Control in auotmated environments, and and their extensions to
Humanoid Robots B35 for a more firenly interaction with human beings.
.

Computer Graphics B4, including the use of snakes (weighted rational
curves) in computational design tools (CAD/CAM) inside Geometric Mo-
delling B41. The evaluation of their deformations is crucial for Quality
Control and the correction of deformations b linked to mechanical efforts,
e.g. This application requires the in corporation of differential and metric-
based methods. Other more classical applications are linked to algebraic
tools for animation of characters B44.

In all these applications data estimation plays a central role. Algebraic cur-
ves must be fitted to eventually noisy data, in an accurate way as possible.
Very often, even projective characters are unknown, and must be inferred along
the sampling and query processes. In addition, high degree curves can not be
estimated from exact methods (indeterminate coefficients),, and badly with ap-
proximate methods (Sturm-Hermite, e.g.). Thus, a basic strategy consists of

1. start with low degree curves by using low-order momenta, e.g.

2. reproject data on candidate curves (multiple regression):

3. remove spurious data by using metric criteria:

4. match candidates by using control elements (points and lines);

5. evaluate incidence and tangency conditions from different loclaizations:

6. accept or reject the result in terms of additional constraints.

The precedent pipeline suggests rational curves as a first candidate, which
are determined by the method of indeterminate coefficients in an appropriate
space (a symmetric power of the original polynomial ring). This choice eases

14 J.L.Mundy and A.Zisserman: Geometric Invariance in Computer Vision, The MIT Press,
1991.
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the extension to higher dimension in terms of the product of two (resp. three)
weighted rational curves) gives a rational surface (resp. threeofold) which is
called a B-spline (resp. a T-spline 15). A non-trivial problem is how to generate
it by machine tools having in account mechanical constraints.

In more advanced settings, it can be necessary to replace rational curves
by elliptic or hyperelliptic curves. In both cases, Theta functions provide a
parametrization of curves, which is linked to the integral curves corresponding
to l.i. differentials on the curve.

The algebraic approach to “complex shapes or behaviour” (represented by
varieties and morphisms between varieties) is appear in a lot of applied sciences
and technological areas. However, this reduction does not imply a polynomial
complxity for the corresponding algorithms 16-

Some advanced applications to Theoretical Physics are sketched at the end
of the module A34 (Enumerative Geoemtry) in regard to the number ofrational
curves appearing in Superstirng Theory (an attempt to quantize Gravitational
Interaction). Algebraic curves are used in the part II of these notes. Some of the
most outstanding arise from a reformulation of Algebraic Geometry in terms of
Conformal Geometry (angles preservation). Advanced applications in Enginee-
ring are grouped according each one of the areas included in this part. Next,
we give some snapshots for each one of matters appearing the part II:

1. Computational Mechanics of Continuous Media B1 including some ad-
vanced topics going from explicit resolution of algebraic differential equa-
tions involving propagation and interaction phenomena in Fluids Mecha-
nics (Todda latices, Korteweg-De Vries, KP equations, e.g.)

2. Computer Vision B2 where some problems to be solved involve the au-
tomatic recognition of algebraic plane contours, and their deformations
by projective or Conformal transformations. S.Petitjean developed in the
nineties the Enumerative Geometry A34 for Curves and Surfaces in Com-
puter Vision.

3. Robotics B3 involving forward and inverse mechanics for articulated me-
chanisms with the classical hierarchy (Geometry, Kinematics, Dynamics).
It includes “exact” solutions for matrix differential equations (Riccati ty-
pe, e.g.), and their reinterpretation in terms of Grassman manifolds or
more general Flag manifolds for embedded systems.

