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Notas previas: Estas notas corresponden a una introduccién al Capitulo 0
del médulo Asy (Curvas Algebraicas) de la asignatura Az (Geometria Algebrai-
ca y Analitica). Desde el punto de vista matemadtico, es necesario tener algunos
conocimientos de Algebra Bésica y Geometria Proyectiva.Se incorporan nocio-
nes bésicas de Topologia Algebraica y Algebra Conmutativa para hacer mas
autocontneido el texto.

Como es habitual, el material estd organizado en cuatro secciones. Cada sec-
cién contiene una lista de ejercicios para la autoevaluacién de la comprension del
material. Las subsecciones o parrafos marcados con un asterisco (*) presentan
una mayor dificultad y pueden omitirse en la primera lectura.



0.1. Prefacio del capitulo B310

Las curvas algebraicas son un tépico muy antiguo. A nivel bésico es dificil
realizar una contribucién relevante. Por lo tanto, no pretendo que el contenido
sea original. Las primeras menciones de cénicas (como secciones de un cono)
aparecen hace ya 2400 anos. La introduccién de las coordenadas cartesianas en el
siglo XVII fue clave para desarrollar un “diccionarios” entre figuras geométricas
y expresiones algebraicas.

La introduccién de coordenadas permitié una comprensién més profunda de
los lugares geométricos. La geometria cartesiana sento las bases para numerosos
desarrollos aislados relacionados con configuraciones de puntos y lineas, y sus
aplicaciones mecanicas y opticas a finales del siglo XVII y principios del XVIII.

Los primeros estudios sisteméticos mas alld de las cénicas planas se centra-
ron en el estudio de las curvas de tercer grado, realizado esencialmente por I.
Newton desde un enfoque métrico, si bien su clasificacién resulta redundante
para muchos tipos cuando se adopta un enfoque geométrico. Estos studios ini-
ciales abren la puerta para la clasificacion de las curvas en implicitas de grado
bajo que se aborda a principios del siglo XIX.

(*) Las curvas algebraicas muestran ciertas relaciones entre las curvas planas
y espaciales que facilitan la comprensién de las “curvas evolutivas” vinculadas a
problemas mecéanicos u 6pticos. El “control” de estas curvas requiere una para-
metrizacion efectiva ligada a caracteristicas del movimiento o de la interaccion
descrita en términos de EDP (KdV o KP en frentes biparamétricos d ondas).

La parametrizacion de curvas algebraaicas por funciones regulares (polino-
mios o funciones holomorfas) con diferenciales 1.i. plantea problemas para curvas
no-racionales desde principios del siglo XIX. En el caso complejo, las funciones
elipticas e hiperelipticas requieren herramientas adicionales asociadas a funcio-
nes casi-periédicas sobre reticulos A C CY . Los primeros estudios de tipo local
se deben a Jacobi quien introdujo las funciones theta (exponenciales a lo largo
de las “lineas” que soportan el reticulo) para obtener una parametrizacién. La
primera extension global fue llevada a cabo por B.Riemann usando la topologia
de la superficie real subyacente.

La parametrizacién explicita (racional o trascendente) permite abordar el
ajuste de “formas” mediante polinomios. Este ajuste se puede interpretar en
términos de deformaciones de curvas de grado d < 3, conectando con fenéme-
nos de propagacién. En particular, las “curvas evolutivas” fueron inicialmente
representadas por familias uniparamétricas (“deformaciones” de formas canéni-
cas). Su extensién a curvas de grado geg4 se desarrollé mds de un siglo después,
usando f-funciones para curvas elipticas e hiperelipticas

Las curvas planas algebraicas se describen de formaimplicita mediante la
anulacién de un polinomio f(z,y) = 0 de dos variables con coeficientes en un
cuerpo k. Las curvas alabeadas algebraicas en un espacio de dimensiéon n se
definen localmente mediante n — 1 polinomios funcionalmente independientes

I Para una presentacién reciente de estos aspectos cldsicos, véase [Brig6].



en cada punto (es decir, sus diferenciales son li. en cada punto). El ejemplo
bésico es al curva racional normal C; de grado d en P? definida por la imagen de
la d-ésima inmersién de Veronese de grado d de la recta proyectiva dada como:

Via: P! < P | [zo:21] — [xg : x[od— Nag:...: xom‘li_l :xd]

que se expresa en el espacio de llegada P? con coordenadas homogéneas zg : 21 :
... zq) por la anulacién de los menores de tamafo 2 x 2 de la matriz perssimétrica

Z z e Zd— . 20 21 Zd—1
0~ d=1 esdecir —=—=...
Z1 22 % 2 21 V) Zd

que corresponde a la interseccién de cuddricas Q;; C P4 definidas por

ZiZj4+1 — ZjRi+1 =0 para 0< <j <d-1.

Este ejemplo muestra que no es posible definir una curva tdnicamente con n — 1
polinomios. El caso més sencillo es la curva racional normal de grado 3 en P3
dado como la inteerseccion Q12N Q13N Q23 de tres cuddricas en P3;; en este caso
Q:NQ; = C3UL;; donde £, son 3 rectas con interseccién vacia. .Este ejemplo se
extiende de forma natural a cualquier curva racional normal de grado d. Estas
curvas son las “piezas bdsicas” para construir “snakes” (curvas racionales con
pesos) v las variedades asociadas como B-splines (producto de dos nakes) y
T-splines (producto de 3 nakes) 2

En la Geometria Elemental las curvas algebraicas se consideran inicialmente
reducidas (todas sus componentes tienen multiplicidad igual a uno) e irreduci-
bles (solo tienen una componente conexa). Ambas restricciones se eliminan en
Geometria Algebraica,. Asf, un punto doble (dado por #? = 0 en la recta y = 0)
o dos puntos simples en una recta (x = 4a en la recta y = 0) son ejemplos de
cénicas no reducidas é no conexas, respectivamente, en el eje Ox.

En presencia de singularidades, la irreducibilidad local no se cumple: cada
rama se considera como una componente desde el punto de vista analitico local.
En particular, un nodo ordinario y? = Az? + 23 o una clspide ordinaria y? = 23
(“especializaciéon” para A = 0) tiene dos componentes analiticas en un pequeno
entorno del punto singular.

Estas ideas se extienden de formanatural a la Geometria Algebraica de Va-
riedades utilizando métodos algebraicosy trascendentes(vinculados a integrales
sobre formas definidas sobre variedades). La unificacién entre diferentes apro-
ximaciones ha motivado el desarrollo de un lenguaje algebraico cada vez mas
abstracto para englobar objetos y resultados procedentes de areas muy diversas.

Por ello, es conveniente tener siempre presente el caso 1-dimensional. En el
estudio de curvas algebraicas con métodos algebraicos confluyen el Analisis Ma-
temaético, la Topologia de superficies reales, la Teoria de Numeros, el estudio de

2 Detalles en el médulo By; (Disefio Geométrico) de By (Informética Gréfica).



polinomios y su lugar de anulacién. Las nociones de ideal, anillo y médulo fue-
ron introducidas por la Escuela Alemana (Brill, Dedekind, Kronecker, Noether,
Weber) en la segunda mitad del siglo XIX.

El enfoque algebraico proporciona la primera unificacién de los métodos
utiilizados en Geometria Algebraica y en Teoria de Niumeros. El Teorema de
los Ceros y el Teorema de la Base de Hilbert ocupa un lugar central en la
fundamentacién de la Teoria de Variedades y los desarrollos que han tenido
lugar sobre todo a lo largo del s.XX. Permite establecer un diccioinario entre
propiedades bésicas de tipo algebraico y geométrico-

A pesar de su indudable importancia para resolver problemas de invariantes y
de clasificacion, este enfoque relega a un segundo plano las profundas conexiones
con el Andlisis Complejo y con la Topologia Algebraica. Como consecuencia
aparece una parcelacién del saber que es ajena al desarrollo histérico de la
Geometria Algebraica y sus relaciones con otras areas de conocimiento. Un
objetivo de la algebrizacién de la Topologia (A.Weil, 1950) es proporcionar un
marco para recuperar esas relaciones.

La Geometria Algebraica surge inicialmente como una extensién de los resul-
tados conocidos para cénicas desde la Antigiiedad. Una primera aproximacién
se lleva a cabo en términos del grado d de la curva. El primer caso corresponde
a d = 2. Una cénica regular general se determina a partir de 5 puntos (o , dual-
mente, 5 lineas) en posicién general en P? | resolviendo un sistema homogéneo
de 5 ecuaciones con 5 incégnitas (6 salvo factor de proporcionalidad) en P°.

La primera clasificacién de las cibicas planas se lleva a cabo por I.Newton
(1642-1717) quien, utilizando propiedades métricas y proyectivas da un total de
72 tipos. Los métodos de Geometria Proyectiva redujeron el nimero de tipos
a 3 en CP?. La introduccién demétodos trascendentes de 2 tipos: racionales vs
irracionales. La clasificacién birracional descompone el segundo tipo en elipticas
e hiperelipticas.

