Cuerpos Finitos

XXVII Escuela Venezolana de Matemáticas – EMALCA

Edgar Martínez-Moro

Sept. 2014

Instituto de Investigación en Matemáticas

Cuerpos y extensiones de cuerpos

Un cuerpo $(\mathbb{F},+,\cdot)$ es un conjunto no vacío en el que se han definido dos operaciones binarias: la adición, denotada por +, y el producto, denotado por \cdot . Los conjuntos $(\mathbb{F},+)$ y $(\mathbb{F}\setminus\{0\},\cdot)$ son grupos abelianos y además, el producto es distributivo con respecto a la adición. Los elementos neutros de ambas operaciones son diferentes y se denotan, respectivamente, como 0 y 1.

Adoptaremos la notación \mathbb{F}^* para el conjunto de elementos no nulos de \mathbb{F} . Un cuerpo se llama primo si no contiene ningún subcuerpo propio.

Todo cuerpo $\mathbb F$ contiene un cuerpo primo que es, o bien $\mathbb Q$, o bien

 $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ para algún primo p.

Cuerpos y extensiones de cuerpos

Un cuerpo $(\mathbb{F},+,\cdot)$ es un conjunto no vacío en el que se han definido dos operaciones binarias: la adición, denotada por +, y el producto, denotado por \cdot . Los conjuntos $(\mathbb{F},+)$ y $(\mathbb{F}\setminus\{0\},\cdot)$ son grupos abelianos y además, el producto es distributivo con respecto a la adición. Los elementos neutros de ambas operaciones son diferentes y se denotan, respectivamente, como 0 y 1.

Adoptaremos la notación \mathbb{F}^* para el conjunto de elementos no nulos de \mathbb{F} . Un cuerpo se llama primo si no contiene ningún subcuerpo propio.

Todo cuerpo $\mathbb F$ contiene un cuerpo primo que es, o bien $\mathbb Q$, o bien

 $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ para algún primo p.

Cuerpos y extensiones de cuerpos

Un cuerpo $(\mathbb{F},+,\cdot)$ es un conjunto no vacío en el que se han definido dos operaciones binarias: la adición, denotada por +, y el producto, denotado por \cdot . Los conjuntos $(\mathbb{F},+)$ y $(\mathbb{F}\setminus\{0\},\cdot)$ son grupos abelianos y además, el producto es distributivo con respecto a la adición. Los elementos neutros de ambas operaciones son diferentes y se denotan, respectivamente, como 0 y 1.

Adoptaremos la notación \mathbb{F}^* para el conjunto de elementos no nulos de \mathbb{F} . Un cuerpo se llama primo si no contiene ningún subcuerpo propio.

Todo cuerpo $\mathbb F$ contiene un cuerpo primo que es, o bien $\mathbb Q$, o bien

 $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ para algún primo p.

Un cuerpo $\mathbb F$ tiene característica cero si $\mathbb Q \leq \mathbb F$, y tiene característica p si $\mathbb Z_p \leq \mathbb F$. Cualquier cuerpo de característica cero, como $\mathbb R$ o $\mathbb C$, contiene el cuerpo primo $\mathbb Q$, por tanto tiene un número infinito de elementos. A su vez, un cuerpo finito tiene necesariamente característica p. Sin embargo, existen cuerpos de característica p que no son finitos.

es fácil ver que K es un F-espacio vectorial

es fácil ver que K es un F-espacio vectorial

es fácil ver que \mathbb{K} es un \mathbb{F} -espacio vectorial

es fácil ver que \mathbb{K} es un \mathbb{F} -espacio vectorial

Si $\mathbb{K}|\mathbb{F}$ es una extensión de cuerpos y $S\subseteq\mathbb{K}$, el cuerpo obtenido a partir de \mathbb{F} por la adjunción de S es $\mathbb{F}(S)=\bigcap\{\mathbb{L}\leq\mathbb{K}\,|\,\mathbb{F}\cup S\subseteq\mathbb{L}\}$. Es claro que $\mathbb{F}(S)|\mathbb{F}$ es la menor extensión de \mathbb{F} que contiene a S. En el caso en que $S=\{a\}$, la extensión $\mathbb{F}(a)|\mathbb{F}$ se dice simple y

se puede probar que
$$\mathbb{F}(a) = \left\{ rac{f(a)}{g(a)} \mid f,g \in \mathbb{F}[x], g(a)
eq 0
ight\}.$$