4. Computer Graphics B4 going from active contours modelling by using
snakes, i.e. pieces of weighted rational normal curves fulfilling (exact vs
approximate) incidence and tangeny conditions, and the study of their
deformations for animation and simulation of characters in multimedia
industry by using Computational Conformal Geometry [Gu08] 17

15 This terminology is not standard
16 See the module B10 for more details about complexity of algorithms.
17 X.D.Gu and S.T.Yau: Computational Conformal Geometry, Stony Brook Lect, Intl Press,

2008.
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The above list is not exhaustive, and different recombinations have been de-
veloped in Advanced Visualization B16 or advanced applications to Biomedical
Imaging, appearing in several modules of B2 (computer Vision)

0.2. Esbozo del caṕıtulo B310

Además, de esta introducción el caṕıtulo contiene las secciones siguientes:

1. Curvas algebraicas: Estructuras algebraicas. Aspectos anaĺıticos. Geometŕıa
Birracional. Singularidades.

2. Tópicos avanzados: Curvas en Supeficies, Geometŕıa enumerativa de cur-
vas. Invariantes, Espacios de moduli.

3. Aspectos topológicos: Integrales de formas sobre curvas. Topoloǵıa Alge-
braica. Topoloǵıa Compleja. Topoloǵıa de cuervas algebraicas reales.

4. Algebrizando la topoloǵıa: Extendiendo la topoloǵıa general. Haces y Es-
quemas, Cohomoloǵıa para curvas- Aspectos computacionales.

5. Algunas aplicaciones a Ingenieŕıa con especial atención a los tópicos de-
sarrollados en la parte II de estas notas: Mecánica de medios continuos
B1, Visión Computacional B2, Robótica B3 e Informática Gráfica B4.

En estas notas se desarrolla un enfoque top-down (basado en modelos) que
combina métodos y herramientas procedesntes de diferentes áreas: algebra Bási-
ca, Geometŕıa Proyectiva, Topoloǵıa Conjuntista y Algebraica, ó el Análisis Di-
ferencial e Integral. Aunque todas se extienden a dimensión arbitraria, en este
móodulo para fijar ideas nos restringimos a curvas algebraicas (definidas por po-
linomios) o curvas anaĺıticas (cada rama está definida localmente por desarrollos
en serie convergentes).

Se prioriza el enfoque algebraico construido sobre cuerpos k algebraicmente
cerrados de caracteŕıstica cero, con el cuerpo C de los números complejos como
el paradigma central. En algunos casos, se comentan brevemente extensiones de
los resultados básicos al cuerpo R de los números reales o a cuerpos finitos Fq
de interés para la Teoŕıa de Números. La extensión de los métodos presentados
a las Geometŕıas Semi-Algebraica o Semi-Anaĺıtica (localmente definidas por
un número finito de igualdades, desigualdadaes y desigualdades estrictas) tiene
gran interés para cuestiones de Optimización (parte II de estas notas), pero sólo
aparece de forma tangencial.

0.2.1. Aspectos metodológicos

Los primeros estudios de curvas algebraicas fueron desarrollados por Des-
cartes (1595-1650) y Fermat (1601-1665) a mediados del siglo XVII. En estos
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estudios se describen propiedades de curvas ligadas a problemas mecánicos uti-
lizando métodos anaĺıticos basados en la introducción de coordenadas Cartesia-
nas. La expresión algebraica de las relaciones entre las variabless proporcionan
los primeros ejemplos para curvas algebraicas definidas por polinbomios.

A finales del siglo XVII ya eran bien concoidos ejemplos de curvas trascend-
netes (Leibnitz) en los que las relaciones entre coordenadas cartesianas o polares
no están dadas inicialmente por polinomios en dichas variables 18.

A finales del siglo XVII y comienzos del siglo XVIII, Leibnitz (1640-1761)
y Newton introducen el cálculo infinitesimal para el estudio diferencial e inte-
gral de “entidades geométricas”. Esta introductión impulsa la necesidad de un
estudio más detallado de los polinomios que relacionan las “cantidades” vincu-
ladas a transmisión de fuerzas y momentos, aśı como aspectos elementales en
fenomenos de propagación.