Asi, p.e. en AZ. una cibica plana se representa como una combinacién lineal

Az® + Bz?y + Ca® + Day®> + Exy+ Fe + Gyl + H? + Ty +J =0

de los 10 monomios no-homogéneos de grado < 3. Para determinar los diez
coeficientes (en realidad, 9 salvo factor de proporcionalidad), se introducen 9
puntos p; = (x;,y;) para 1 <i <9 en “posicién general” lo cual da un sistema
de 9 ecuaciones en 9 incégnitas A, ..., J. La resoluciéon de este sistema require
invertir matrices de tamano 9 x 9, algo que va mas alld de la capacidad de orde-
nadores concencionales. La version homogénea de esta construccion se formula
en términos de

E aioilizxgoxilxéz =0 t0+141+1i2 =3
0<in<3

pero la dificultad es la misma. A lo largo del siglo XVIII se desarrollan diferen-



tes sistemas mecénicos para el trazado de curvas ctbicas 3. Sin embargo, estas
descripciones carecian de una principio general aplicable a curvas de grado ar-
bitrario (Euler). En particular, a medida que aumenta el grado, la resolucién
exacta efectiva por coeficientes indeterminados para polinomios de grado d se
convierte en irrealizable desde el punto de vista computacional. Dos estrategias
alternativas consisten en

= desarrollar (y clasificar) parametrizaciones locales (algebraicas o trascen-
dentes) que conducen al enfoque birracional basado en cuerpos de funcio-
nes, que predomina desde Riemann. Este enfoque es intrinseco, si bien la
identificacion de la parametrizacion més adecuada no es elemental.

= calcular “puntos especiales” (singularidades) que imponen “restricciones
adicionales” para disminuir el nimero de “grados de libertad” de la curva,
que conduce al enfoque basado en “cuvas adjuntas” (Castennuevo) y a la
descripcion de las curvas en términos de sistemas lineales que pasan por
un conjunto finito de puntos (regulares vs singulares) con multiplicidad
pre-asignada.

La idea intuitiva de “serie lineal” aparece al extender la parametrizacién
de una linea a un curva, calculando las intersecciones C' N ¢, con una familia
uniparamétrica de rectas ¢; que pasan por un punto p. En particular C' puede
ser una recta fy, proporcionando asi una parametrizacion de ¢;. Un ejemplo
menos trivial estd dado por la polar de una cuerva con respecto a los puntos
situados sobre una recta (resp. curva) que da lugar a un pencil (resp. net) de
curvas. Otros casos sencillos son:

= El haz de rectas {{;};cpr a través de p € Cs proporciona una parametri-
zacién de C' (repasar la generacién proyectiva de las cénicas).

» La curva nodal y? = 2%(z + 1) presenta la misma propiedad tomando p
como el nodo.

= Los haces de circunferencias que pasan por el origen con centro en un
punto de (z — y)(x + y) = 0 que parametrizan la lemniscata de Bernouilli
[Sha76].

Sin embargo, para curvas de grado d > 3 aparecen otros tipos algebraicos de
interseccién que ya no se pueden parametrizar por (cuerpos de funciones sobre)
la recta proyectiva P! (curvas “racionales”), aunque si por polinomios sobre
curvas trascendentes. Aunque no exista un Teorema de la Funcién Implicita, si se
pueden considerar diferenciales l.i. sobre la curva, cuyas integrales proporcionan
una parametrizaciéon local sobre la curva. Esta idea se debe originalmente a
Jacobi, quien introdujo las funciones 6 para parametrizar curvas elipticas. La
sistematizacion algebraica se debe a Brill y Noether.

3 https://sites.google.com /site/tesislinkages /evolucion-historica/histora4



(*) Una estrategia alternativa consiste en calcular de forma aprozimada (en
lugar de exacta) las raices de un polinomio. En el caso real, el primer algoritmo
general se debe a Sturm (1835), quien introducjo una coleccién de desigualdades
polinomiales (método sugerido inicialmente por Sylvester) para acotar el rango
de variaiblidad de las raices de polinomios en una sola variable.

(*) Este método semi-algebraico fue extendido a continuacién por Hermite
para el caso de varias variables. La evaluacion de los signos de las derivadas
sucesivas de los polinomios que definen las desigualdades, permite caracterizar
las regiones en las cuales el sistema de inecuaciones tiene un nimero prefijado
de soluciones (complementario del lugar discriminante . Actualmente, forman
parte de los métodos que aparecen en las bases de Groebner y que utilizan los
signos de las derivadas de los polinomios en las soluciones.

0.1.1. Complementos de Geometria Proyectiva

La sistematizacion de la Geometria Proyectiva Lineal llevada a cabo por la
escuela Francesa a principios del siglo XIX culmina con el tratado de Poncelet
(1821). Los resultados obtenidos proporcionan un paradigma que da lugar a
desarrollos para el andlisis de variedades algebraicas de grado bajo, con una
especial atencién a curvas inmersas en P? y superficies inmersas en P3.

Las dos herramientas fundamentales de la Geometria Proyectiva estan liga-
das a las operaciones de de proyectar sobre un subespacio y cortar por subespa-
cios. La “genericidad” juega un importante papel en ambos casos. Los analogos
en el marco diferenciable corresponden a submersiones e inmersiones cuyas pro-
piedades se han descrito en Ajs (Linealizacién). Lamentablemente, en el marco
algebraico o analitico la hip6tesis de ‘suavidad” (smoothness) no se verifia. Por
ello, estas operaciones adoptan diferentes formas hasta la actualidad.

En las Escuelas Alemana y Francesa predomina inicialmente el enfoque
sintético (basado en configuraciones de puntos y rectas), es decir, independiente
de sistemas coordenados (Chasles en Francia; Steiner y Von Staudt en Alema-
nia). Este punto de vista le da cierta independencia con respecto a argumentos
basados en expresiones analiticas. De forma complementaria en las Escuelas
Italiana (Bertini, Cremona, C.Segre, Veronese) y Britdnica (Cayley, Salmon),
predomina el enfoque analitico.

La descripcién anterior no se debe tomar en sentido estricto, pues Pluecker
y, més adelante, Hurwitz y Klein utilizan diferentes técnicas basadas en pro-
piedades de funciones analiticas y funcionales integrales definidas sobre curvas
algebraicas. Una presentacién de los métodos analiticos de la Geometria Pro-
yectiva con breves incursiones a variedades no-lineales de grado bajo se puede
ver en [Sem52] °. El tratamiento mds completo de Curvas Algebraicas Planas
hasta mediados del siglo XX se puede ver en [Coo59].

4 Un caso particular corresponde a la localizacién aproximada con respecto a sistemas de
rectas en un plano afin cuya versién computacional se desarolla en Bj1 (Geometria compu-
tacional).

5 J. Semple and G. Kneebone: Algebraic Projective Geometry. Oxford Univ. Press, 1952.



= El enfoque sintético culmina en la obra de H.Schubert (1879) quien utiliza
argumentos topoldgicos y de Geometria Sintética para la determinacion
del ntmero de hipersuperficies de grado bajo con condiciones prefijadas
(Geometria Enumerativa). No obstante, debe senalarse que los argumen-
tos sintéticos de “posicidén general” y topoldgicos relativos al andlisis de
“casos degenerados” (para contar propiamente las soluciones con su mul-
tiplicidad correspondiente) utilizados frecuentemente no encuentran una
formulacion rigurosa hasta mucho tiempo después. Este trabajo es im-
pulsado por S.L.Kleiman y W.Fulton a partir de 1977 en el marco de la
moderna Teorfa de Interseccién [Ful84].

= El enfoque analitico utiliza expresiones explicitas para deducir propieda-
des de las variedades algebraicas sin hacer uso del formalismo algebraico
desarrollado inicialmente por la Escuela Alemana desde la segunda mitad
del siglo XIX. Esto da lugar a una elevada casuistica donde resulta dificil
identificar el rigor de las demostraciones. Un gran nimero de resultados
de este enfoque se puede ver en los 6 volimenes de Baker [Bak61] ¢ 6 el
compendio més reciente [Sem49] 7.