Dada una extensión de cuerpos $\mathbb{K}|\mathbb{F}$, un elemento $a \in \mathbb{K}$ se dice algebraico sobre \mathbb{F} si existe un polinomio no nulo $f(x) \in \mathbb{F}[x]$ tal que f(a) = 0. En caso contrario, el elemento se dice trascendente.

La extensión $\mathbb{K}|\mathbb{F}$ se dice algebraica si todos los elementos de \mathbb{K} son algebraicos sobre \mathbb{F} . En caso contrario, se dice trascendente.

Dada una extensión de cuerpos $\mathbb{K}|\mathbb{F}$, un elemento $a \in \mathbb{K}$ se dice algebraico sobre \mathbb{F} si existe un polinomio no nulo $f(x) \in \mathbb{F}[x]$ tal que f(a) = 0. En caso contrario, el elemento se dice trascendente.

La extensión $\mathbb{K}|\mathbb{F}$ se dice algebraica si todos los elementos de \mathbb{K} son algebraicos sobre \mathbb{F} . En caso contrario, se dice trascendente.

- Teorema -

Sean $\mathbb{K}|\mathbb{F}$ una extensión y $a\in\mathbb{K}$ un elemento algebraico sobre \mathbb{F} . Entonces:

- 1. Existe un único polinomio mónico irreducible $p(x) \in \mathbb{F}[x]$ tal que p(a) = 0.
- 2. Si $g(x) \in \mathbb{F}[x]$, entonces g(a) = 0 si y sólo si p(x)|g(x) en $\mathbb{F}[x]$.
- 3. $\mathbb{F}(a) = \mathbb{F}[a] = \{f(a) \mid f(x) \in \mathbb{F}[x]\}$. Además, todo elemento de $\mathbb{F}(a)$ admite una expresión única de la forma r(a), con r = 0 o con $\operatorname{gr}(r) < \operatorname{gr}(p)$. Así pues, si $n = \operatorname{gr}(f)$, el conjunto $\{1, a, \ldots, a^{n-1}\}$ es una \mathbb{F} -base de $\mathbb{F}(a)$.

Dados un cuerpo \mathbb{F} y un polinomio $f(x) \in \mathbb{F}[x]$, se llama cuerpo de descomposición de f(x) sobre \mathbb{F} a un cuerpo \mathbb{K} extensión de \mathbb{F} que cumple estas dos propiedades:

1. f(x) tiene todas las raíces en \mathbb{K} , por tanto, existen $\lambda \in \mathbb{K}$ y $a_1, \ldots, a_n \in \mathbb{K}$ tales que

$$f(x) = \lambda(x - a_1) \cdots (x - a_n) \in \mathbb{K}[x].$$

2. \mathbb{K} es la menor extensión de \mathbb{F} con esta propiedad, esto es,

$$\mathbb{K} = \mathbb{F}(a_1 \ldots, a_n).$$

- Teorema -

Para cada polinomio $f(x) \in \mathbb{F}[x]$ de grado $n \geq 1$ existe un cuerpo de descomposición sobre \mathbb{F} . Este cuerpo de descomposición es único salvo isomorfismo.

Anillos de polinomios sobre c. finitos

 \mathbb{K} representará un cuerpo finito de caracteristica p. Su cuerpo primo será \mathbb{Z}_p y si el grado de la extensión $[\mathbb{K} : \mathbb{Z}_p] = n$, entonces $|\mathbb{K}| = p^n$.

– Teorema –

Sea \mathbb{K} un cuerpo, no necesariamente finito, y G un subgrupo del grupo multiplicativo (\mathbb{K}^*,\cdot). Si G es finito, entonces G es un grupo cíclico. En particular, si \mathbb{K} es finito, (\mathbb{K}^*,\cdot) es un grupo cíclico.