Más allá de las cónicas, los ejemplos de curvas algebraica (1643.1727)s (cisoi-
de, concoide diferentes tipos de cicloides, curvas inmersas en toros, p.e.) estaban
motivados por problemas de transmisión en diferentes tipos de mecanismos ar-
ticulados. En el siglo XVIII se desarrolla un enfoque anaĺıtico de tipo infinitesi-
mal, pero el carácter algebraico de las ecuaciones motivó un enfoque algebraico
integrado en el siglo XIX.

El enfoque infinitesimal utiliza el cálculo del espacio tangente ΘX,x en cada
punto (generado por las derivaciones del anillo local en lenguaje algebraico) y
el control de las singularidades que pueden aparecer. Ejemplos t́ıpicos de curvas
mecánicas con singularidades corresponden a los diferentes tipos de cicloides o
de astroides que combinan rotación y traslación a lo largo de una recta o de
una cirunferencia, p.e. Estas curvas presentan singularidades simples (nodos y
cúspides ordinarios) que es necesario “controlar” en términos de una curvatura
variable para las aplicaciones a dispositivos mecánicos 19

La variación continua de parámetros para familias uniparamétricas f : X →
S de estas curvas da lugar al estudio de envolventes de tangentes (evolventes)
o de normales (evolutas). Estas curvas aparecen en Mecánica y Óptica vincu-
ladas a la resolución de EDO asociadas a fenómenos de propagación en medios
continuos y homogéneos. Las envolventes hab́ıan aparecido ya en los primeros
estudios de Óptica Geométrica llevados a cabo a principios del siglo XVIII por
Newton y Huygens, entre otros. En [Gei05] 20 se muestran las razones de la
ubicuidad de la cicloide en diferentes problemas de Mecáncia y Óptica.

Las envolventes de tangentes o normales (y la resolución del problema inver-
so) pueden presentar asimismo singularidades. El ejemplo más simple mcorres-
ponde a la evoluta de una parábola que es una cúspide ordinaria (Newton); este
ejemplo fue utilizado ya en el siglo XVIII para el diseño de telescopios. Desde
el punto de vista mecánico, la aparición de singularidades motiva una exten-

18 La exposición más completa que conozco se puede ver en [Bri80].
19 Esta estrategia se aplica a las singularidades que aparecen en la locomoción de Robots

Humanoides B35 y Animats B36 en B3 (Robótica y Automática).
20 Geiges: “Christian Huygens and the contact geoemtry”, arXiv, 2005.
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sión al caso singular n de las técnicas de control geométrico para evitar “saltos
bruscos” en el funcionamiento de mecanismos articulados. La visualización 3D
de la familia f(x, y; a) = 0 como una superficie en el espacio parametrizado por
x, y, a lleva a la descripción de la envolvente como

f(x, y : a) = 0 ,
∂f

∂a
f(x, y; a) = 0

que es precisamente el “lugar discriminante” de la proyección sobre el plano a =
0, donde las “curvas de nivel” a = cte son tangentes a f(x, y; a) = 0. Esta simple
observación muestra una conexión entre aspectos algebraicos (discriminante de
una familia de polinomios), anaĺıticos (tangentes a curvas) y diferenciales (lugar
cŕıtico de una proyección) vinculados a soluciones de EDO).

Este ejemplo proporciona el punto de partida para las “polares” de una curva
como representación de la visibilidad de un objeto desde un pinto exterior y el
cálculo de sus propiedades métricas (Salmon, 1903). La extensión a dimensión
superior da lugar al estudio de Variedades Polares que se aborda en el módulo
A32 (Variedades Casi-Proyecivas) 21.

Recordemos que la polar desde un punto exterior de una cónica es la recta
que conecta los puntos de tangencia. La primera polar de una curva desde P
(polo) es la recta que envuelve las tangentes exteriores; la segunda polar es una
cónica asociada al Hessiano.