En ambos enfoques persiste la duda sobre la validez de los argumentos to-
poldgicos relativos a “degeneraciones” que pueden presentar las familias de cur-
vas o, con mas generalidad, de variedades algebraicas. El “control” de estas
posibles degeneraciones se lleva a cabo en términos de “invariantes” locales. El
desarrollo de las herramientas d la Topologia Algebraica y Geometrica As por
un lado y del Algebra Local (Conmutativa y Homolodgica) hasta mediados del
siglo XX motivan el lanzamiento del Programa de Algebrizacién de la Topologia
(A.Weil) que se aborda en el pardgrafo §0,1,3

A pesar de las deficiencias senaladas, el enfoque basado inicialmente en va-
riedades inmersas en un espacio proyectivo P” muestra una riqueza excepcional
que afecta tanto a los métodos (secciones y proyecciones), como a las transfor-
maciones “naturales” entre objetos:

= Las operaciones bdsicas basada en proyecciones sucesivas o secciones se
reformulan en términos de morfismos propios entre variedades y criterios
de amplitud para evaluar restricciones sobre suvarieades (eventulamente
con componentes inmersas). La genericidad se describe en términos de
un abierto para la eleccién de centros de proyeccién o de subespacios
“transversalesjj.

= Las transformaciones proyectivas, ademas de la razén doble, preservan el
grado o la clase, p.e.. Se utilizan para identificar formas candnicas para las
que resulta mas fécil calcular invariantes. A partir de mediados sel siglo
XIX se reemplazan por transformaciones birracionales que preservan el
cuerpo de funciones racionales k(X) definidas sobre una variedad X (en
particular, el género).

6 H.J.Baker: Principles of Geometry, f. Ungar, New York, 1961
7 J. Semple and L. Roth: Introduction to Algebraic Geometry. Clarendon Press, 1949.



En la Geometria Proyectiva las transformaciones lineales estan inducidas por
la accién del proyectivizado PGL(n+1;K) := GL(n+ 1;K)/K* del grupo lineal
general- Facilitan los argumentos basados en condiciones de incidencia (resp.
tangencia) para configuraciones genéricas de puntos (resp. lineas tangentes) para
curvas C' C CP? en el plano proyectivo complejo.

(*) En el caso del plano afin A%, la versién afin GL(2; R) x R? del grupo de las
colianeaciones PG L(2; R) se reemplaza por el grupo especial lineal o unimoudlar
(Moebius). La versién discreta SL(2;7Z) es clave para el estudio de las curvas
elipticas (en términos de funciones doblemente periédicas) y su extension a las
hiperelipticas (funciones multipelmente periddicas).

Las transformaciones birracionales (como extensién de las birregulares) sélo
conservan propiedades vinculadas al cuerpo k(X) de funciones racionales sobre
X, incluyendo las asociadas a las diferenciales meormorfas. Estas ultimas per-
miten construir el divisor canénico Kx (y sus potencias tensoriales) como el
invariante fundamental para clasificar variedades. Un “ejemplo” de transforma-
ciones birracionales viene dado por la transformacion de Cremona:

P?— = P? | [xo: 21 : @] = [2122 : 2oT2 : 2ox1] = [— : — : —]
Lo T1 X2
(triple inversién) con la extensién del simplice estdndar (generado por tres pun-
tos de fuga estdndar) como “lugar fundamental” para la correspondencia ®. Las
transformaciones cuadraticas ordinarias son una version afin de las de Cremona.
La Geometria asociada a frentes de ondas se basa en el estudio de las envol-
ventes de las tangentes (evolventes) y las normales (evolutas). habitualmente,
presentan singularidades que “evolucionan” dependiendo de los pardmetros del
sistema. La versién local de las trasnformaciones de Creoman permite interpre-
tar visualmente la resolucién de las singularidades més simples ?
Asociadas a estas construcciones se tienen asimismo otros ejemplos interesan-
tes de transformaciones birracionales ¢ : C7 — Cs (que conectan con aspectos
bésicos de la Geometria Proyectiva) inducidas por

= la aplicacién de dualidad C — C¥ definida como el cierre el grafo de p —
to(p)C € C¥ proporciona el punto de partida para un enfoque geométrico
de la Cinemética (evolucién espacio-temporal de primer orden).

= la aplicacién ¢ : C' — C° (evoluta) en Geometria Diferencial que a cada
punto p € C le lleva en el centro de curvatura op. La curvatura expresa
propiedades de las componentes “normales” vinculadas a la Geometria
Extrinseca. Por ello, proporciona el punto de partida para la dindmica
(interaccién con el entorno).

8 Este “ejemplo” es clave para gestionar el lugar de indeterminacién en Reconstruccién Tri-
duimensional Bag en Visién Computacional B2 y en Navegaciéon Automatica Bsa en Robdtica
Bs.

9 Este argumento se extiende de forma inmediata a transformacién ctbica de Cremona
(cuddruple inversién) con la extensién del simpllice estdndar como lugar fundamental para la
correspondencia de Cremona en P3



Las transformaciones birracionales permiten resolver singularidades y mues-
tran diferentes modelos equivalentes de los mismos “objetos”. Por ello, facilitan
la puesta en correspondencia entre elementos geométricos (problema de clasifica-
ci6én), incluso en presencia de indeterminacién 6 de multiples correspondencias.
Por ello, proporcionan algunas de las herramientas fundamentales para los pro-
blemas de clasificacion en Geometria Algebraica.

En parte II de estas notas las transformaciones birracionales se utilizan para:

1. Identificar simetrias infinitesimales (KdV) o simplificar sistemas de EDP
no-lineales a formas mas sencillas en Mecanica Computacional de Medios
Continuos By

2. Suprimir la indeterminacién en Reconstruccion 3D o para resolver am-
bigiiedades en seguimiento de objetos modviles Bz o en Reconocjmiento
de objetos Bay a partir de contornos en Vision Compjutacional Bs.

3. Gestionar mapas de visibilidad en presencia de oclusiones parciales, detec-
cién de eventos en mapas de perspectiva en Navegacion Automatica Bss
en Robdtica y automatizacién de Procesos Bs.

4. Facilitar el pegado de datos locales, propagar los datos en ausencia de
ifnromacion 6 generar nueva informacién a partir de “modelos similares”
en aplicaciones de la IA generativa a Informatica Grafica By.

Los métodos basados en transformaciones birracionales y en las operaciones
proyectivas usuales (“cortar” y “proyectar”) se aplican tanto a variedades par-
ticulares como a las dos lineas de trabajo de la Geometria Proyectiva Clasica
relativas a configuraciones de variedades y al estudio de la Geometria Extrinse-
ca.

0.1.2. Geometrias Intrinseca y Extrinseca

Empezamos recordando una distincién bésica entre las geometrias intrinseca
y extrinseca en GAGA:

= La Geometria Intrinseca es independiente de la inmersién, mientras que
la Geometria extrinseca depende de la inmersion. El marco general para
relacionarlas esta dado por la “traslacién” de los andlogos de los fibra-
dos tangente y normal al marco de la Geometria Algebraica. La geometria
Intrinseca se expresa en términos de invariantes birracionales como el géne-
ro en el caso de curvas, p.e.

= La Geometria Extrinseca concierne al estudio de las propiedades que de-
penden de la inmersién realizada (o asociadas a proyecciones sobre P? 6
P?). La Geoemtria Extrnseca se epresa en términos de “caracteres” aso-
ciados a algun tipo inmersién como el grado d, la clase d”, el nimero §
de puntos dobles ordinarios, el nimero x de ctispides ordinarias (y sus
duales).
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Las relaciones entre ambas geometrias desemepnan un papel fundamental
en GAGA y en Geometria Diferencial, asi como sus aplicaciones a otras areas.
Algunas prolongaciones actuales de estas relaciones aparecen en Geometria Enu-
merativa, la Teoria Geométrica de Invariantes y la Teoria de Moduli.

En el caso de curvas, el grado d y la clase d* (nimero de tangentes que se
pueden trazar desde un punto exterior) son “caracteres” proyectivos extrinsecos.
El género es un invariante birracional intrinseco, es decir, no depende de la
inmersion de la variedad en un espacio amgiente.

Las formulas de Pluecker relacionan los caracteres extrinsecos y elos invai-
rantes inrinsecos, en términos del nimero de nodos o de cuspides que aparecen
para una curva proyectiva plana C C P2. Si C C P? es una curva plana con §
nodos y k cuspides ordinarias, la primera férmula de Plucker es:

d=dd—1)-25—3x (1)

donde los coeficientes de § y k corresponden a la “multiplicidad” con la que
deben ser contados estos puntos. Si C' es un modelo no-singular de C', admite un
embebimiento en P? cuya imagen se denota meidante C. Existe una proyeccién
7c 1 P3 — P? talq ue 7(C) = C.

= Los nodos o puntos dobles ordinarios corresponden a las rectas bisecantes
Ppq a C que pasan por el centro de proyeccion C de 7.

