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Previous remarks: These notes correspond to an introduction to the chapter
2 of the module Asg (Foundations of GAGA) of the matter A3 (Algebraic and
Analytic Geometry). From the mathematical viewpoint, it is necessary to have
some basic knowledge of Basic Algebra and Group Actions. It is advisable to
have some basic knowledge of Afine Geometry.

As usual, in addition to this introduction and a final complementary section,
materials are organized in four sections. They contain a list of exercises for self-
verification of understanding of materials. Subsections or paragraphs marked
with an asterisk (%) display a higher difficulty and can be skipped in a first

lecture.

In the same way as for other chapters of this module, the introduction is
written in englsh, whereas the sections are written in Spanish language.



0.1. Preface to A301

Algebraic Geometry studies algebraic varieties and algebraic maps between
them. Initially, they are locally defined by a finite number of polynomials. Mo-
re intrinsic presentations replace sets of polynomials by the ideal generated by
them. It uses not only algebraic methods, but differential, analytical and topo-
logical methods, also. The predominance of algebraic methods is a consequence
of the Weil Program (early 1950s), which includes the need to extend the results
from other approximations to fields of arbitrary characteristic p.

Algebraic methods are present in Algebraic Geometry from the beginning of
Mathematics. In a naive way. one can think of Algebraic Geometry in terms of
solutions to simple ratios between parameters and indeterminates (Thales, Eu-
doxus), or linked to “geometric representation” for solutions of algebraic equa-
tions . The search of numerical solutions for simple or double ratios between
measurable quantities provide the first examples linking arithmetic and geome-
tric aspects.

The introduction of coordinates by R.Descartes in the 17th century was the
key to give an analytic expression to relations between “quantities”, and ease
the explicit computation of solutions in R™. The development of Linear Algebra
on n dimensional vector spaces V ~ 71" over a field k& was the next contribution
to simplify the formalism. Its extension to Affine spaces A" is the key for more
flexible operations with “objects” in Af. The affine space was initially thought
as {(z1,...,2n) | z; € K}) up to translations. The extension of linear systems of
equations (corresponding to linear subspaces) to non-linear systems of equations
was the next challenge.

1. A first issue is linked to the study of solutions for non-linear systems of
algebraic equations in the coordinate ring k[x1,...,2,]. 2

2. A second issue concerns to “counting” solutions “properly”. i.e. having
in account “improper solutions” (which require the use of more general
fields), multiple solutions and/or “solutions at infinity” corresponding to
the asymptotic behaviour of branches in graphical representations.

Both issues involve to the notion of “intersection multiplicity” for solutions,
which has a long history  The analysis of multiple solutions appear already with
the study of solutions for low order polynomials in one variable whcih can be
solved by radicals (Cardano) for polynomials of degree < 4. The incorporation
of solutions at infinity was already known from the first perspective treatises in
the Renaissance (L.B.Alberti around 1430, e.g.).

The first great result for the computation of solutions involving non-linear
systems of equations is due to E.Bezout (1730-1783), who “proved” (1779) that

I See the precedent chapter Asg; for details

2 The recognition of complexity of this problem was acknowledged already in the Antiquity
(crossing of vaults in Architecture), even if we restrict ourselves to the analysis of a low number
of quadratic equations in the ordinary space.

3 For a survey of modern approaches see the first chapter of As4 (Enumerative Geometry).



if two plane algebraic curves Cy and C5 of degrees d; and ds have no component
in common, they have d;dy intersection points, counted with their multiplicity,
and including “points at infinity” and points with complex coordinates. This
result is naturally extended to hypersurfaces, and provides the starting point
for the Intersection Theory [Ful84].

The incorporation of circular points “at infinity” shared by the intersection
of pairs of conics was already known by I.Newton, who labelled as I (Isaiah)
and J (Jacob). The first systematic approaches appear with the study of third
and fourth degree equations, whose first (redundant) classification was perfor-
med by Newton, by using affine and metric properties. The introduction of the
Projective Geometry (Poncelet, 1827), as a natural extension of the Euclidean
and Affine Geometries, allows to reduce the 72 types of plane cubic curves to
only 3 regular classes. A large advantage of Projective Geometry consists of the
removal of “exceptional cases” and their integration in a common projective
framework.

The Golden Age of the Projective Geometry (first half of the 19th century)
gives structural nexus between synthetic and analytic methods for the study of
higher degree algebraic varieties and their intersections in the complex projective
space CP" by the French school. A subset S C A} is algebraic (resp analytical)
if it is the zero locus of a finite set of polynomials f; (resp. analytical functions).

In a simultaneous way, the development of algebraic methods allow an ex-
plicit computation of solutions for intersecting hypersurfaces in terms of the
Resultant R(f,g) of two polynomials. This method was initially developed by
Sylvester (1853) and Cayley (1857) who called it the Bézoutian in honor of
E.Bézout. From the second half of the 19th century, a subset X C A} is alge-
braic (resp. analytic) iff X = V/(I) where I is an ideal of k[z1,...,z,].

The convergence with analytic methods is linked to the developments of
Analytic Functions of One Complex Variable. In the complex domain, differen-
tial aspects are initially due to N.H.Abel (1802-1829) involving algebraic rela-
tions between integrals along cycles on a complex algebraic curve C (visualized
as a real surface). These results are formulated even before the first (incom-
plete) proofs of Cauchy theorems about residues of integrals. Links between
differential and integral aspects are initially developed by Jacobi (1804-1851),
starting with properties of elliptic functions (see below). The study of fractional
transformations linked to SL(2; C) was developed by A.F.Moebius (1790-1868).

In the linear case, properties of vector spaces V over a field k are described
in terms of sections and projections giving linear subspaces W and quotients
@ = V/W with the corresponding linear transformations. A natural issue con-
sists of asking about the extension of these methods to eventually non-linear
“objects”. For projective varieties, sections and projections are projectively in-
variant, giving projective “extrinsic” invariants (i.e. dependent on the immer-
sion( such as the degree d (number of intersection points with a generic line ¢
for plane curves, e.g.) and the class d* (number of tangents from an exterior
point).



In the non-linear case, one must replace vector spaces V over k by modules
M over a ring R, and consider the corresponding maps f : My — M; between
modules, and replace linear maps by rational morphisms. Unfortunately, nor
even the simplest extrinsic invariants, such as the degree d and the class d” of
an algebraic plane curve, are intrinsic invariants, i.e. they are not preserved by
arbitrary birational isomorphisms. The Pluecker formulae relate both projective
invariants with the main birational invariant given by th genus g(C). In these
formulae there appear terms linked to the number of double points and cuspidal
points, “properly” counted , e.. according to their multiplicity.

A weak point of the naive approach based on “degeneration” principles and
continuity arguments, was the lack of a “good” notion of algebraic multiplicity
for the intersection of curves or more general varieties. As it is well known,
the same set of solutions can be the support for initially different systems of
equations. A central topic of Algebraic Geometry is the “right definition” of
multiplicity. A historical survey of failed attempts from the 19th century till
arriving to the definitive solution (Serre’s Tor formula) can be read in the chapter
1 of the module Az5 (Enumerative Geometry).