(*) Cuando P se mueve a lo largo de una recta se obtiene una familia unipa-
ramétrica de polares. Si el polo P se mueve a lo largo de una curva plana C pa-
rametizada por (a, b) ∈ Cd (curva directriz) caracterizada por g(a, b) = 0, se ob-
tiene una familia biparamétricade curvas f(x, y; a, b) = 0 con su correspondiente
lugar discriminante definido por f(x, y; a, b) = 0, g(a, b) = 0 y fagb − fbga = 0.

A partir del siglo XIX se desarrollan diferentes aproximaciones de tipo
anaĺıtico, topológico, algebraico para el estudioi de las curvas algebraicas. La
primera unificación de estos métodos se debe a B.Riemann (1856) quien esta-
blece los fundamentos y demuestra los primeros resultados centrales de la teoŕıa
de Curvas Algebraicas. En particular, Riemann muestra los primeros elementos
del “diccionario perfecto” entre la clasificación superficies compactas, curvas al-
gebraicas y cuerpos de funciones definidos sobre la curva. Este diccionario tiene
implicaciones en sus análogos relativos a la teoŕıa de Números que no se aborda
en estas notas.

Lamentablemente, este diccionario presenta dificultades adicionales en el ca-
so singular y no se extiende a dimensión superior. No obstante, en el módulo
A33 veremos las relaciones entre los diferentes aspectos se pueden interpretar en
términos de “estructuras superpuestas” (haces de partes principales ) que toman
valores sobre las funciones regulares asociadas a cada uno de estos contextos.
Una versión ingenua de esta idea está ligada a la sucesión exacta

21 El reconocimiento automático de objetos B24 en Visión Computacional usa la evolución
de siluetas como proyección del contorno aparente dado por una curva alabeada C que es el
lugar discriminante).
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0→ Z→ C→ C∗ → 0 (∗)

asociada a la aplicación exponencial exp : C → C∗, cuyo núcleo se describe en
términos del espacio recubridor universal22 con hojas parametrizadas por Z so-
bre S1 (visualizable como una espiral). Intuitivamente, los aspectos topológicos,
geométricos y anaĺıticos están vinculados a los términos que aparecen de forma
sucesiva en la sucesión exacta (*).

Los enfoques más antiguos para la clasificación de curvas planas algebrai-
cas se basaban en el grado d := deg(C), comenzando con los valores más ba-
jos correspondientes a cónicas (Apolonio), cúbicas (Newton) o curvas cuárticas
(Cayley, Clebsch). Estas últimas proporcionan los primeros ejemplos avanzados
de métodos proyectivos (28 ĺıneas bitangentes a una cuártica plana), teoŕıa de
invariantes algebraica (Cayley, Salmon) y trascendente (Clebsch), vinculados a
género 3 y sus extensiones (superficies de Kummer y variedades abelianas).

La invariancia proyectiva del grado d es clave para las operaciones relacio-
nadas con secciones y proyecciones. Su inversa está dada por la “elevación” de
curvas de bajo grado, donde las curvas planas se interpretan como la curva di-
rectriz de conoides en un espacio proyectivo. Este enfoque puede considerarse
la “prehistoria” de la clasificación algebraica. En la mayoŕıa de los casos, utiliza
únicamente resultados básicos de factorización (Vieta) y las funciones simétricas
elementales correspondientes. En otras palabras, no tiene en cuenta la naturale-
za algebraica de curvas más generales dadas en términos de funciones regulares
o vinculadas a funcionales integrales no racionales.

Desafortunadamente, el grado no es un invariante birracional. En particular,
las cónicas, las curvas nodales o cúspides, y la lemniscata son curvas racionales
de grado 2, 3 y 4, respectivamente, que son biracionalmente equivalentes a P1.
Sin embargo, las curvas generales de grado 4 no son racionales. En particular,
el cálculo de �cantidades simples� dadas por integrales (como la longitud de
la curva, por ejemplo) se convierte en un problema dif́ıcil incluso para algunas
curvas racionales. Las primeras contribuciones algebraicas que incorporaron el
género se deben a Clebsch (1833-1872), quien demostró que la curva general de
grado cuatro tiene género tres.