Anillos de polinomios sobre c. finitos

 \mathbb{K} representará un cuerpo finito de caracteristica p. Su cuerpo primo será \mathbb{Z}_p y si el grado de la extensión $[\mathbb{K} : \mathbb{Z}_p] = n$, entonces $|\mathbb{K}| = p^n$.

- Teorema -

Sea \mathbb{K} un cuerpo, no necesariamente finito, y G un subgrupo del grupo multiplicativo (\mathbb{K}^* , ·). Si G es finito, entonces G es un grupo cíclico. En particular, si \mathbb{K} es finito, (\mathbb{K}^* , ·) es un grupo cíclico.

Si \mathbb{K} es un cuerpo finito, entonces $(\mathbb{K}^*,\cdot)\cong C_{p^{n-1}}$ con $|\mathbb{K}|=p^n$. Por otra parte,

$$(\mathbb{K},+)\cong C_p\oplus\cdots\oplus C_p,$$

por tanto, el grupo aditivo $(\mathbb{K},+)$ tiene exponente p.

- Pequeño teorema de Fermat -

Para todo $n \in \mathbb{Z}$ y p primo, $n^p \equiv n \mod p$. Si (n,p) = 1, entonces $n^{p-1} \equiv 1 \mod p$.

Si \mathbb{K} es un cuerpo finito, entonces $(\mathbb{K}^*,\cdot)\cong C_{p^{n-1}}$ con $|\mathbb{K}|=p^n$. Por otra parte,

$$(\mathbb{K},+)\cong C_p\oplus\cdots\oplus C_p,$$

por tanto, el grupo aditivo $(\mathbb{K},+)$ tiene exponente p.

Pequeño teorema de Fermat -

Para todo $n \in \mathbb{Z}$ y p primo, $n^p \equiv n \mod p$. Si (n,p) = 1, entonces $n^{p-1} \equiv 1 \mod p$.

- Teorema del elemento primitivo -

Sean \mathbb{F} un cuerpo finito y $\mathbb{K}|\mathbb{F}$ una extensión finita. Entonces la extensión es simple, es decir, existe un elemento $u \in \mathbb{K}$ tal que $\mathbb{K} = \mathbb{F}(u)$.

Si u es un generador del grupo multiplicativo \mathbb{K}^* , esto es, $\mathbb{K}^* = \langle u \rangle$, entonces $\mathbb{K} = \mathbb{Z}_p(u) = \mathbb{F}(u)$ para cualquier cuerpo intermedio $\mathbb{Z}_p \leq \mathbb{F} \leq \mathbb{K}$. Sin embargo, el recíproco no es cierto, pues si $\mathbb{K} = \mathbb{Z}_p(u)$, no necesariamente, $\mathbb{K}^* = \langle u \rangle$.

Teorema del elemento primitivo –

Sean \mathbb{F} un cuerpo finito y $\mathbb{K}|\mathbb{F}$ una extensión finita. Entonces la extensión es simple, es decir, existe un elemento $u \in \mathbb{K}$ tal que $\mathbb{K} = \mathbb{F}(u)$.

Si u es un generador del grupo multiplicativo \mathbb{K}^* , esto es, $\mathbb{K}^* = \langle u \rangle$, entonces $\mathbb{K} = \mathbb{Z}_p(u) = \mathbb{F}(u)$ para cualquier cuerpo intermedio $\mathbb{Z}_p \leq \mathbb{F} \leq \mathbb{K}$. Sin embargo, el recíproco no es cierto, pues si $\mathbb{K} = \mathbb{Z}_p(u)$, no necesariamente, $\mathbb{K}^* = \langle u \rangle$.

- Proposición -

Sea $\mathbb K$ un cuerpo con característica p diferente de cero. Si $r\geq 1$, entonces la aplicación

$$\varphi: \mathbb{K} \longrightarrow \mathbb{K}$$
$$a \longrightarrow a^{p^r}$$

es un \mathbb{Z}_p -homomorfismo de \mathbb{K} en \mathbb{K} . Si \mathbb{K} es finito, entonces φ es un automorfismo de cuerpos.