Classificaiton under birational isomorphism implies that the field k(X)) of ra-
tional functions on a variety X is the main object to be considered. This expalins
the central locus played by the theory of fields extensions. The first formulation
of connections with Group Theory appears already in the Galois work, initially
developed to analyze the solvability of algebraic systems of equations. In par-
ticular, the group of automorphisms Gal(L/K) of an extension L/K allows to
identify if the extensions normal or separable, e.g.

In a complementary way, the need of relating different algebraic descriptions
for the same support, opens the door for the notion of ideals I of a ring R with
the corresponding notions of finite generation, and ascending vs descending
conditioins for chains of ideals. These constructoins are naturally extended to
modules M over a ring F' in terms of “resolutions”. The “apparent motion”
along a variety X is formalized in terms of “change of base point” which is
formulated in terms of a tensor product.

0.1.1. Algebraic methods and structures

Algebraic methods are ubiquitous in Algebraic and Analytic Geometry. They
involve to objects (varieties, schemes, analytic spaces, e.g.), superimposed struc-
tures (fiber bundles, fibrations, sheaves, e.g.), and morphisms between them.
They cover applications of all algebraic subareas, and have motivated the in-
troduction of a lot of algebraic structures which have been extended to other
knowledge areas. Several basic taxonomies to be commented along this para-
graph involve to

= Discrete vs continuous approaches.

= Global vs Local frameworks



Finite vs infinite-dimensional actions.

Extrinsic vs intrinsic strategies.

Superimposed C"-structures for classificaiton issues.

= Relations with other knowledge areas.

Classical Algebraic Geometry was constructed on the complex field number
C. Deep relations with Number Theory, and the need of studying reductions
modulo p (for any prime p € Z) motivated the extension of algebraic methods
to the study of Algebraic Geometry on F;, or F,» in Algebraic Number Theory.

(*) Some specific features of characteristic p are linked to the ordinary dif-
ferential calculus (where dz? = 0, e.g.) or to the inseparable character of field
extensions. Furthermore, they provide a more natural connection with discrete
geometries with their corresponding actions of finite groups.

Discrete vs continuous approaches appear in regard to the resolution of
Diophantine equations . The introduction of Cartesian coordinates is the key
for a continuous inteprretation of algebraic relations in terms of the continuous
representations of variables and parameters.

Inversely, given a continuous relation between variables, a non-trivial (some-
times very difficult) problem consists of identifying how may solutions belong
to N, Z, Q, or some finite field extension. Perhaps the most known problem
is the well-known Fermat’s conjecture, who has attracted the attention of a
lot of mathemticians from the 17th century, till its definitive proof by A.Wiles
(1986). Relations with the Mordell’s conjecture (proved by Faltings in 1983) and
mainly with Elliptic curves, will be commented in the chapter 9 of the module
Asy (Algebraic Curves).

Local vs global frameworks involve to the local character of Basic Algebra
(with Commutative Algebra as paradigm) and their compatibility to generate
global objects as they appear in Sheaves. Homological Algebra is the main para-
digm extending Algebraic Topology methods. Both of them can be reformulated
in terms of (pre-)sheaves which provide a common language for matching stacks
in a similar way to fibres of a fibre bundle { = (E¢, ¢, Be, F¢) as a “toy model”
for (pre-)sheaves. Local data can be understood as some kind of “localization”
(some kind of“specialization”) of a hypothetical global structure.

= The current Commutative Algebra emerges from the development of key
notions along the 19th century linked to structures such as groups and
fields (starting with Galois theory), rings (for internal properties of poly-
nomials and their restrictions to subvarieties), ideals (to compare different
“presentations” in terms of generators, e.g.), modules (as superimposed

4 Diophantus lived around the third century a.C. and published the first compendium for
solving discrete equations from the arithmetical viewoint, even if it is considered as the father
of the “Diophantine Geometry” by the strong connections with geometric problems.



structures to rings extending the notion of vector space, e.g.), between
other ®. Their properties provide the core for basic GAGA.

= The current Homological Algebra emerges from the development of gene-
ral methods for solving systems of equations involving all the precedent
algebraic structures under finiteness conditions. They use some algebraic
extensions of well-known techniques arising from Homology and Cohomo-
logy theories Ago. These strategies are formulated in terms of injective vs
projective resolutions, which can be considered as an extension of nested
collections of embedded algebraic structures of the same type.

The global reformulation of local and global aspects is performed in terms
of sheaves corresponding to the same structure (groups, rings, modules, e.g.).
Initially sheaves have a topological inspiration, and by this reason they can be
applied to more general frameworks than those appearing in classical approaches
to GAGA.

The Klein description of a Geometry as the set of invariant properties on
a base space X by the action o : G x X — X of a group G, motivates diffe-
rent extensions to the GAGA framework. This characterization is adapted to
GAGA by imposing the condition that G is an algebraic or an analytic group
G on algebraic varieties (o more generally schemes). The action is algebraic
(resp. analytic) locally defined by polynomials (analytic functions) ¢. The basic
distinction between finite, finite-dimensional and infinite-dimensional actions is
translated in terms of

= Discrete groups going from Galois extensions, symmetric vs alternating
groups, or reflection groups (Euclidean vs hyperbolic geometries, e.g.).
Soluble groups (in the Galois sense) play a specially important role.

= Classical groups linked to Klein geometries acting on a linear space, in-
volving extensions to the Affine and Projective spaces for orthogonal, uni-
modular, unitary, symplectic or contact groups, and their mutual inter-
sections, by taking in account the algebraic character of these Lie groups.
They are commonly used in applications to Physics and Engineering.

9

= Infinite-dimensional groups as “subsets”’ of the Homeomorphisms Homeom(X)
of a topological space X, including the restriction to the smooth (given by
local diffeomorphisms), analytic (given by bianalytic transaformations),
and algebraic (given by birational isomorphisms) contexts. Different kinds
of birational transformations play a central role for classification issues in

GAGA.

G-homogeneous spaces by the action of an algebraic group G are described
in the same way as in Differential Geometry. In addition of the basic Cartesian,

5 Modules replace vector bundles as fibres for generalizations of fibre bundles such as (pre-
)sheaves, e.g.

6 Equivalently, the composition G x ¢ — G and the inverse map G — G are morphisms
between algebraic varieties.



Affine and Projective spaces (identify, as exercise, the corresponding algebraic
group), spheres, Grassmann (1809-1877) and Flag manifolds are examples of
G-homogeneous spaces by the corresponding algebraic group.

(*) Other more complicated “examples” are given by unipotent subgroups
U C GL(n) locally described by upper triangular matrices with 1 as entries of
the principal diagonal. Linear representations of their corresponding nilpotent
Lie algebras have 0 at the principal diagonal. They play a fundamental role for
the classification of finitely determined map germs A,4, and their applications
to models for dissipative phenomena (see the section 3 of Bjss for details).