(*) El cálculo expĺıcito de integrales eĺıpticas ilustra el carácter no trivial
del problema que inicialmente se presenta en problemas variacionales (Euler).
Estos problemas surgen a pesar del carácter racional de la elipse como curva
algebraica. Los problemas aumentan para integrandos con radicales fraccionarios
de grado ≥ 4. Además, para emparejar funciones regulares en intersecciones de
conjuntos abiertos se requieren cambios de coordenadas inversibles, que solo
pueden realizarse en el cuerpo k(X) de fracciones del anillo k[X]. Es necesario
incorporar “extensiones trascendentes” de k(C) para la correcta gestión de estos
problemas. 23

22 Ver módulo A21 (Homotoṕıa) de A2 (Topoloǵıa Algebraica y Geométrica) para detalles.
23 Algunas observaciones sobre el enfoque trascendente se han presentado más arriba en el

parágrafo §0,1,3; para un tratamiento más extenso ver el caṕıtulo A317 de este módulo.
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0.2.2. Interrelación entre Álgebra Conmutativa y Geometŕıa Algebraica

La introducción de los métodos de Álgebra Conmutativa en la Geometŕıa
Algebraica de Curvas se lleva a cabo en dos art́ıculos publicados en 1873 y en
1882, respectivamente. El primero se debe a Brill y Noether, mientras que el
segundo se deboe a Dedekind y Weber.

El trabajo de Brill y Noether (1873) que resumió todo el conocimiento ad-
quirido hasta entonces para curvas algebraicas planas y sentó las bases para las
investigaciones desarrolladas sobre todo por la geómetras de la Escuela Italiana
de Geoemtŕıa Algebraica. En este trabajo se introdujo el concepto fundamental
de “serie lineal”. En términos generales, una serie lineal grd de dimensión r y
grado d sobre una curva irreducible C es un conjunto de r grupos de d puntos
de la curva obtenidos al intersectarla con otra curva que vaŕıa en un sistema
lineal de dimensión r.

Max Noether hab́ıa introducido la noción de curvas adjuntas a una curva al-
gebraica plana dada C para abordar el estudio del lugar singular Sing(C) de C
en términos de las curvas que pasn por cada punto singular npp con una multi-
plicidad preasignada np−1. Esta condición está motivada por el comortamiento
de las diferenciales en dicho punto. El teorema de Rieman-Roch hab́ıa mostrado
la necesidad de utilizar las diferenciales para una curva algebraica no-singular
para calcular el género g de la curva. Por ello, el enfoque de M.Noether es la
extensión natural al caso singular.

Brill y Noether (1873) introducen el concepto de divisor D sobre una curva
irrecudible plana C como una combinación lineal finita

∑
p npp que permite tra-

tar por igual puntos regulares y singulares, evaluando las condiciones adicionales
que imponen a las curvas “adjuntas” el paso por dichos puntos múltiples. La in-
tersección de la curva plana C con las curvas adjuntas de M.Noether determina
una serie lineal grd donde el “orden” r es el número de puntos de cada grupo y
la dimensión d es el número de parámetros de los que depende. La serie contiene
los puntos singulares (como puntos fijos), y una “intersección excedentaria” de
puntos variables que vaŕıan en un sistema de “curvas residuales”. Una referencia
clásica es [Coo31] 24

(*) El cálculo de invariantes (dimensión, superabundancia, ı́ndice de especia-
lidad, en la terminoloǵıa antigua) de los sistemas de series lineales forma parte
del problema de la postulación (reducir el número de puntos utilizando condi-
ciones de incidencia sobre puntos singulares). El objetivo de la postulación es
determinar si existen “familias de curvas” con caracteŕısticas prefijadas dadas
por dichos invariantes. Este problema se formula actulamente en términos co-
homológicos 25. El rango del primero grupo de cohomoloǵıa corresponde a la
dimensión del espacio. La no anulación de la cohomoloǵıa en grado uno indica
que existe algún tipo de “obstrucción” a encontrar sistemas lineales verificando
las condiciones prefijadas.