= Las cuspides ordinarias son la proyeccién de puntos de tangencia ordinaria
a C de tangentes t,Cque pasan por C y no cortan a ningun otro punto de

C

Los nodos ordinarios se visualizan en términos de las bisecantes que pasan
por el centro C de una proyeccién central ¢ : P2 — P2. La variedad de secantes
definida como el cierre de

{xeP® | z€pg para(p,q) €CxC—Ac}

es irreducible y tiene dimensién 3. En particular, la restriccién a una curva
alabeada C de cualquier proyeccién central m¢ : P2 — P? da lugar a un nimero
finito de nodos sobre la curva plana C = ¢ (C). Andlogamente, la variedad de
tangentes definida como el cierre de

T,C = {z€P® | z€t,C paraalginp e C}

tiene dimensién 2. Por ello, siempre se puede elegir un centro de proyeccién
C € P? que no pertenezca a la variedad de tangentes (espacio total TC del
fibrado tangente 7¢ en la terminologia de la Geometria Diferencial). Obviamente,
si el centro de proyeccién C se elige sobre rectas multisecantes o tangentes,
aparecen puntos singulares con mayor multiplicidad que la correspondiente a
nodos o cuspides ordinarios. La segunda férmula de Pluecker expresa el dual x*
dle nimeor de cuspides en términosde los caracteres de de la curva original:
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k* =3d(d —2) — 6§ — 8k. (2)

La dualidad entre puntos y lineas del plano proyectivo P? y su dual (P?)*,
da lugar a una expresion del grado en términos de la clase

d=d"(d*—1)— 20" — 3k™, qquad(3)

y analogamente, se tiene la expresién dual para la segunda féormula de Pluecker
dada por

Kk =3d*(d* —2) — 65" —8x*.  (4)

El género d de la curva es esencialmente el inico invairante birracional.
Inicialmente, se definié como la “deficiencia” de C' dada por

1
g=5[d-1Dd-2)-5-5 ()
un entero positivo que se puede describir en términos duales como
1 * * * *
g:i(d —1)(d"—2)—-6" —=k (6)

Las relaciones entre caracteres extrinsecos d,d,x (o sus duales) y el inva-
riante birracional g expresan relaciones masprofundas entre “ciclos” que son el
sooporte de dichas “cantidades”. En particular, expresarn la relacién entre el
lugar de ramificacién Ram(w) en el espaico de partida y su imagen como lugar
discrimannt

Estas construcciones se trasladan de forma natural a morfismos(propios o
dominantes) mds generales f : X — Y entre variedades de la misma dimensién
0, con mas generalidad, a fibraciones algebraicas o analiticas. Todas eollas se
engloban en el tépico de Formulas de Puntos Multiples que se desarrolla en
Geometria Enumerative Az, en el marco algebraico.

(*) El estudio de “familias” conexas de curvas de grado fijo d o con sin-
gularidades pre-asignadas en un espacio proyectiveo P" debe incluir posibles
“degeneraciones” y facilitar la “epsecializacién” de un elemento “genérico” de
la familia en curvas no-reducidas o que puedan presentar componentes inemrsas.
Estos requrimientos moivan la introduccién de

= La variedad de Chow X4, de las curvas C' en
mathbbP" caracterizadas por tener interseccién no vacia L™ 2NC # () con
la curva C para subespacios Lx*r — 2 de la Grasmanniana Grass(r —2,r).

= El esquema de Hilbert Hq 4, de las curvas de grado d y género g en P”
asociado a las curvas con la misma funcién de Hilbert-Samuel p(n) =
nd—g+1.
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(*) Ambos “objetos” reproducen la complementariedad entre los enfoques
extrinseco (la curva como variuedad de incidencia) e intrinseco (la curva como
entidad abstracta). Los puntos de la variedad de Chow (representando curvas)
ignoran la informacién sobre componentes 0-dimensionales de C' incluyendo mul-
tiplicidad, puntos inmersos o esquemas no-reducidos. Sin embargo, proporcionan
una parametrizacién en términos de los subespacios de codimensién 2 que cortan
a C'y que determinan un divisor X¢ en la Grassmanniana G = Grass(r —2,r).
Por ello, son un miltiplo del divisor candonico K¢ sobre la Grassmanniana; es
deci, se expresan como la potencia d-ésima O¢(X¢) de la imagen reciproca de
la clase del fibrado universal sobre G.

(*) Por el contrario, Hg 4 se describe en términos de las“ hipersuperficies”
que contienen a la curva C' (en lugar de los subespacios incidentes). Mientras
que la varuedad de Chow “hereda” una “estratificacion” procedente de la des-
composicion celular de la Grassmanniana (dual de la Grassmanniana de rectas
en P7).

El esquema de Hilbert presenta una “estratificacion inductiva” asociada a
valores crecientes de n. Esta simple observacién permite desarrollar argumentos
de tipo inductivo sobre valores m < n. Por ello, Hg 4, €s mds apropiado para
describir posibles compactificaciones del espacio de moduli de curvas.

0.1.3. Aspectos topoldgicos y analiticos (*)

El modelo topolégico de una curva proyectiva compleja algebraica C' viene
dado por una superficie compacta orientable, denominada superficie de Riemann
Sc. La clasificacién topoldgica de superficies compactas se ha realizado en los
modulos Agy (Teorfa de Homotopia) y Aze (Homologia y Cohomologia) de la
materia Ay (Topologia Algebraica y Geométrica).

Cualquier variedad compleja es orientable. Por lo tanto, el modelo topolégico
de la superficie de Riemann viene dado por la suma conexa #9T2 de g toros
bidimensionales T? := S! x S! (visualizados como la superficie borde de una
rosquilla), donde g > 0 es el género topoldgico. En particular, para g = 0 se tiene
la esfera ordinaria S? (también llamada esfera de Riemann). Una ventaja de esta
descomposicién topoldgica es el desacoplamiento de los sistemas de ecuaciones y
sus soluciones. La apricién de singularidades se traduce en “ciclos evanescentes”
que se visualizan como “toros pinchados”.

Las propiedades generales de Topologia General (conexividad, compacidad,
separabilidad) se abordan usando la estructura topolégica subyacente de las
curvas algebraicas proyectivas complejas como superficies de Riemann compac-
tas. El caso no-compacto se aborda en Variedades Afines, asi como un estudio
general de propiedades topoldgicas (Topologia General) en el capitulo 5 de Ass.

Las cuestiones de separabilidad son més sensibles con respecto a la topologia
utilizada, pues la topologia de Zariski es menos fina que la topologia de los co-
eficientes. La aparicién de componentes inmersas requiere introducir topologias
més finas (Grothendieck) sobre el soporte subyacente (esquemas; verAss).
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Desde un punto de vista analitico intrinseco, la inmersién canénica C' <
CY viene dada por el divisor candnico K¢. Este divisor estd generado por g
diferenciales holomorfas 1.i. en M = #9T2. Estas diferenciales “representan”
(formas cerradas médulo exactas) a las 2¢g formas diferenciales reales. Son las
duales de los generadores a1, b1, ...aq, by del primer grupo de homologia).

(*) El divisor canénico K¢ es el soporte para las clases de equivalencia lineal
de divisores positivos de grado g — 1 en el espacio proyectivo correspondiente
CP9~! (proyectivizado del espacio de formas diferenciales holomorfas). Asi, la
superficie de Riemann M asociada a la curva algebraica C se realiza como una
subvariedad analitica irreducible (g — 1)-dimensional, dada como una hipersu-
perficie irreducible W,_1 C J(M del toro complejo TY asociado al Jacobiano
g-dimensional Jac(M).

(*) De hecho, Wy_; es birracionalmente equivalente al producto simétrico
(g — 1)-ésimo M971/S,_;, es decir, el cociente de la superficie de Riemann
M por el grupo simétrico en g — 1 variables. Asi, las clases de equivalencia
lineal de divisores en el toro complejo Jac(M) son las mismas que las clases de
equivalencia analitica compleja de fibrados complejos lineales en Jac(M).

(*) Utilizando esta equivalencia, se obtiene una descripcién explicita de cual-
quier hipersuperficie de Jac(M como el lugar geométrico cero de una funcién
analitica compleja en el recubrimiento universal CY9 de Jac(M) con propiedades
de periodicidad especificas, que se denominan funciones theta 6 en C9Y.

Una cuestion central en la Teoria de Curvas afecta al estudio de deforma-
ciones que aqui se aborda en los terminos de [Har82] °. Como es habitual,
se puede plantear de forma extrinseca (en términos del fibrado normal a una
inmersién) o bien de forma intrinseca (la curva como variedad abstracta):

= El enfoque extrinseco basado en la variedad de Chow X4, es més intui-
tivo, pero da lugar a una casuistica asociada a la inmersién elegida; una
estrategia tipica utiliza las “formas asociadas” (Chow y Van der Waerden)
en la variedad de Grassmann correspondiente. Las propiedades universales
son las asociadas al fibrado tautoldgico universal sobre la Grassmannia-
na. Por ello, ignora las propiedades vinculadas a componentes inmersas.
Para recuperarlas seria necesario introducir una estructura graduada maés
fina asociada a mddulos sobre variedades de banderas generalizadas (que
incluyan componentes inmerdas).