– Teorema de existencia y unicidad de cuerpos finitos –

Si p>0 es primo y $n\geq 1$ es un número cualquiera, entonces existe un cuerpo $\mathbb K$ con orden $|\mathbb K|=p^n$. Si $\mathbb K_1$ y $\mathbb K_2$ son cuerpos y $|\mathbb K_1|=|\mathbb K_2|=p^n$, entonces $\mathbb K_1$ y $\mathbb K_2$ son $\mathbb Z_p$ isomorfos.

- Corolario -

Si \mathbb{K} es un cuerpo finito tal que $|\mathbb{K}| = p^n$ y \mathbb{F} es un subcuerpo de \mathbb{K} , entonces $x^{p^n} - x \in \mathbb{Z}_p[x] \subseteq \mathbb{F}[x]$ se escinde en \mathbb{K} , esto es, $x^{p^n} - x = \prod_{a \in \mathbb{K}} (x - a)$.

– Teorema de existencia y unicidad de cuerpos finitos –

Si p>0 es primo y $n\geq 1$ es un número cualquiera, entonces existe un cuerpo $\mathbb K$ con orden $|\mathbb K|=p^n$. Si $\mathbb K_1$ y $\mathbb K_2$ son cuerpos y $|\mathbb K_1|=|\mathbb K_2|=p^n$, entonces $\mathbb K_1$ y $\mathbb K_2$ son $\mathbb Z_p$ isomorfos.

- Corolario -

Si \mathbb{K} es un cuerpo finito tal que $|\mathbb{K}| = p^n$ y \mathbb{F} es un subcuerpo de \mathbb{K} , entonces $x^{p^n} - x \in \mathbb{Z}_p[x] \subseteq \mathbb{F}[x]$ se escinde en \mathbb{K} , esto es, $x^{p^n} - x = \prod_{a \in \mathbb{K}} (x - a)$.

Introducción a la Teoría de Galois

Determinaremos ahora el grupo de \mathbb{F} automorfismos de una extensión $\mathbb{K}|\mathbb{F}$ de
cuerpos finitos. Este grupo se conoce como grupo de Galois de la extensión $\mathbb{K}|\mathbb{F}$.

Un polinomio irreducible $f(x) \in \mathbb{F}[x]$ se dice separable sobre \mathbb{F} si todas las raíces de f(x) en un cuerpo de descomposición \mathbb{K} sobre \mathbb{F} son simples. En caso contrario, el polinomio se dice inseparable.

Sea $\mathbb{K}|\mathbb{F}$ una extensión algebraica. Un elemento $a\in\mathbb{K}$ se dice separable sobre \mathbb{F} si su polinomio irreducible asociado es separable sobre \mathbb{F} . La extensión $\mathbb{K}|\mathbb{F}$ se dice separable si todo elemento $a\in\mathbb{K}$ es separable sobre \mathbb{F} .

Un polinomio irreducible $f(x) \in \mathbb{F}[x]$ se dice separable sobre \mathbb{F} si todas las raíces de f(x) en un cuerpo de descomposición \mathbb{K} sobre \mathbb{F} son simples. En caso contrario, el polinomio se dice inseparable.

Sea $\mathbb{K}|\mathbb{F}$ una extensión algebraica. Un elemento $a\in\mathbb{K}$ se dice separable sobre \mathbb{F} si su polinomio irreducible asociado es separable sobre \mathbb{F} . La extensión $\mathbb{K}|\mathbb{F}$ se dice separable si todo elemento $a\in\mathbb{K}$ es separable sobre \mathbb{F} .

- Teorema (Automorfismo de Frobenius) -

Sea \mathbb{K} un cuerpo finito. Entonces \mathbb{K} es una extensión separable de \mathbb{Z}_p y, por tanto, de cualquier \mathbb{F} con $\mathbb{Z}_p \subseteq \mathbb{F} \subseteq \mathbb{K}$. El grupo de \mathbb{F} -automorfismos de \mathbb{K} , $Aut_{\mathbb{F}}(\mathbb{K})$, es un grupo cíclico generado por el automorfismo de Frobenius $\phi(a) = a^q \operatorname{con} q = |\mathbb{F}|$. El orden de ϕ es $n = [\mathbb{K} : \mathbb{F}]$.