In the classical case, one of the first important “examples” is linked to the use
of fractional transformations performed by A.F.Moebius. (1790-1868). From the
geometric viewpoint, fractional transformatios wer originally described as the
composition of a stereographic projection of the plane onto the sphere, followed
by a rotation or displacement of the sphere to a new location and finally a
stereographic projection, this time from the sphere to the plane.

From a more modern viewpoint, it is more natural consider the Moebius
transformations as transformations of the Riemann sphere S? (i.e. of the com-
plex plane increased with a point at infinity C U {oco}. However, the original
Moebius viewpoint illustrates the reaching and the geometric meaning in regard
to the Projective Geometry. Moebius transformations are the starting point for
the Conformal Geometry with a lot of applications in Theoretical Physics and
Engineering (including Animation in Computer Graphics, e.g.).

More generally, Geometric invariant Theory plays a central role to relate
algebraic and analytic viewpoints. It has been mainly developed by the Bri-
tisch School (Cayley, Sylvester) in the second half of the 19th century by using
relations between generators of ideals. This approach was reformulated and ex-
tended by the German school (Dedeking, Kronecker, Noether, Weber) by using
the language of Basic Algebra at the late decades of the 19th century. Hilbert’s
contributions have allowed a reformulation in terms of Higher Algebra (Weber,
Van der Waerden).

The reformulation of Algebraic Geometry that took place after 1960 was also
transferred to the Geometric Invariant Theory, with the figure of D. Mumford as
the greatest promoter of this subarea. It takes place in successive waves based on
algebraic group actions on Commutative Algebra (Mumford), sheaf-theoretical
based approach (Mumford and Fogarty) and G-equivariant approaches (Mum-
ford, Fogarty, Kirwan) to moduli spaces M, along the second half of the 20th
century. In the chapter Azgg we will make a short introduction to some appli-
cations to Natural Sciences (Physics and Chemistry, mainly) and Engineering.

(*) From a complementary viewpoint, along the last quarter of the 20th
century, there appear strong interactions with the Differential Invariant Theory.
The interplay can be thought in local or infinitesimal terms, by taking the k-jets
bundles J*E of a vector bundle which are generated by k-jets. The k-jet of a map
germ f € C"(n,p) is represented by the jets j* f; (formal Taylor developments)
truncated at order k of components f; of f = (f1,..., fp)



In the algebraic framework, components f; of a map-germ f € C"(n,p) are
interpreted as the generators of an ideal I. The reduction to finitely determi-
ned maps allows the introduction of Commutative and Homological Algebra on
spaces of k-jets 7

(*) So, for finitely k-determined map germs f € C"(n,p) one can develop a
Differential Invariant Theory (DIT) for the smooth case ®. We denote by J*E
the space of k-jets of sections of a bundle with total space E. Morphisms £ —
are extended naturally to morphisms J kEg — J,’]C between their corresponding
total spaces

(*) Jets spaces and Jet bundles provide a formal language for evolving sys-
tems of PDEs. DIT is far richer than the classical Geometric Invariant Theory
(GIT), because it is extended to distributions D of vector fields, systems S of
differential forms, systems of PDEs, and differential operators, including some
aspects of Variational Calculus between others. A good reference for DIT is
[O1v95] ?

Intrinsic vs extrinsic strategies involve to the relation between the abstract
description of the geometry of a variety X, and its description as a subvariety
of a larger ambient variety Z. Initially, algebraic varieties were described as
subvarieties of an affine A™ or a projective space P™ in terms of equations in
the polynomial ring k[z] in n variables = (z1,...,z,) or their homogeneous
completion.

The first reconversion is their expression by taking polynomial equations f;
as the generators of an ideal I'x of the coordinate ring k[X].In this extension,
projective equivalence is replaced by birational equivalence, where linear trans-
formations are replaced by rational transformations of degree > 2. The simplest
example is given by Cremona transformations corresponding to degree 2. The-
re appear a local problem in regard to the choice of the degree of birational
transformations, and a harder problem in regard to the structure of the group
of bitarional transformations.

Birational transformations play a central role for the explicit computation
of a non-singular model of a variety X. Resolution of Singularities is solved
(Hironaka, 1963) for varieties on an algebraically closed field k of characteristic
zero. Hence, they are crucial to solve classification issues on C, e.g.. As always,
one follows an increasinlgy complex strategy by starting with the simplest case
corresponding to curves Bsj, where almost everything is already known.

(*) The algebraic classification of surfaces (1946) is essentially due to F.Enriques
(1871-1946) in terms of powers of the canonical divisor Kx (including inter-
sections with cycles). Its algebraic reformulation by O.Zarsiki (along 1950s).
Additional contributions linked to deformations due to Shafarevich school, were
completed for the analytic case by K.Kodaira along 1960s.

7 A more formal approach in terms of sheaves of Principal Parts is developed in the module
Ass.

8 A map-germ f is k-determined if it is equivalent to its k-jet 5% f.

9 P.J.Olver. Equivalences, Invariants and Symmetry, Cambridge Univ. Press, 1995.



(*) For algebraic surfaces, the structure of the group of birational transfor-
mations for surfaces is affordable because birational maps of surfaces factor as
sequences of blow-ups at points, and by the existence of a unique minimal model
for non-ruled surfaces, which can not be reduced to a simpler model by blow-
downs '°. Neither of these results is true for algebraic threefolds, which requires
a more sophisticated strategy called the Mori’s program which is developed in
the module Azg (Algebraic and Analytic Threefolds).

The next big package for taxonomies concerns to superimposed structures on
varieties and morphisms between them. The simplest ones have been described
as an extension by using sheaves of vector bundles A;5 and Tensor Bundles
A3 of Differential Geometry of Manifolds A;. Similarly, one can define the
analogue of Principal Bundles whose structural groups are given by algebraic
group actions.

Solvable and Unipotent groups play now an important role, which introduces
a first important difference w.r.t. the smooth case. The same structures can be
defined on algebraic and analytical varieties by using “enough” local sections
s € T'(U,F) of sheaves F as a tool for “tracking” the behaviour along the
total space. The geometry of the Unipotent Variety plays a central role for the
classification of finitely determined singular map-germs Ay4.

(*) The existence of increasingly complex singularities introduces additional
troubles for the corresponding allgebraic groups (and their correspond Lie alge-
bras) giving behaviour is not “so good” as in the smooth case. Furthermore, the
kernel and the cokernel of a morphism between vector bundles is not, in general,
a vector bundle. The corresponding structural groups display “bifurcations” to
be described in terms of adjacencies between algebraic groups. So, we have ad-
ditional troubles to compute invariants (dimensions of spaces of sections, e.g.)
in terms of the cohomology of sheaves.