= El enfoque intrinseco utiliza una porpiedad universal del esquema de Hil-
bert para los morfismos S— — Hg,4.» que se corresponden biyectivamente
con los subesquemas d C C S x P" cuyas fibras sobre S son curvas de
grado d y género g. Este enfoque permite visualizar las deformaciones de
primer orden del subespquema C' C P” como el espacio tangente de Zariski
a Hagren C. 1

10 Bl enfoque diferencial se desarrolla a partir del médulo A43 (Gérmenes de Singularidades
de fucniones) de A4 (Topologia Diferencial)
11 M4s formalmente, a partir del haz normal N := Homoy, (IC/I%, Opr), las deformaciones
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0.1.4. Algebraic Curves in Engineering

Some classical applications appear in regard to problems in Geometric Op-
tics and Mechanics. In both cases, there appear transcendent aspects linked to
solutions for ODEs linked to propagation models and transmission effect, e.g. In
addition, from the last years of the 18th century, algebraic curves and surfaces
play a fundamental role in Descriptive Geometry (Monge), which are translated
to the Projective Geometry framework after the first synthesis performed by
Poncelet (1821).

Typical projective methods based on sections and projections are exten-
ded to all branches of Geometry, under different labels. From the algebraic
viewpoint,they extend the notions of injective and surjective maps which is na-
turally adapated to thesmooth, algebraic and analytic frameworks. They are
ubiquituous also in Applied Sciences and Engineering, where they are used to
enlarge or reduce information. Regular conditions for both of them, must be
extended o the singular case, where different “pathologies” can appear.

Some of the most relevant problems for explicit computations involving Al-
gebraic Geometry of Curves are

= Exact vs approximate computation for roots of polynomials, where symbo-
lic vs numerical tools have been developed from the eighties with standards
such as Maple V, Macsyma, or Singular between others.

= Common roots for two polynomials, where the Resultant plays a central
role. The computation of multiple roots can be understood as a particular
case involving a polynomial and its derivative (Discriminant Loci).

= Explicit computations for the intersection of two or more polynomials,
where the Bézout theorem is the starting point. Relations between alge-
braic, differential and analytical approaches for itnersections issues are
developed in the module Agy (Enumerative Geometry) in strong relation
with methods arising from Differential Topology A4

= Computation of Algebraic invariants and relations between them (syzy-
geas), beyond finiteness results developed initially by D.Hilbert in the last
decade of the 19th century; the first systematic modern approach is per-
formed in [Stu93]'2

Most approaches were initially developed for the complex case. Some appli-
cations to Engineering require the development of methods and software tools
for the real case, which is usually performed in the Semi-Algebraic framework
(to bound the query region for solutions). A classical reference is [Arn89] 3

Along the part IT of these notes, we develop some applications to several
Engineering areas including;:

de primer orden estan dadas por TcHg,g,r = HO(C,N).

12 B. Sturmfels: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Compu-
tation, Springer-Verlag, 1993.

13 D.Arnon: Computational Methods in Real Algebraic Geometry. Academic Press, 1989.



15

Computational Mechanics of continuous media By where they are used
for effective parametrization (by using theta functions) o solutions for
KP equations involving two interacting wavefronts, e.g., in Computational
Dynamics Bi5 or to visualize complex interaction phenomena at molecular
level in Advanced Visualization Big (following Bajaj).

Computer Vision Bs for semi-automatic recognition of objects Boy from
silhouettes and their lifting (by using projecting cones) to 3D space curves.
An invariant-based approach is developed in [Mun91] !4

Robotics and Automation Bs where they are used to solve polynomial
equations in trigonometric functions for grasping objects by Anchored ro-
bots Bsi, management of polynomial constraints in non-linear Optimiza-
tion and Control in auotmated environments, and and their extensions to
Humanoid Robots Bss for a more firenly interaction with human beings.

Computer Graphics By, including the use of snakes (weighted rational
curves) in computational design tools (CAD/CAM) inside Geometric Mo-
delling By;. The evaluation of their deformations is crucial for Quality
Control and the correction of deformations b linked to mechanical efforts,
e.g. This application requires the in corporation of differential and metric-
based methods. Other more classical applications are linked to algebraic
tools for animation of characters Byy.

In all these applications data estimation plays a central role. Algebraic cur-
ves must be fitted to eventually noisy data, in an accurate way as possible.
Very often, even projective characters are unknown, and must be inferred along
the sampling and query processes. In addition, high degree curves can not be
estimated from exact methods (indeterminate coefficients),, and badly with ap-
proximate methods (Sturm-Hermite, e.g.). Thus, a basic strategy consists of

1.
2.

- W

start with low degree curves by using low-order momenta, e.g.
reproject data on candidate curves (multiple regression):
remove spurious data by using metric criteria:

match candidates by using control elements (points and lines);

5. evaluate incidence and tangency conditions from different loclaizations:

6.

accept or reject the result in terms of additional constraints.

The precedent pipeline suggests rational curves as a first candidate, which
are determined by the method of indeterminate coefficients in an appropriate
space (a symmetric power of the original polynomial ring). This choice eases

14 J.L.Mundy and A.Zisserman: Geometric Invariance in Computer Vision, The MIT Press,

1991.
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the extension to higher dimension in terms of the product of two (resp. three)
weighted rational curves) gives a rational surface (resp. threeofold) which is
called a B-spline (resp. a T-spline *°). A non-trivial problem is how to generate
it by machine tools having in account mechanical constraints.

In more advanced settings, it can be necessary to replace rational curves
by elliptic or hyperelliptic curves. In both cases, Theta functions provide a
parametrization of curves, which is linked to the integral curves corresponding
to 1.i. differentials on the curve.

The algebraic approach to “complex shapes or behaviour” (represented by
varieties and morphisms between varieties) is appear in a lot of applied sciences
and technological areas. However, this reduction does not imply a polynomial
complxity for the corresponding algorithms '6-

Some advanced applications to Theoretical Physics are sketched at the end
of the module A3y (Enumerative Geoemtry) in regard to the number ofrational
curves appearing in Superstirng Theory (an attempt to quantize Gravitational
Interaction). Algebraic curves are used in the part IT of these notes. Some of the
most outstanding arise from a reformulation of Algebraic Geometry in terms of
Conformal Geometry (angles preservation). Advanced applications in Enginee-
ring are grouped according each one of the areas included in this part. Next,
we give some snapshots for each one of matters appearing the part II:

1. Computational Mechanics of Continuous Media B; including some ad-
vanced topics going from explicit resolution of algebraic differential equa-
tions involving propagation and interaction phenomena in Fluids Mecha-
nics (Todda latices, Korteweg-De Vries, KP equations, e.g.)

2. Computer Vision Bs where some problems to be solved involve the au-
tomatic recognition of algebraic plane contours, and their deformations
by projective or Conformal transformations. S.Petitjean developed in the
nineties the Enumerative Geometry Az, for Curves and Surfaces in Com-
puter Vision.

3. Robotics Bs involving forward and inverse mechanics for articulated me-
chanisms with the classical hierarchy (Geometry, Kinematics, Dynamics).
It includes “exact” solutions for matrix differential equations (Riccati ty-
pe, e.g.), and their reinterpretation in terms of Grassman manifolds or
more general Flag manifolds for embedded systems.

4. Computer Graphics By going from active contours modelling by using
snakes, i.e. pieces of weighted rational normal curves fulfilling (exact vs
approximate) incidence and tangeny conditions, and the study of their
deformations for animation and simulation of characters in multimedia
industry by using Computational Conformal Geometry [Gu08] 7

15 This terminology is not standard

16 See the module Big for more details about complexity of algorithms.

17 X.D.Gu and S.T.Yau: Computational Conformal Geometry, Stony Brook Lect, Intl Press,
2008.
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The above list is not exhaustive, and different recombinations have been de-
veloped in Advanced Visualization Bjg or advanced applications to Biomedical
Imaging, appearing in several modules of By (computer Vision)

0.2. Esbozo del capitulo B310

Adema3s, de esta introduccién el capitulo contiene las secciones siguientes:

1. Curvas algebraicas: Estructuras algebraicas. Aspectos analiticos. Geometria
Birracional. Singularidades.

2. Tépicos avanzados: Curvas en Supeficies, Geometria enumerativa de cur-
vas. Invariantes, Espacios de moduli.

3. Aspectos topoldgicos: Integrales de formas sobre curvas. Topologia Alge-
braica. Topologia Compleja. Topologia de cuervas algebraicas reales.

4. Algebrizando la topologia: Extendiendo la topologia general. Haces y Es-
quemas, Cohomologia para curvas- Aspectos computacionales.

5. Algunas aplicaciones a Ingenieria con especial atencién a los tépicos de-
sarrollados en la parte II de estas notas: Mecanica de medios continuos
B, Visiéon Computacional By, Robdtica Bz e Informatica Grafica By.