24 J.L.Coolidge: A Treatise on Algebraic Plane Curves, Oxford Univ. Press, 1931
25 Una ventaja del enfoque basado en la cohomoloǵıa de haces A33 consiste en que la pos-

tulación se extiende a dimensión arbitraria-
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Con la suma definida en la formal natural, los divisores forman un grupo
abeliano Div(C), donde el cero es el divisor nulo. Si D1D2 ∈ Div(C), entonces
D1 ≥ D2 significaD1−D2 ≥ 0 (divisor efectivo). un sistema lineal completo | D |
asociado a un divisor es el conjunto de todos los divosres efectivos (no negativos)
linealmente equivalentes a D. Esta noción e la adaptación de la noción de serie
completa en el marco Brill-Noether.

El lenguaje de divisores facilita un tratamiento simultáneo de las condicio-
nes de incidencia y tangencia (eventualmente excedentarias) correspondientes
a secciones (transversales o verificando condiciones de contacto prefijadas) por
hipersuperficies. El estudio del exceso de intersección fue realizado por f.Gaeta
(1953) en términos de intersecciones con residual finito 26

(*) En el caso de curvas, ambos lenguajes proporcionan relaciones estruc-
turales entre aspectos geométricos y anaĺıticos. En terminos más modernos, las
series lineales o los divisores se reemplazan por secciones de haces. En particu-
lar, las clases de isomorf́ıa fibrados lineales (fibrados vectoriales de rango uno)
se rrpresentan mediante clases de equivalencia lineal de divisores. Un ejemplo
básico corresponde al género como dimensión de un espacio de secciones de un
haz.

un enfoque algebraico complementamente diferente (vinculado a la Teoŕıa
Algebraica de Números) se desarrolla en el trabajo de Dedkiny Weber (1883).
Su idea básica consiste en recuperar el punto de vista original de Riemann,
omitiendo cualquier referencia a aspectos trascendentes. En otras palabras, ig-
norando las integrales y la topoloǵıa compleja de las superficies de Riemann
como el verdadero soporte topológico de los modelos complejos. Su enfoque
puede entenderse como una especie de dualidad entre X y el cuerpo k(X).

Con más detalle, en lugar de considerar las superficies de Riemann X como
un lugar geométrico de puntos, consideran el cuerpo k(X) de funciones racio-
nales definidas en X. En este marco, k(X) es una extensión de grado finito del
cuerpo k(C) de funciones racionales definidas en C, de forma similar a la teoŕıa
de números algebraicos (también desarrollada previamente por Dedeking). Este
punto de vista se extiende naturalmente a una dimensión superior para una
variedad algebraica 27.

El hito siguiente fundamental es el Teorema de los Ceros (Nullstellensatz)
de Hilbert :

Teorema.- Sea K un cuerpo algebraicamente cerrado (como el de los núme-
ros complejos), denotemo por K[X1, X2, . . . , Xn] el anillo de polinomios en n
variables y por I un ideal en este anillo. La variedad af́ın V (I) definida por este
ideal consiste de todas las n-tuplas x = (x1, . . . , xn) en Kn tal que f(x) = 0
para todo f ∈ I

El teorema de los ceros de Hilbert nos dice que si p es un polinomio en
K[X1, X2, . . . , Xn] que se anula en la variedad V (I), i.e. p(x) = 0 para todo

26 Una presentación moderna se puede ver en [Ful84]
27 Un desarrollo más detallado se presenta en el caṕıtulo A311.
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x ∈ V (I), entonces existe un número natural r tal que pr está en I.