Furthermore, algebraic or analytic fibrations are not bundles (there can ap-
pear singular fibers, e.g.). It is necessary to extend the original superimposed
structure from bundles to sheaves, and even to schemes to include embedded
components and even “jumps” in the dimensionality of fibers (such it appears
with the Hilbert scheme, e.g.). In addition, the stalk structure can display dif-
ferent kinds of hierarchies represented by ascending or descending chains of
algebraic structures, e.g. (typical “examples” appear in Group Schemes).

0.1.2. Commutative Algebra for GAGA

Commutative algebra is initially described in terms of polynomial rings
E[x1,...x,] and their quotients by ideals I. First dictionaries were established
by D.Hilbert (Nullstellensatz), giving a correspondence between V(I) and the
set of prime ideals (called spectrum) of k[z]/I in the modern terminology.

This correspondence provides a a common language for Algebraic Geometry
and Algebraic Number Theory, which is the key for the proof of some classical

10 See details in the module Ags (Algebraic and Analytic Surfaces)
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conjectures. Ideal primes p define the basic closed sets for the Zariski’s topology
(coarser than the usual topology of coefficients).

In a nutshell, the local ring Ox , of a variety at a regular point encodes
information about the variety’s behaviour near the regular point x € X. In
presence of several “branches,”, ona has a semilocal ring. These constructions
are naturally extended to localization w.r.t. an ideal I. In particular, if p C A

is a prime ideal, one has

Ay = {iGK | f,g € A teextwith g ¢ p}
g

which is erestricted to m, where f € p, or extended to more general ideals
I C A, by replacing p by 1.

More generally, there exists a dictionary between rings A and Affine varieties
(extended to affine schemes in Ass). Following this dictionary, prime ideals p
correspond to orindary points (no embedded components) or irreducible subva-
rieties 1. The set Spec(A) of prime ideals plays a central role to define maps (or
more generally, morphisms) between affine subvarieties. In particular, smooth
points are replaced by regular local rings.

The study of particular properties around a point x € X is performed in
terms of the localization A, of the ring A w.r.t. the prime ideal p. A first
relation with Analytic Geometry is performed in terms of the completion 4
which is topologically interpreted as a formal neighborhood. The study of the
module of differentials (or more general modules) is carried out in terms of
modules over the base ring A (to be extended to Modules, i.e. sheaves over
Spec(A) in Ass-

Finiteness conditions about embedded collections of subspaces os successive
quotient spaces in Linear Algebra are naturally extended to ascending vs des-
cending chains of embedded ideals in k[z]. So, one obtains a characterization of
Noetherian and Artininan rings, where finiteness conditions are fulfilled. Fini-
te free resolutions extend this idea in the Homological Algebra context. Simlar
constructions are developed in the Analytic framework.

The algebraic formalism is naturally extended to other analytic, differential
and topological frameworks, which provides basic keys for the unification deve-
loped from the 1950s (as part of the Weil’s program). So, one extends traditional
approaches for the smooth case, to include the study of singular loci involving
“objects” and morphisms between objects appearing in GAGA. In particular,
the polynomial ring k[z1,...,z,] must be replaced by the ring k{z1,...,2,} of
convergent series in n variables, which allows to manage several branches in the
neighborhood of a s singular point. Analytic topology plays a similar role to the
Zariski topology in the analytic framework.

A partial smoothing is performed in terms of normalization (integral closure
of the fractions field at each point), where singularities disappear in codimension

1 They are the “basic objects” appearing in OOP-based computational apparoces developed
in the part II.
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one. In particular, for a curve or a hypersurface with an isolated singularity,
normalization gives a non-singular model. Key notions such as different notions
of geometric dimension are extended to Krull dimension and multiplicity in
terms of ascending vs descending nested chains (Noether vs Artin) of ideals or,
more generally, modules. These extensions play a fundamental role to extend the
analysis of regular to different kinds of singularities where torsion phenomena
appear in a natural way.

All the above aspects have a local character, but they can be extended to
a global framework by using “sheaves”. The introduction of sheaves is key to
match together (modules on) local rings in a new structure as “stalks” by gene-
ralizing the notion of “germ”, almost ubiquitous in Differential Geometry and
Topology (Global Anlaysis). It is the key to unify any kind of (affine, projective,
quasi-projective varieties) in the notion of scheme. In particular, finiteness con-
ditions are key for the notion of coherence (which plays a similar role to vector
bundles in Differential Geometry):

(*) A coherent sheaf on a ringed space (X, Ox) is a sheaf F of Ox-modules
satisfying the following two properties:

= F is of finite type over Ox, that is, every point in X has an open neigh-
borhood U in X such that there is a surjective morphism O% |y — Fy for
some natural number n;

= for any open set U C X, any natural number n, and any morphism ¢ :
O% v — Flu of Ox-modules, the kernel of ¢ is of finite type.

(*) Coherence hypothesis provides the key for matching local data in global
objects. In particular, there exists an equivalences between coherent algebraic
sheaves and analytic sheaves on projective varieties over C (Serre, 1956). This
ewaulr explains the role played by coherence properties as a tool to unify Al-
gebraic and Analytic Geometries in the GAGA framework Ass. From a ,local
viewpoint, the key is the systematic use of Commutative (completions, e.g.) and
Homological Algebra (resolutions, e.g.) in a formal framework.

(*) The notion of scheme (initially proposed by C.Chevalley and develo-
ped by A.Grothendieck) includes the possibility of embedded components with
higher multiplicity, and components of dimension lesser than the generic one. In
this way, the reaching of classification issues is extended not only for “geometric
objects”, but to number theory, topology, and representation theory, also.

Sheaves were originally introduced by J.P.Serre (1956) by imposing “cohe-
rence” conditions about the variation of (modules on) local rings. Their to-
pological invariants are computed in a combinatorial way, by using the Cech
cohomology. The introduction of other topologies (¢-adic, cruystalline, e.g.) by
A.Grothendieck in the late 1950s, became the key for the extension of these
constructions to other mathematical areas, contributing to the “Algebrization
program” of Topology proposed by A.Weil (around 1950).

The notion of scheme plays a central role for these extensions. Their local
objects are affine schemes or prime spectra Spec(A), which curiously play a si-
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milar role to the notion ‘f “object” in the OOP computational framework. These
“objects” are locally ringed spaces, which form a category that is antiequivalent
(dual) to the category of commutative unit rings, extending the duality bet-
ween the category of affine algebraic varieties over a field k, and the category of
finitely generated reduced k-algebras.

(*) The gluing of objects in the category of locally ringed spaces was initially
performed by using the Zariski topology. Next, the Zariski topology in the set-
theoretic sense is replaced by a Zariski topology in the sense of Grothendieck
topology. The last one and his school developed Grothendieck topologies having
in mind more “exotic” but geometrically finer and more sensitive examples
than the coarse Zariski topology, namely the étale topology, and the two “flat
Grothendieck topologies” 2.

(*) However, the notion of sheaf is sometimes “too strict” in regard to recent
developments, and applications to other knowledge areas such those appearing
in the part II of these notes. It is convenient to use a weaker notion, where
pre-sheaves provide the first candidate to match together “algebraic stacks”
(Deligne-Mumford) where sharper discontinuities are allowed 3.