En estas notas se desarrolla un enfoque top-down (basado en modelos) que
combina métodos y herramientas procedesntes de diferentes dreas: algebra Basi-
ca, Geometria Proyectiva, Topologia Conjuntista y Algebraica, 6 el Anélisis Di-
ferencial e Integral. Aunque todas se extienden a dimensién arbitraria, en este
moodulo para fijar ideas nos restringimos a curvas algebraicas (definidas por po-
linomios) o curvas analiticas (cada rama estd definida localmente por desarrollos
en serie convergentes).

Se prioriza el enfoque algebraico construido sobre cuerpos k algebraicmente
cerrados de caracteristica cero, con el cuerpo C de los niimeros complejos como
el paradigma central. En algunos casos, se comentan brevemente extensiones de
los resultados basicos al cuerpo R de los nimeros reales o a cuerpos finitos I,
de interés para la Teoria de Numeros. La extension de los métodos presentados
a las Geometrias Semi-Algebraica o Semi-Analitica (localmente definidas por
un ndmero finito de igualdades, desigualdadaes y desigualdades estrictas) tiene
gran interés para cuestiones de Optimizacién (parte II de estas notas), pero sélo
aparece de forma tangencial.

0.2.1. Aspectos metodoldgicos

Los primeros estudios de curvas algebraicas fueron desarrollados por Des-
cartes (1595-1650) y Fermat (1601-1665) a mediados del siglo XVII. En estos



18

estudios se describen propiedades de curvas ligadas a problemas mecénicos uti-
lizando métodos analiticos basados en la introduccién de coordenadas Cartesia-
nas. La expresion algebraica de las relaciones entre las variabless proporcionan
los primeros ejemplos para curvas algebraicas definidas por polinbomios.

A finales del siglo XVII ya eran bien concoidos ejemplos de curvas trascend-
netes (Leibnitz) en los que las relaciones entre coordenadas cartesianas o polares
no estdan dadas inicialmente por polinomios en dichas variables 8.

A finales del siglo XVII y comienzos del siglo XVIII, Leibnitz (1640-1761)
y Newton introducen el cdlculo infinitesimal para el estudio diferencial e inte-
gral de “entidades geométricas”. Esta introductiéon impulsa la necesidad de un
estudio més detallado de los polinomios que relacionan las “cantidades” vincu-
ladas a transmisién de fuerzas y momentos, asi como aspectos elementales en
fenomenos de propagacién.

Mi4s alla de las cénicas, los ejemplos de curvas algebraica (1643.1727)s (cisoi-
de, concoide diferentes tipos de cicloides, curvas inmersas en toros, p.e.) estaban
motivados por problemas de transmisién en diferentes tipos de mecanismos ar-
ticulados. En el siglo XVIII se desarrolla un enfoque analitico de tipo infinitesi-
mal, pero el caracter algebraico de las ecuaciones motivé un enfoque algebraico
integrado en el siglo XIX.

El enfoque infinitesimal utiliza el calculo del espacio tangente © x , en cada
punto (generado por las derivaciones del anillo local en lenguaje algebraico) y
el control de las singularidades que pueden aparecer. Ejemplos tipicos de curvas
mecanicas con singularidades corresponden a los diferentes tipos de cicloides o
de astroides que combinan rotacién y traslacién a lo largo de una recta o de
una cirunferencia, p.e. Estas curvas presentan singularidades simples (nodos y
ctspides ordinarios) que es necesario “controlar” en términos de una curvatura
variable para las aplicaciones a dispositivos mecénicos °

La variacién continua de parametros para familias uniparamétricas f : X —
S de estas curvas da lugar al estudio de envolventes de tangentes (evolventes)
o de normales (evolutas). Estas curvas aparecen en Mecénica y Optica vincu-
ladas a la resolucién de EDO asociadas a fenémenos de propagacién en medios
continuos y homogéneos. Las envolventes habian aparecido ya en los primeros
estudios de Optica Geométrica llevados a cabo a principios del siglo XVIII por
Newton y Huygens, entre otros. En [Gei05] 2° se muestran las razones de la
ubicuidad de la cicloide en diferentes problemas de Mecéncia y Optica.

Las envolventes de tangentes o normales (y la resolucién del problema inver-
so) pueden presentar asimismo singularidades. El ejemplo més simple mcorres-
ponde a la evoluta de una parébola que es una cispide ordinaria (Newton); este
ejemplo fue utilizado ya en el siglo XVIII para el disenio de telescopios. Desde
el punto de vista mecanico, la apariciéon de singularidades motiva una exten-

18 1,a exposicién més completa que conozco se puede ver en [Brig0].

19 Esta estrategia se aplica a las singularidades que aparecen en la locomocién de Robots
Humanoides B3s y Animats B3g en B3 (Robética y Automética).

20 Geiges: “Christian Huygens and the contact geoemtry”, arXiv, 2005.
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sién al caso singular n de las técnicas de control geométrico para evitar “saltos
bruscos” en el funcionamiento de mecanismos articulados. La visualizaciéon 3D
de la familia f(x,y;a) = 0 como una superficie en el espacio parametrizado por
x,y,a lleva a la descripcién de la envolvente como

faya =0 D ya=o

que es precisamente el “lugar discriminante” de la proyeccién sobre el plano a =
0, donde las “curvas de nivel” a = cte son tangentes a f(x,y;a) = 0. Esta simple
observacién muestra una conexion entre aspectos algebraicos (discriminante de
una familia de polinomios), analiticos (tangentes a curvas) y diferenciales (lugar
critico de una proyeccién) vinculados a soluciones de EDO).

Este ejemplo proporciona el punto de partida para las “polares” de una curva
como representacién de la visibilidad de un objeto desde un pinto exterior y el
célculo de sus propiedades métricas (Salmon, 1903). La extensién a dimensién
superior da lugar al estudio de Variedades Polares que se aborda en el médulo
Az (Variedades Casi-Proyecivas) 2L.

Recordemos que la polar desde un punto exterior de una coénica es la recta
que conecta los puntos de tangencia. La primera polar de una curva desde P
(polo) es la recta que envuelve las tangentes exteriores; la segunda polar es una
cénica asociada al Hessiano.

(*) Cuando P se mueve a lo largo de una recta se obtiene una familia unipa-
ramétrica de polares. Si el polo P se mueve a lo largo de una curva plana C' pa-
rametizada por (a,b) € Cy (curva directriz) caracterizada por g(a,b) = 0, se ob-
tiene una familia biparamétricade curvas f(z,y;a,b) = 0 con su correspondiente
lugar discriminante definido por f(z,y;a,b) =0, g(a,b) =0y fogs — foga = 0.

A partir del siglo XIX se desarrollan diferentes aproximaciones de tipo
analitico, topoldgico, algebraico para el estudioi de las curvas algebraicas. La
primera unificacién de estos métodos se debe a B.Riemann (1856) quien esta-
blece los fundamentos y demuestra los primeros resultados centrales de la teoria
de Curvas Algebraicas. En particular, Riemann muestra los primeros elementos
del “diccionario perfecto” entre la clasificacion superficies compactas, curvas al-
gebraicas y cuerpos de funciones definidos sobre la curva. Este diccionario tiene
implicaciones en sus analogos relativos a la teoria de Niimeros que no se aborda
en estas notas.

Lamentablemente, este diccionario presenta dificultades adicionales en el ca-
so singular y no se extiende a dimensién superior. No obstante, en el médulo
Ass veremos las relaciones entre los diferentes aspectos se pueden interpretar en
términos de “estructuras superpuestas” (haces de partes principales ) que toman
valores sobre las funciones regulares asociadas a cada uno de estos contextos.
Una versién ingenua de esta idea estd ligada a la sucesién exacta

21 Bl reconocimiento automético de objetos B4 en Visién Computacional usa la evolucién
de siluetas como proyeccién del contorno aparente dado por una curva alabeada C que es el
lugar discriminante).
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asociada a la aplicacion exponencial exp : C — C*, cuyo ntcleo se describe en
términos del espacio recubridor universal?? con hojas parametrizadas por Z so-
bre St (visualizable como una espiral). Intuitivamente, los aspectos topolégicos,
geométricos y analiticos estan vinculados a los términos que aparecen de forma
sucesiva en la sucesién exacta (*).

Los enfoques més antiguos para la clasificacién de curvas planas algebrai-
cas se basaban en el grado d := deg(C'), comenzando con los valores mas ba-
jos correspondientes a cénicas (Apolonio), ctibicas (Newton) o curvas cudrticas
(Cayley, Clebsch). Estas ultimas proporcionan los primeros ejemplos avanzados
de métodos proyectivos (28 lineas bitangentes a una cudrtica plana), teoria de
invariantes algebraica (Cayley, Salmon) y trascendente (Clebsch), vinculados a
género 3 y sus extensiones (superficies de Kummer y variedades abelianas).