Un corolario inmediato es el “Nullstellensatz débil”: si I ⊂ R es un ideal
propio en k[x1, x2, ..., xn], entonces V (I) no puede ser vaćıo, i.e. existe un cero
común para todos los polinomios del ideal. Esta es la razón para el nombre
del teorema; que es fácilmente demostrable en esta forma “débil”. Nótese qu
asumir que el cuerpo k sea algebraicamente cerrado es esencial aqúı: el ideal
propio (X2 + 1) en R[X] no tiene un cero común.

El Nullstellensatz puede ser también formulado como

I(V (J)) =
√
J para todo ideal J

Aqúı,
√
J denota el radical de J e I(U) denota el ideal de todos los polinomios

que se anulan en el conjunto U . De este modo, obtenemos una correspondencia
biyectiva que revierte el orden entre las variedades afines en Kn y los ideales
radicales de k[x1, x2, . . . , xn].

La extensión de estos resultados a variedades de dimensión arbitraria con el
calculo expĺıcito de invariantes asociados a las “presentaciones” de los ideales
correspondientes requiere calcular algún tipo de “resolución” de los módulos
correpsondientes. Este desarrollo requiere elementos adicionales de Álgebra Ho-
mológica que se introducen en el móudlo siguiente A32

0.2.3. Métodos algebraicos vs trascendentes

El análisis Diferencial e Integral ha jugado un papel esencial en el desarrollo
de la Geometŕıa Algebraica desde el siglo XVIII. Los métodos utilizados son una
extensión natural de los descritos en Geometŕıa Diferencial de Curvas y Super-
ficies A10 o, con más generalidad, de Variedades en los módulos A14 (Cálculo
Diferencial Exterior) y A15 (Integración sobre Variedades), respectivamente.

Para simplificar, suponemos inicialmente que el cuerpo base es el de los
números complejos C, donde se suponen conocidos los resultados básicos de la
Topoloǵıa Compleja y la teoŕıa de Funciones Anaĺıticas sobre C.

La existencia de una estructura real subyacente a C se traduce en un iso-
morfismo C 'R R2 que se expresan en términos de las coordenadas Cartesianas
(x, y) o bien de las complejas (z, z, donde z = x− iy es el conjugado de z. Los
cambios de carta en las estructuras complejas, inducen cambios de carta en la
estructura real subyacente que permiten extender las nociones básicas relativas
al Cálulo Diferencial e Integraal.

Las relaciones entre las estructuras real y complejac para el caso global, pro-
ceden de la compatibilidad sobre abiertos Uαβ := Uα ∩ Uβ de un recurbimiento
de la curva compleja. Esta compatibilidad está dada por aplicaciones bianaĺıti-
cos (es decir, biholomorfas en el caso complejo). Los cambios de carta en el caso
algebraico están dados por transformaciones birracionales. n el caso más simple
están generadas por las colineaciones de P2 y las transformaciones de Cremona
son las piezas básicas (M.Noether).
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La inversibilidad para las transformaciones birracionales sobre el cuerpo
k(X) de las funciones racionales sobre X motiva la necesidad de contar con
funciones regulares dadas por polinomios p(z) y cocientes de polinomios f(z) =
p(z)/q(z) como funciones regulares. Sobre C corresponden a funciones holomor-
fas y meromorfas, respectivamente que se denotan con la misma notación.

Los métodos diferenciales se describen en términos de propiedades cam-
pos de vectores vi y sistemas de formas diferenciales ωj . Se supone que
ambas son regulares. Para fijar ideas (y debido a sus mejores poropiedades
funtoriales), nos restringimos formas diferenciales.