0.1.3. Homological Algebra for GAGA (*)

The basic idea is linked to the expression of successive systems of equations to
solve any kind of algebraic problem in terms of finite collections of maps between
A-modules. In the literature they are called ‘resolutions with two basic types
labelled as injective and surjective resolutions. In a naive approach, they would
correspond to an algebraic extension of successive immersions and submersions
(as the smooth version of linear sections and projections of Linear Geoemtry).

They are commonly used in Algebraic Topology, where they involve to inci-
dence relations between elements of increasing or decreasing dimension in graded
(simplicial vs cuboidal) complexes. Combinatorial properties of graded compel-
xes play a fundamental role in Algebraic Topology. Intrinsic properties are ex-
pressed in terms of the homology and cohomology of the graded complex of
(co)chains corresponding to descending and ascending degree(linked to boun-
dary 0 and coboundary d operators).

A more general functional approach is described in terms of the Cech co-
homology, which is commonly used in GAGA from the early 1950s. In this
case, combinatorial properties are expressed in terms of successive intersections
Uij = U; NUj, Uyjp, . .. between open subsets U; of a covering U of avariety X.
Initially one imposes “good properties” for successive intersections (a typical
constraint isU,j = 0).

An elementary introduction ot the Cech Cohomology on smooth manifolds
(including the comact support version) can be read in the module A42 (Bund-

12 See the module B33 (Sheaves, Cohomology, Schemes) for more details
13 Typical “examples” are linked to “events”, which modify the topology of the “scene” or
maps representing their space-time evolution.
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les and Cohomology) of the matter A4 (Differential Topology), where we have
followed [Bot83]. The adaptation of PL-complex to the smooth framework is
the key for a drastic reduction of the number of cells (ef, dek) ~ (DF),S*—1,
and consequently for explicit computations in (co(homology. By naturality and
better functorial properties, usually we develop a cohomological approach.

Another fundamental ingredient is linked to the ubiquitous tensor operations
appearing in Mathematics and tehir applicaitons to other scientific or technologi-
cal areas. A precedent in Algebraic Topology is linked to like Kunneth theorems
appearing inHomology and Cohomology theories Ass. They express the relation
between the ¢(-th co)homology H,(X x (X xY)) of X x Y as a direct sum of
Hl(X) X HJ(Y) for Z+j =dq.

In this way, Kunneth formulae allow to relate cohomological invariants of
total spaces space F and the base space B of a bundle by using the coho-
mology H*(F') of the fiber,which is symbolically exopressed as H*(E;R) ~
H*(B;R) ® H*(F; R) for a domain R. Luckily, this formalism remains valid
when one replaces R by a sheaf F, which allows to extend it to fibrations,
deformations or base changes operations, between other.

A third ingredientfor the application of (co)homology methods is linked to
different kinds of duality extending the original Poincaré duality between cy-
cles and cocycles or between cocycles of complementary dimension (in terms
of integral operators). In the module Ags we have described several types of
duality which are commonly used in Algebraic Topology Ao, and their applica-
tions to low-dimensional topological manifolds (Alexander), Complex Manifolds
(Hodge) or Porjective Algebraic Manifolds (Lefschetz).

All the above approaches are reformulated in the context of sheaves coho-
mology. They start wioth the Serre’s duality (the first adaptation of Poincaré
duality to regular algebraic varieties).and continue with the Grothendieck’s co-
homologies for schemes, which was developed along 1960s by Grothendieck and
his school. They require additional information of more advanced Homological
Algebra involving functors, bigraded complexes and sheaf cohomology. By this
reason, we postpone a more formal presentation to the module Asz (Sheaves,
Cohomology, Schemes).

(*) The interplay between Algebraic Geometry and Differential Topology
plays a central role along the following decades. It can be initially motivated by
the development of the Standard Model unifying the electromagnetic, weak and
strong interactions in Quantum mechanics along 1960s. Classical approaches
suppose a smooth support given by a manifold M, as the support for principal
bundles with affine connections V. The minimization of the curvature functional
(Yang-Mills) on the space of affine connections is the key-stone for the Standard
Model.

(*) The unification with a quantized version of Relativistic Gravitation is an
open problem, which is the goal of GUT (Great Unificaiton Theory). It is ne-
cessary to solve alot of problems including the extension of classical cohomology
theories to the singular case. The naturaol framework to minimize integral fun-
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ctionals is given by Morse theory, where geodesics providethe first “exampole”
linked to the quadratic distance functional. Extensions of Classical Morse theory
to singular varieties has been performed along 1980s by developing a Singular
Homolgy Theory on stratifications with “good properties” Ays (Stratifications).

Resolutions

Ext and Tor functors
Stratified Morse Theory
singular Homology Theory
and Spectral Sequences

Classical homology and cohomology theories provide combinatorial methods
to extract information and construct invariants linked to PL-configurations of
basic geometric units (simplices, cuboids) and linear operators on them (invol-
ving algebraic, analytic, differentiable or continuous maps, e.g.). This simple
remark explains the unbiquity of (co)homological methods in almost all mathe-
matical areas and their applications to other knowledge areas. The precedent
description is algebraically formalized in terms of graded complexes involving
(co)simplicial or (co)cuboidal structures with the corresponding (co)homological
invariants. The last ones are invariants of the homotopy type (roughly nspea-
king, “deformations” with “good” topological properties), but not w.r.t. homeo-
morphisms. The largest advantage is their computability by using combinatorial
tools.

Alternately one can think of graded complexes linked to systems of equations
or, more specifically, to the generators of an ideal I. First order relations between
generators give the kernel of a map

Alternately, to avoid the dependence w.r.t. coordinate representations, one
can use “pre-sheaves” given by functionals U; — F(U;) defined on open sets of
a covering U = {U, };cs fulfilling “good incidence” conditions. Initially, one re-
quests “natural” compatibility conditions linked to regular C"-structures, and
the existence of “enough” local sections for superimpoosed structures. Later,
both conditions are “relaxed”; a typical example is given by presheaves). So,
it is possible to adapt initial definitions to broader contexts, specially in re-
gard to applications to less ideal contexts, where there can appear non-regular
behaviours for the support X of the functionals defined on X (a Ox-module,
e.g.).

The computation of (co)homologies as graded complexes for the absolute
and the relative case is extended to the superimposed structures in terms of
morphisms ¢ : £ — — — F between (pre)sheaves on the same base source or
target space of a rational map f: X — — — Y. Categories provide the natural
language for the simultaneous management of sets of functions and morphisms
between sets or other algebraic structures (groups, vector spaces, rings, modules
on a ring, e.g.) to solve systems of equations | defined on the support X.

2. Derived Categories
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The notion of a derived category is crucial for working with complexes of
sheaves. Derived categories allow one to handle not just sheaves but also their
higher-order interactions (via derived functors). In algebraic geometry, derived
categories help classify varieties, study their morphisms, and investigate their
singularities.