La invariancia proyectiva del grado d es clave para las operaciones relacio-
nadas con secciones y proyecciones. Su inversa esta dada por la “elevacion” de
curvas de bajo grado, donde las curvas planas se interpretan como la curva di-
rectriz de conoides en un espacio proyectivo. Este enfoque puede considerarse
la “prehistoria” de la clasificacion algebraica. En la mayoria de los casos, utiliza
tnicamente resultados bésicos de factorizacién (Vieta) y las funciones simétricas
elementales correspondientes. En otras palabras, no tiene en cuenta la naturale-
za algebraica de curvas mas generales dadas en términos de funciones regulares
o vinculadas a funcionales integrales no racionales.

Desafortunadamente, el grado no es un invariante birracional. En particular,
las conicas, las curvas nodales o cuspides, y la lemniscata son curvas racionales
de grado 2, 3 y 4, respectivamente, que son biracionalmente equivalentes a P*.
Sin embargo, las curvas generales de grado 4 no son racionales. En particular,
el célculo de «cantidades simples> dadas por integrales (como la longitud de
la curva, por ejemplo) se convierte en un problema dificil incluso para algunas
curvas racionales. Las primeras contribuciones algebraicas que incorporaron el
género se deben a Clebsch (1833-1872), quien demostré que la curva general de
grado cuatro tiene género tres.

(*) El célculo explicito de integrales elipticas ilustra el cardcter no trivial
del problema que inicialmente se presenta en problemas variacionales (Euler).
Estos problemas surgen a pesar del cardcter racional de la elipse como curva
algebraica. Los problemas aumentan para integrandos con radicales fraccionarios
de grado > 4. Ademads, para emparejar funciones regulares en intersecciones de
conjuntos abiertos se requieren cambios de coordenadas inversibles, que solo
pueden realizarse en el cuerpo k(X) de fracciones del anillo k[X]. Es necesario
incorporar “extensiones trascendentes” de k(C) para la correcta gestién de estos
problemas. 23

22 Ver médulo Az; (Homotopia) de As (Topologia Algebraica y Geométrica) para detalles.
23 Algunas observaciones sobre el enfoque trascendente se han presentado méas arriba en el
paragrafo §0,1,3; para un tratamiento mas extenso ver el capitulo A3i7 de este médulo.
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0.2.2. Interrelacién entre Algebra Conmutativa y Geometria Algebraica

La introduccién de los métodos de Algebra Conmutativa en la Geometria
Algebraica de Curvas se lleva a cabo en dos articulos publicados en 1873 y en
1882, respectivamente. El primero se debe a Brill y Noether, mientras que el
segundo se deboe a Dedekind y Weber.

El trabajo de Brill y Noether (1873) que resumié todo el conocimiento ad-
quirido hasta entonces para curvas algebraicas planas y senté las bases para las
investigaciones desarrolladas sobre todo por la gedmetras de la Escuela Italiana
de Geoemtria Algebraica. En este trabajo se introdujo el concepto fundamental
de “serie lineal”. En términos generales, una serie lineal g); de dimensién r y
grado d sobre una curva irreducible C' es un conjunto de r grupos de d puntos
de la curva obtenidos al intersectarla con otra curva que varia en un sistema
lineal de dimensién 7.

Max Noether habia introducido la nocién de curvas adjuntas a una curva al-
gebraica plana dada C para abordar el estudio del lugar singular Sing(C) de C
en términos de las curvas que pasn por cada punto singular n,p con una multi-
plicidad preasignada n, —1. Esta condicién estd motivada por el comortamiento
de las diferenciales en dicho punto. El teorema de Rieman-Roch habia mostrado
la necesidad de utilizar las diferenciales para una curva algebraica no-singular
para calcular el género g de la curva. Por ello, el enfoque de M.Noether es la
extensién natural al caso singular.

Brill y Noether (1873) introducen el concepto de divisor D sobre una curva
irrecudible plana C' como una combinacién lineal finita Zp npp que permite tra-
tar por igual puntos regulares y singulares, evaluando las condiciones adicionales
que imponen a las curvas “adjuntas” el paso por dichos puntos miltiples. La in-
terseccion de la curva plana C con las curvas adjuntas de M.Noether determina
una serie lineal g}, donde el “orden” r es el nimero de puntos de cada grupo y
la dimensién d es el nimero de pardametros de los que depende. La serie contiene
los puntos singulares (como puntos fijos), y una “interseccién excedentaria”’ de
puntos variables que varian en un sistema de “curvas residuales”. Una referencia
clésica es [Coo31] 24

(*) El célculo de invariantes (dimensién, superabundancia, indice de especia-
lidad, en la terminologia antigua) de los sistemas de series lineales forma parte
del problema de la postulacion (reducir el ndimero de puntos utilizando condi-
ciones de incidencia sobre puntos singulares). El objetivo de la postulacién es
determinar si existen “familias de curvas” con caracteristicas prefijadas dadas
por dichos invariantes. Este problema se formula actulamente en términos co-
homolégicos 2°. El rango del primero grupo de cohomologia corresponde a la
dimension del espacio. La no anulacién de la cohomologia en grado uno indica
que existe algin tipo de “obstruccién” a encontrar sistemas lineales verificando
las condiciones prefijadas.

24 J.L.Coolidge: A Treatise on Algebraic Plane Curves, Oxford Univ. Press, 1931
25 Una, ventaja del enfoque basado en la cohomologia de haces A3z consiste en que la pos-
tulacién se extiende a dimensién arbitraria-
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Con la suma definida en la formal natural, los divisores forman un grupo
abeliano Div(C), donde el cero es el divisor nulo. Si D1 Dy € Div(C'), entonces
D, > Dy significa D1 — D5y > 0 (divisor efectivo). un sistema lineal completo | D |
asociado a un divisor es el conjunto de todos los divosres efectivos (no negativos)
linealmente equivalentes a D. Esta nocion e la adaptacién de la nocién de serie
completa en el marco Brill-Noether.

El lenguaje de divisores facilita un tratamiento simultaneo de las condicio-
nes de incidencia y tangencia (eventualmente excedentarias) correspondientes
a secciones (transversales o verificando condiciones de contacto prefijadas) por
hipersuperficies. El estudio del exceso de interseccién fue realizado por f.Gaeta
(1953) en términos de intersecciones con residual finito 26

(*) En el caso de curvas, ambos lenguajes proporcionan relaciones estruc-
turales entre aspectos geométricos y analiticos. En terminos mas modernos, las
series lineales o los divisores se reemplazan por secciones de haces. En particu-
lar, las clases de isomorfia fibrados lineales (fibrados vectoriales de rango uno)
se rrpresentan mediante clases de equivalencia lineal de divisores. Un ejemplo
baésico corresponde al género como dimensién de un espacio de secciones de un
haz.

un enfoque algebraico complementamente diferente (vinculado a la Teoria
Algebraica de Ntmeros) se desarrolla en el trabajo de Dedkiny Weber (1883).
Su idea bésica consiste en recuperar el punto de vista original de Riemann,
omitiendo cualquier referencia a aspectos trascendentes. En otras palabras, ig-
norando las integrales y la topologia compleja de las superficies de Riemann
como el verdadero soporte topoldgico de los modelos complejos. Su enfoque
puede entenderse como una especie de dualidad entre X y el cuerpo k(X).

Con mas detalle, en lugar de considerar las superficies de Riemann X como
un lugar geométrico de puntos, consideran el cuerpo k(X) de funciones racio-
nales definidas en X. En este marco, k(X) es una extensién de grado finito del
cuerpo k(C) de funciones racionales definidas en C, de forma similar a la teorfa
de nidmeros algebraicos (también desarrollada previamente por Dedeking). Este
punto de vista se extiende naturalmente a una dimensién superior para una
variedad algebraica 27.

El hito siguiente fundamental es el Teorema de los Ceros (Nullstellensatz)
de Hilbert :

Teorema.- Sea K un cuerpo algebraicamente cerrado (como el de los nime-

ros complejos), denotemo por K[X, Xa,...,X,] el anillo de polinomios en n
variables y por I un ideal en este anillo. La variedad afin V' (I) definida por este
ideal consiste de todas las n-tuplas x = (z1,...,z,) en K" tal que f(x) = 0

para todo f €1
El teorema de los ceros de Hilbert nos dice que si p es un polinomio en
K[X1, Xs,...,X,] que se anula en la variedad V(I), i.e. p(x) = 0 para todo

26 Una presentacién moderna se puede ver en [Ful84]
27 Un desarrollo més detallado se presenta en el capitulo Asqj.
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xz € V(I), entonces existe un nimero natural r tal que pr estd en L.