Los métodos tracendentes en Geometŕıa Algebraica se desarrollan a partir
del Cálculo Diferencial e Integral sobre Variedades Complejas. El Cáculo
Diferencial utiliza campos vectoriales y formas diferenciales (holomorfas
y meromorfas) sobre variedades (ver caṕıtulo 4 para detalles). En el caso
real, la cohomoloǵıa de DeRham A14 y la Integración sobre Variedades A15

proporcionan el marco general para identificar invariantes de la estructura
real subyacente para variedades suaves.

(*) En el caso complejo, la cohomoloǵıa de Dolbeault en el caso complejo,
juega un papel similar a la Cohomoloǵıa de De Rham, proporcionando invarian-
tes para la estructura compleja de X. La Teoŕıa Hodge proporciona relaciones
entre las estructura compleja y real subyacente. La clave es la introducción de un
complejo bigraduado en el los elementos del mismo bigrado p+q = k (constante)
están relacionados por operadores de contracción y expansión.

*) La introducción del operador de Laplace ∆d◦d sobre variedades complejas,
permite identificar representantes “armónicos” (es decir, verificando ∆ω = 0)
para las clases de cohomoloǵıa. Estos representantes armónicos son soluciones
de problemas de tipo variacional. La representabilidad de su clase dual mediante
ciclos algebraicos es un problema aún no resuelto (conjetura de Hodge).

(*) La compatibilidad de la estructura compleja con métricas hermı́ticas se
lleva a cabo sobre Variedades Kaehler. Las propiedades de estas variedades son
invariantes con respecto a la acción simultáneca (intersección) de los grupos
clásicos GL(n;C) (Geometŕıa Compleja), O(2n;R) (Geometŕıa Riemanniana) y
Sp(n;C) (Geometŕıa Simpléctica). Además, dos de estas estructuras determinan
la tercera. Esta idea muestra a las variedades Kaehler como varieades priville-
giadas donde es posible desarrollar un “diccionario” entre diferentes tipos de
variedades de forma similar a las superficies de Riemann

La teoŕıa de intersección es un tópico transversal a todos los módulos que
aparece de forma recurrente en todos los módulos de esta materia A3. Este teoŕıa
ilustra algunos de los aspectos de mayor riqueza para visualizr la interrelación
entre aspectos locales y globales. Para ello, utiliza métodos algebraicos, dife-
renciale,s topológicos y anaĺıticos. El primer resultado importante de la Teoŕıa
de Intersección es el Teorema de Bézout. La versión para la intersección de dos
curvas planas en el plano complejo fue formulada por Bézout
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0.2.4. Organización del módulo y aspectos avanzados

El módulo A31 (Curvas algebraicas y anaĺıticas) tiene los caṕıtulos siguientes:

1. Métodos algebraicos para curvas.

2. Funciones regulares y racionales.

3. Normalización y Transformaciones birracionales..

4. Cálculo Diferencial e Integral sobre curvas algebraicas.

5. Divisores y sistemas Lineales.

6. Teoŕıa de intersección para curvas algebraicas.

7. Curvas anaĺıtica.s y Recubrimientos.

8. Espacios de moduli para curvas algebraicas.

9. Elementos de Criptograf́ıa y Teoŕıa de Codigos.

Un enfoque más general para las curvas algebraicas y anaĺıticas utiliza la
cohomolorǵıa de haces y la teoŕıa de Esquemas que se esbozan en la sección 3
y se desarrollan en el módulo A33. A continuación, en la sección 4 se presentan
algunas ideas básicas sobre tópicos avanzados relacionados con

Curvas en Superficies y Deformaciones.

Geometŕıa Enumerativa de Curvas.

Relaciones entre invariantes para curvas.

Esquemas de Hilbert para curvas de género g.

0.3. Referencias para esta introducción

El objetivo de esta subsección es proporcionar algunas indicaciones para que
cada persona interesada en estos tópicos pueda selecciona su propia śıntesis de
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Final remark: Readers which are interested in a more complete presentation
(in Spanish language) of this chapter or some chapter of this module A31 (Al-
gebraic and Analytic curves), please write a message to javier.finat@gmail.com.