3. Cohomology

Cohomology groups measure the global sections of sheaves or their higher
cohomologies, providing important topological information about the underlying
variety. For example, the singular cohomology of a variety gives information
about its topology, while sheaf cohomology informs about algebraic structure,
like the solution space to certain algebraic equations on the variety.

4. Grothendieck’s Theorem

Grothendieck developed a foundational framework for algebraic geometry
that combined sheaf theory, category theory, and homological methods. This fra-
mework leads to important tools like the Grothendieck spectral sequence, which
connects the cohomology of various sheaves and provides a powerful compu-
tational method.

5. Functoriality and Derived Functors

Homological methods are heavily based on derived functors like Ext and
Tor, which measure extensions and torsion, respectively. These functors help to
understand the derived categories of sheaves and their relations. For example,
the Ext functor gives a measure of how one sheaf can be extended by another,
while Tor measures how torsion occurs in certain sheaves.

6. Localization and Finiteness

Homological methods often leverage localization techniques in algebraic geo-
metry to break down complicated global problems into simpler local ones. This
is especially useful in the study of singularities and the behavior of sheaves on
non-smooth varieties. Finiteness conditions, such as finiteness of cohomology,
help classify varieties by controlling the possible algebraic structures of their
sheaves.

7. Algebraic K-Theory

K-theory (especially algebraic K-theory) is another important homological
tool. It provides a way of understanding vector bundles and other algebraic
objects on a variety, often in relation to its topology. K-theory is concerned with
classes of vector bundles and provides a bridge between algebraic geometry and
topological invariants. 8. Homological Algebra in Moduli Problems

Moduli spaces, which classify families of algebraic varieties or objects, are
often studied using homological methods. These include techniques like perverse
sheaves and the study of the monodromy action on cohomology, which helps
in understanding the structure of moduli spaces, particularly in the study of
families of varieties with singularities or degenerations.

Key Examples:

The Grothendieck-Riemann-Roch theorem: This connects the Euler charac-
teristic of a sheaf with its cohomology and topological data, often providing a
bridge between geometry and topological invariants. Hodge theory: In the con-
text of algebraic varieties, particularly projective varieties, Hodge theory uses
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cohomology groups to study the structure of the variety, especially for smooth
varieties.

Applications of Homological Methods in Algebraic Geometry: Singularity
Theory: Studying the singularities of varieties using the tools of sheaf cohomo-
logy and homological algebra. Moduli Spaces: Understanding the geometry of
moduli spaces of varieties or vector bundles via the derived category. Intersec-
tion Theory: Using homological methods to study intersections of divisors on
varieties, leading to results like the Hirzebruch-Riemann-Roch theorem.

These methods are often complex and technical but are fundamental to much
of modern algebraic geometry. They enable the study of varieties in a much more
flexible and detailed way than traditional geometric methods alone would allow.

0.1.4. Some applications of GAGA to Physics (*)

Sheaves, and the broader tools of algebraic geometry, have found a number
of important applications in physics, especially in areas that involve geometric
or topological aspects, such as string theory, quantum field theory (QFT), and
topological field theories. Below are some of the key ways in which sheaf theory
and related concepts have been applied to physics:

1. String Theory and D-branes

In string theory, sheaves appear in the study of D-branes, which are objects
on which open strings can end. These branes often live in a certain geometrical
space, and the structure of D-branes can be described using sheaf theory.

More specifically, the category of sheaves is used to model the space of states
of a D-brane, including both the physical (quantum) and geometric aspects of
the branes.

The concept of sheaf cohomology is used in string theory to classify different
possible states of these D-branes, including their interactions. The cohomology
of sheaves also helps describe the possible quantum states of these branes.

2. Topological Field Theory (TFT)

Topological field theories are quantum field theories in which the physical
observables depend only on the topology of the underlying space-time and not
on its specific geometry. These theories are important in understanding phe-
nomena that are insensitive to local geometric details (such as certain types
of anomalies in quantum fields). Sheaf theory plays a role in topological quan-
tum field theories (TQFTs) by helping to describe how physical quantities (like
correlation functions) change when the space-time topology changes. In this
setting, sheaves encode information about topological defects, singularities, and
the global structure of the space-time. The relationship between sheaves and
categories of topological defects is important in understanding the interplay
between geometry and physics in topological quantum field theory.

3. Gauge Theories and Bundle Theory

In gauge theories, which are the foundation of the standard model of particle
physics, the mathematical objects used to describe the fields are fiber bundles,
and the sections of these bundles are related to the physical fields. Sheaves help
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model the sections of these fiber bundles, particularly in the study of gauge fields
(connections on bundles). The sheaf cohomology of such bundles can describe
the global structure of gauge fields, which are critical in understanding the dyna-
mics of force fields like electromagnetism and gravity. Additionally, sheaf theory
helps describe instanton solutions and other solutions to gauge theories, which
have important applications in understanding non-perturbative phenomena in
quantum field theory.

4. Quantum Field Theory (QFT) and Sheaf Theory

In quantum field theory, sheaves provide a powerful tool for describing fields
and their interactions. Specifically, sheaves allow the study of local field theories
and the structure of operator algebras. One of the key applications of sheaves
in QFT is in the study of distributional fields and their singularities. Sheaves
offer a framework for generalizing classical fields to incorporate quantum effects,
where classical fields (like scalar fields or gauge fields) are generalized as sheaves
or complexes of sheaves. Sheaf theory also plays a role in the study of quantum
gravity. Since space-time itself can have a non-trivial topology or geometry at the
quantum level, sheaf-theoretic techniques can be used to model such structures
in a way that incorporates quantum fluctuations.

5. Holography and the AdS/CFT Correspondence

The AdS/CFT correspondence is a conjecture in string theory that relates
a type of string theory formulated in Anti-de Sitter (AdS) space to a conformal
field theory (CFT) on its boundary. This duality has led to a deep understanding
of the relationship between quantum gravity and quantum field theory.

Sheaf theory can be used to understand certain aspects of the boundary
conditions and quantum states on the boundary of AdS spaces. More gene-
rally, sheaves help describe the types of localized excitations or ”defects”that
may exist in the boundary field theory, which are crucial for understanding the
correspondences between bulk and boundary physics.

6. Topological Insulators and Quantum Matter

Topological insulators are materials that have insulating bulk properties but
conductive edge states, and these edge states have been extensively studied
using tools from topology and geometry. In this context, sheaf theory has been
applied to study the global structure of the field configurations in such systems.
Sheaf theory helps describe the flow of currents on the boundary of these ma-
terials and provides a framework for understanding the topological invariants
that characterize these systems, such as the Chern number.

7. Mirror Symmetry in String Theory

Mirror symmetry is a duality between pairs of Calabi-Yau manifolds that
plays a central role in string theory, particularly in the context of compactifi-
cations of string theory on Calabi-Yau spaces. In mirror symmetry, the moduli
spaces of complex structures and symplectic structures of these manifolds are
related in a way that can be studied using sheaf cohomology. The relationship
between the geometry of these spaces and the behavior of physical observables
in string theory often relies on deep results from sheaf theory, especially in the
study of moduli spaces of these geometries.