Un corolario inmediato es el “Nullstellensatz débil”: si I C R es un ideal
propio en k[x1, 2, ..., ,], entonces V(I) no puede ser vacio, i.e. existe un cero
comun para todos los polinomios del ideal. Esta es la razén para el nombre
del teorema; que es facilmente demostrable en esta forma “débil”. Nétese qu
asumir que el cuerpo k sea algebraicamente cerrado es esencial aqui: el ideal
propio (X2 + 1) en R[X] no tiene un cero comin.

El Nullstellensatz puede ser también formulado como

I(V(J))=VJ para todo ideal .J

Aqui, v/J denota el radical de .J e I(U) denota el ideal de todos los polinomios
que se anulan en el conjunto U. De este modo, obtenemos una correspondencia
biyectiva que revierte el orden entre las variedades afines en K™ y los ideales
radicales de k[zq, 22, ..., zy).

La extensién de estos resultados a variedades de dimensién arbitraria con el
calculo explicito de invariantes asociados a las “presentaciones” de los ideales
correspondientes requiere calcular algin tipo de “resolucion” de los mddulos
correpsondientes. Este desarrollo requiere elementos adicionales de Algebra Ho-
moldgica que se introducen en el méudlo siguiente Ass

0.2.3. Métodos algebraicos vs trascendentes

El anélisis Diferencial e Integral ha jugado un papel esencial en el desarrollo
de la Geometria Algebraica desde el siglo XVIII. Los métodos utilizados son una
extension natural de los descritos en Geometria Diferencial de Curvas y Super-
ficies A1g 0, con més generalidad, de Variedades en los médulos A14 (Célculo
Diferencial Exterior) y Aj5 (Integracién sobre Variedades), respectivamente.

Para simplificar, suponemos inicialmente que el cuerpo base es el de los
numeros complejos C, donde se suponen conocidos los resultados bésicos de la
Topologia Compleja y la teorfa de Funciones Analiticas sobre C.

La existencia de una estructura real subyacente a C se traduce en un iso-
morfismo C ~g R? que se expresan en términos de las coordenadas Cartesianas
(z,y) o bien de las complejas (z,%, donde Z = = — iy es el conjugado de z. Los
cambios de carta en las estructuras complejas, inducen cambios de carta en la
estructura real subyacente que permiten extender las nociones bésicas relativas
al Célulo Diferencial e Integraal.

Las relaciones entre las estructuras real y complejac para el caso global, pro-
ceden de la compatibilidad sobre abiertos Uyp := U, N Ug de un recurbimiento
de la curva compleja. Esta compatibilidad estd dada por aplicaciones bianaliti-
cos (es decir, biholomorfas en el caso complejo). Los cambios de carta en el caso
algebraico estdn dados por transformaciones birracionales. n el caso mas simple
estdn generadas por las colineaciones de P? y las transformaciones de Cremona
son las piezas bésicas (M.Noether).
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La inversibilidad para las transformaciones birracionales sobre el cuerpo
k(X) de las funciones racionales sobre X motiva la necesidad de contar con
funciones regulares dadas por polinomios p(z) y cocientes de polinomios f(z) =
p(2)/q(z) como funciones regulares. Sobre C corresponden a funciones holomor-
fas y meromorfas, respectivamente que se denotan con la misma notacién.

= Los métodos diferenciales se describen en términos de propiedades cam-
pos de vectores v; y sistemas de formas diferenciales w;. Se supone que
ambas son regulares. Para fijar ideas (y debido a sus mejores poropiedades
funtoriales), nos restringimos formas diferenciales.

= Los métodos tracendentes en Geometria Algebraica se desarrollan a partir
del Célculo Diferencial e Integral sobre Variedades Complejas. El Caculo
Diferencial utiliza campos vectoriales y formas diferenciales (holomorfas
y meromorfas) sobre variedades (ver capitulo 4 para detalles). En el caso
real, la cohomologia de DeRham A1, y la Integracién sobre Variedades A1s
proporcionan el marco general para identificar invariantes de la estructura
real subyacente para variedades suaves.

(*) En el caso complejo, la cohomologia de Dolbeault en el caso complejo,
juega un papel similar a la Cohomologia de De Rham, proporcionando invarian-
tes para la estructura compleja de X. La Teoria Hodge proporciona relaciones
entre las estructura compleja y real subyacente. La clave es la introduccion de un
complejo bigraduado en el los elementos del mismo bigrado p+¢q = k (constante)
estan relacionados por operadores de contraccion y expansion.

*) La introduccién del operador de Laplace Adod sobre variedades complejas,
permite identificar representantes “arménicos” (es decir, verificando Aw = 0)
para las clases de cohomologia. Estos representantes arménicos son soluciones
de problemas de tipo variacional. La representabilidad de su clase dual mediante
ciclos algebraicos es un problema atn no resuelto (conjetura de Hodge).

(*) La compatibilidad de la estructura compleja con métricas hermiticas se
lleva a cabo sobre Variedades Kaehler. Las propiedades de estas variedades son
invariantes con respecto a la accién simultdneca (interseccién) de los grupos
clasicos GL(n; C) (Geometria Compleja), O(2n;R) (Geometria Riemanniana) y
Sp(n; C) (Geometria Simpléctica). Ademads, dos de estas estructuras determinan
la tercera. Esta idea muestra a las variedades Kaehler como varieades priville-
giadas donde es posible desarrollar un “diccionario” entre diferentes tipos de
variedades de forma similar a las superficies de Riemann

La teoria de interseccion es un topico transversal a todos los médulos que
aparece de forma recurrente en todos los médulos de esta materia Asz. Este teoria
ilustra algunos de los aspectos de mayor riqueza para visualizr la interrelacion
entre aspectos locales y globales. Para ello, utiliza métodos algebraicos, dife-
renciale,s topolégicos y analiticos. El primer resultado importante de la Teoria
de Interseccién es el Teorema de Bézout. La versién para la intersecciéon de dos
curvas planas en el plano complejo fue formulada por Bézout
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0.2.4. Organizacion del médulo y aspectos avanzados

El médulo Az; (Curvas algebraicas y analiticas) tiene los capitulos siguientes:

1. Métodos algebraicos para curvas.

N

Funciones regulares y racionales.

Normalizaciéon y Transformaciones birracionales..
Célculo Diferencial e Integral sobre curvas algebraicas.
Divisores y sistemas Lineales.

Teoria de interseccién para curvas algebraicas.

Curvas analitica.s y Recubrimientos.

Espacios de moduli para curvas algebraicas.

e »® N e s W

Elementos de Criptografia y Teoria de Codigos.

Un enfoque méas general para las curvas algebraicas y analiticas utiliza la
cohomolorgia de haces y la teoria de Esquemas que se esbozan en la seccién 3
y se desarrollan en el médulo Asz. A continuacién, en la seccién 4 se presentan
algunas ideas bésicas sobre tépicos avanzados relacionados con

= Curvas en Superficies y Deformaciones.

Geometria Enumerativa de Curvas.

Relaciones entre invariantes para curvas.

= Esquemas de Hilbert para curvas de género g.

0.3. Referencias para esta introduccién

El objetivo de esta subseccién es proporcionar algunas indicaciones para que
cada persona interesada en estos tépicos pueda selecciona su propia sintesis de
acuedo con sus intereses o preferencias. Las refeencias no son exhaustivas, ni
tampoco las més recientes. Cualquier sugerencia es bienvenida.

0.3.1. Bibliografia basica

[Ati69] M. Atiyah, I. G. Macdonald: Introduction to commutative algebra,
1969, 1994 (trad. esp. en Ed. Reverté)

[Bri86] E.Brieskorn and H.Knorrer: Plane Algebraic Curves (English trans-
lation of the original German ed, by J.Stillwell), Springer-Verlag, 1986.

[Co059] J.L.Coolidge: A treatise on Algebraic Plane Curves, Dover, 1959.
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[Ful08] W.Fulton: Algebraic curves. An introduction to Algebraic Geometry,
3rd ed. 2008.
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metry in the 19th Century, Springer, 2007.
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1978.

[Har10] J.Harris: Introductory algebraic geometry. A first Course, GTM 133,
Springer-Verlag, 2010.
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0.3.2. Referencias avanzadas

[Arb85] E.Arbarello, M.Cornalba, P.H.Griffiths and J.Harris: Topics in the
theory of algebraic curves. Springer-Verlag , 1985. M

[Boc87] J. Bochnak, M. Coste, and M.-F. Roy: Géométrie algébrique réelle,
vol. 12 of Ergebnisse der Mathematik. Springer-Verlag, 1987.
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0.3.3. Applicaciones a otras areas
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Brook Lect, Intl Press, 2008.

[Mun91] L.Mundy and A.Zisserman: Geometric Invariance in Computer Vi-
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0.3.4. Recursos Software

= MAPLE V

= Singular

= .... any suggestion is welcome

Final remark: Readers which are interested in a more complete presentation

(in Spanish language) of this chapter or some chapter of this module Az; (Al-
gebraic and Analytic curves), please write a message to javier.finat@gmail.com.