8. Quantum Cohomology and Sheaf Counting
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In the study of quantum cohomology, the space of cohomology classes on
a variety is augmented by quantum corrections. These corrections encode the
effect of ”quantum.©ffects in geometry, such as the contribution of curves or
other subvarieties to the space’s geometry.

Sheaf theory can be used to compute Gromov-Witten invariants, which count
the number of curves of given classes that can be embedded in a variety. This
has applications in string theory, particularly in understanding how different
types of branes interact with the underlying geometry.

9. Localization Techniques in Path Integrals

Localization is a powerful method used in quantum field theory and statis-
tical mechanics to simplify the computation of path integrals. This approach
uses mathematical tools like sheaves and sheaf cohomology to reduce complex
integrals to more tractable forms.

The method of localization has applications in computing the partition fun-
ction of certain quantum field theories, such as in the study of topological quan-
tum field theories and supersymmetric gauge theories.

10. Singularity Theory in Physics

Singularities are points where the usual description of a space breaks down.
Sheaf theory can be used to describe the structure of singularities in both clas-
sical and quantum systems. In physics, understanding the behavior of fields
near singularities (such as black holes or other exotic objects) often involves
sheaf-theoretic methods.

Conclusion

Sheaves have become an indispensable tool in modern theoretical physics,
particularly in areas involving complex geometrical structures, quantum field
theory, string theory, and topological phenomena. They provide a rigorous and
flexible framework for understanding the intricate relations between geometry,
topology, and physics.

0.2. Outline of the chapter A301

In addition of this Introduction and a fifts section about Complementes
(Conclusions, Practices, Chalenges, References). this chapter has the following
four sections:

1. Algebraic structures

2. Commutative Algebra.

w

. Intersection and invariants

4. Some connections with basic statistics
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0.2.1. Methodological issues

In this chapter we privilege a structural approach based on Commutative Al-
gebra for the study of systems of equations and their solutions. This approach
uses notions of Basic Algebra which are linked to algebraic groups, rings, modu-
les and fields. A motivation is given by the Galois Theory linked to the general
resolution of equatons. In despite of the strong parallelism with general proper-
ties of Algebraic Number theory, these properties are only sketched in regard to
some basic properties of divisors.

The intuitive notion of divisor is formalized in terms of principal ideals (f).
They are reinterpreted in terms of “linear combinations of hypersurfaces” [f]
(defined up to non-null multiplication) with positive [p] = [f]o and negative
part [q] = [f]co, which provide the symbolic representation [f] = [f]o — [f]eo Of
rational functions f = p/q (meromorphic functions in the complex case).

The intuitive version of a divisor as a formal sum of codimension one sub-
varities, was exploited in an intensive way by the Italian school of Algebraic
Geometry to understand the geometry of curves in terms of linear series, and
the geometry of surfaces in terms of linear subsytems. Both of them provide the
foundations for the “adjunction theory”, where one describes the geometry of a
variety from “incidence” conditions fulfilled by sections verifying some prescri-
bed conditions (relative zeroes and poles, e.g.)

A more systematic approach to these ideas was performed by Zariski (initially
in Italy, later in USA) and Van der Waerden (in Germany) along the 1930s. By
using algebraic tools of the German school they were able of reformulating clas-
sical results of the Italian school, and reorganize a theoretical corpus in a much
more systematic way. The first global compendium including a systematic treat-
ment from the algebraic viewpoint are [Wae49]'4, and [Zar58]'®

A geometric interpretation of the resolution of systems of equations is lin-
ked to the computation of their solutions. This interpretation involves to the
Intersection Theory, which has several parts:

= Fxistence: corresponding to the number or solutions on the base field k.
The first result is the Bézout theorem for plane curves, and its generali-
zations to higher dimension.

= Properties of solutions sets which are formulated in terms of “mobile cy-
cles” and their equivalence classes in terms of numerical, homological or
algebraic equivalence clsses.

» Fxplciit computation involving the “loclaization” of solutions, identifica-
tion of “branches” and their overlapping linked to multiple solutions.

14 B L.Van der Waerden: Moderne algebra, 1s ed in 1930, 2nd ed 1949.
15 0.Zariski and P.Samuel: Commutative Algebra (2 vols), 1st ed by Van Nostrand , 1958-60;
2nd ed corrected by Springer. GTM, 1975.



20

All these topics, make part of the Enumerative Geometry As4 which uses a
mixture of algebraic, topological and differential criteria. Thus, it can be consi-
dered as a transversal subarea with multiple connections with different approa-
ches to GAGA and their applications. The request for a rigorous foundation was
the 15th Hilbert’s problme (talk in the ICM Paris Conference of 1900). Their
algebrization is part of the Weil’s Program (1949) The most general recent for-
mulation appears in [Ful84] !¢

0.2.2. A categorical approach

In addiition of the intrinsic approaches to GAGA, it is necessary to consi-
der extrinsic approaches, which are linked to maps f : X — Y or morphisms
X — — = Y (not everywhere well defined). This distinction involves to super-
imposed structures (bundles, fibrations, sheaves) as “adiditional objects” de-
fined on the source X and target spaces Y for f. The simples “examples” in
the smooth case correspond to embeddings and submersions between smooth
manifolds Aj;, which are locally equivalent to the classical linear sections and
projections of the Projective Geometry. Both of them provide criteria to identify
regular submanifolds or fibrations giving classification criteria.

In the same way as in the smooth case, we are interested in maps or morphisms
preserving the algebraic structure. Embeddings of the smooth case are replaced
by immersions, whereas submersions are replaced by proper maps. So, immer-
sions and proper maps allow a characterization of subvarieties in the GAGA
framework. When one has “enough sections” fulfilling regular conditions, one
says that the sheaf of sections is “ample”. For each equivalence relation one
has an ampleness criterium. So, formal properties for sets of regular maps are
replaced by ampleness ceriteria.

By definition, if f is a regular map, then it has maximal rank, i.e. the kernel
Ker(f) or the cokernel Coker(f) vanishes, corresponding to immersions and
submersions, respectively, in the smooth case. In practice, a map or a morphism
is not regular, and one must work with non-vanishing kernels and cokernels.
This argument is naturally extended to morphisms ¢ : E — — — F between
total spaces of superimposed structures (bundles, fibrations, sheaves). They are
linked between them in terms of long sequences which are not exact. Exactness
is important because it allows to “predict” the behaviour of a system, but mos
sequences of Modules (sheaves of modules) are not exact ones.

To solve this problem, one uses injective vs surjective “resolutions” in terms
of locally free sheaves, extending the notion of free local rings. The general
construction is realized in terms of “Derived Functors” which are introduced in
the next chapter Asps. Intuitively, they are linked to “expanding” (Ext functors)
or restricting (Tor funcgtors) the original information.

Before developing these extensions, it is convenient to acquire some familia-
rity with the “objects” where one applies this viewpoint. They concern to and

16 W.Fulton: Intersection Theory, Springer-Verlag, 1984.
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adaptation of classical categories involving sets, groups, vector spaces, rings or
modules, e.g. So, in the GAGA framework, we follow an increasing difficult:

Categories of Varieties with three basic subcategories corresponding to Af-
fine Varieties (defined by polynomial equations), Projective (homogeneous
polynomials), and Quasi-Projective Varieties (non-necessarily closed sub-
sets of the Projective space), depending on the ambient space.

Categories of Schemes with three basic subcategories corresponding to
Affine, rojective, and Quasi-Projective Schemes, non-necessarily purely-
dimensional and admiting embedded components, also, corresponding lo-
cally to non-reduced polynomials or analytical functions.

Each one of the above “objects” can display different kinds of mpas or, more
generally morphisms. The most relevant ones are the folloing ones

Regular Maps: A morphism between varieties or schemes that corresponds
to a regular function between them.

Projective Morphisms: Morphisms that map projective varieties into other
projective varieties.

Finite Morphisms: Morphisms where the preimage of any point consists
of a finite number of points.

Flat Morphisms: A morphism with a certain “uniformity” property in the
fibers.

Finally, in the same way as the categories U for Vector Bundles £ and B3 for
Principal Bundles P on smooth manifolds M, one can consider categories for

Different kinds of Sheaves F, including ample or coherent sheaves, e.g.

Morphisms Fg — — — JF1 between sheaves to compara or infer structures,
e.tg.

Different kinds of cohomologies (Cech, f-adic, Crystalline, e.g.) for the
computation of invariants.

Derived Categoriess in terms of the cohimology of injective vs projecti-
ve resolutions as a general method for managing the lack of regularity
(injectivity or surjectivity) for maps or morphisms.

The precedent remarks show the power of categories to unify and compare
properties invvling objects, maps, superimposed structures and their invariants.
In despite of its abastract character can be considered as some kind “universal
language” which simplifies the analysis of properties, and provides a unification
between related areas with “similar” characteristics.

In the chapter Asps we will show some applications of categories to some
topics of Theoretical Physics and some Engineering areas developed in the part
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IT of these notes, by showeing their power to relate knowledge domains for each
matter. Some advanced topics for the applicaitons of categories to Moduli theory
will be develop edin the chapteer Asps (analytical metods in GAGA). concern
to:

0.2.3. Commutative Algebra and Affine Algebraic Geometry

(section 3) Commutative algebra is essentially the study of the rings oc-
curring in algebraic number theory and algebraic geometry.Several concepts of
commutative algebras have been developed in relation with algebraic number
theory, such as Dedekind rings (the main class of commutative rings occurring
in algebraic number theory), integral extensions, and valuation rings.

Polynomial rings in several indeterminates over a field are examples of com-
mutative rings. Since algebraic geometry is fundamentally the study of the com-
mon zeros of these rings, many results and concepts of algebraic geometry have
counterparts in commutative algebra, and their names recall often their geome-
tric origin; for example “Krull dimensio”, “localization of a ring”, “local ring”,
“regular ring”.

An affine algebraic variety X corresponds to a prime ideal p in a polynomial
ring k[z], and the points * € X of such an affine variety correspond to the
maximal ideals m that contain this prime ideal p. The Zariski topology, originally
defined on an algebraic variety, has been extended to the sets of the prime ideals
of any commutative ring A; for this topology, the closed sets are the sets of prime
ideals that contain a given ideal.

The spectrum Spec(A) of a ring A is a ringed space formed by the prime
ideals equipped with the Zariski topology, and the localizations of the ring at
the open sets of a basis of this topology. This is the starting point of sche-
me theory, a generalization of algebraic geometry introduced by Grothendieck,
which is strongly based on commutative algebra, and has induced, in turns,
many developments of commutative algebra.

0.2.4. Algebraic methods in Discrete Mathematics (*)

Some of the most relevant algebraic techniques for Discrete Mathematics are
the following ones::

Rank argument

Restricted intersection theorems

Multilinear linear algebra (tensor products and exterior powers)

Linear algebra modulo composite number

Combinatorial Nullstellensatz
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= Extrapolation arguments

» Tensor rank

A more amenable approach can be read in https://mastermath.datanose.nl/Summary /294
including nearer issues:

The old combinatorial geometry (Whitney, Tutte, e.g.) based on geometric
configurations, and their symbolic representations (graphs, lattices, posets) pro-
vides an initial support for a large number of combinatorial issues (Rota, e.g.).
In the “simplest” cases, they have been reformulated in (co)homological terms
or more recently in terms of Commutative Algebra (Stanley)

In particular, graphs G play a central role involving operations (contrac-
tion vs expansion), maps between graphs, superimposed structures expressed
in analytic terms as G = (G, Og), and superimposed structures £ = (E, O)
in a similar way to ringed spaces. All of them help to understand the role of
symbolic representations. Analytical graphs G and superimposed structures &£
support the applications of standard tools arising from Linear Algebra (SVD
and PCA, e.g.), Basic Algebra (groups, polunomial rings, number fields, ideals),
and Diufferential Geometry (scalar, vector, covector, tensor sifelds)

The application of algebraic methods in combinatorics has been remarkably
successful in recent years. Examining combinatorial problems from an alge-
braic perspective also yields connections to combinatorial geometry, probability
theory and theoretical computer science. In this chapter we give basic notions
and simple results. In the chapter A306 (Discrete and Combinatorial methods),
we develop more some more advanced methods (Spectral Graph Theory) and
their applications.

The polynomial method is a relatively recent innovation in combinatorics
borrowing some of the philosophy of algebraic geometry. The starting point is
given by the Hilbert’s Nullstellensatz and Alon’s combinatorial Nullstellensatz.
These results can be applied to classical problems in additive number theory
and graph colouring. We treat some very recent applications of the polynomial
method to cap set problems. They can be applliedd to stable polynomials to give
a construction of Ramanujan graphs (an important family of expanded graphs).

0.3. References for this introduction
References appearing below are not exhaustive. They are included to en-

courage the reader to search more complete information by him/herself. Any
suggestion is welcome.

0.3.1. Basic bibliography

Only basic textbooks are included. At the last subsection §5,4 (References)
one includes some other paragraphs including references and some applications
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0.3.2. Software resources

Only those based in symbolic programming are included. It is necessary to
develop interpreters in tersm of OOP paradigms and the corresponding Pro-
gramming Languages (C, +4, C#) or their extensions to Functional Program-
ming under the common Python framework.

= Macaulay 2
= Singular

= CoCoA

= Normaliz

= Sagemath (under Python).

Final remark: Readers which are interested in a more complete presenta-
tion of the above materials (in Spanish language, still) or some another chap-
ter of the module A3y (Foundaitons of GAGA), please write a message to ja-
vier.finat@gmail.com