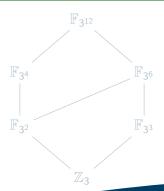
- Corolario -

Sea f un polinomio irreducible de grado n en $\mathbb{F}_q[x]$. El cuerpo de descomposición de f sobre \mathbb{F}_q es $\mathbb{K} = \mathbb{F}_{q^n}$.

Subcuerpos, traza y norma. Bases

Teorema del subcuerpo –

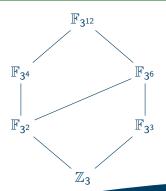
Sean \mathbb{K} y \mathbb{F} cuerpos finitos tales que $|\mathbb{K}|=p^n$ y $|\mathbb{F}|=p^m$. Entonces \mathbb{F} es un subcuerpo de \mathbb{K} si y sólo si m|n.



Subcuerpos, traza y norma. Bases

Teorema del subcuerpo –

Sean \mathbb{K} y \mathbb{F} cuerpos finitos tales que $|\mathbb{K}|=p^n$ y $|\mathbb{F}|=p^m$. Entonces \mathbb{F} es un subcuerpo de \mathbb{K} si y sólo si m|n.



- Corolario -

- 1. Sean \mathbb{K} un cuerpo finito tal que $|\mathbb{K}| = q = p^m$ y $n \ge 1$ un número natural. Entonces, existe una extensión simple de \mathbb{K} , $\mathbb{K}(a)$, con $|\mathbb{K}(a):\mathbb{K}| = n$.
- 2. Si \mathbb{K}_1 y \mathbb{K}_2 son extensiones de \mathbb{K} y $[\mathbb{K}_1 : \mathbb{K}] = n = [\mathbb{K}_2 : \mathbb{K}]$, entonces \mathbb{K}_1 y \mathbb{K}_2 son \mathbb{K} -isomorfas.
- 3. Para todo natural $n \ge 1$ existe un polinomio irreducible de grado n sobre \mathbb{K} .

Sean $\mathbb{F}=\mathbb{F}_q$ un cuerpo finito y $\mathbb{K}=\mathbb{F}_{q^n}$ una extensión suya. Para cada elemento $a\in\mathbb{K}$, la traza de a, $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ se define como

$$\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a) = a + a^q + \cdots + a^{q^{n-1}}.$$

Si \mathbb{F} es el cuerpo primo de \mathbb{K} , entonces $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ se llama traza absoluta de a y se denota por $\mathrm{Tr}_{\mathbb{K}}(a)$.

Dado un elemento $a \in \mathbb{K}$, su traza es la suma de todas las imágenes de a por las diferentes potencias del automorfismo de Frobenius, ϕ . Por ello, $\phi(\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)) = \mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ para todo $a \in \mathbb{K}$. Y entonces, $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a) \in \mathbb{F}$ para todo $a \in \mathbb{K}$.

Sean $\mathbb{F}=\mathbb{F}_q$ un cuerpo finito y $\mathbb{K}=\mathbb{F}_{q^n}$ una extensión suya. Para cada elemento $a\in\mathbb{K}$, la traza de a, $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ se define como

$$\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a) = a + a^q + \cdots + a^{q^{n-1}}.$$

Si \mathbb{F} es el cuerpo primo de \mathbb{K} , entonces $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ se llama traza absoluta de a y se denota por $\mathrm{Tr}_{\mathbb{K}}(a)$.

Dado un elemento $a \in \mathbb{K}$, su traza es la suma de todas las imágenes de a por las diferentes potencias del automorfismo de Frobenius, ϕ . Por ello, $\phi(\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)) = \mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ para todo $a \in \mathbb{K}$. Y entonces, $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(a) \in \mathbb{F}$ para todo $a \in \mathbb{K}$.

– Teorema (propiedades de la traza) –

Sea $\mathbb{F}=\mathbb{F}_q$ y sea $\mathbb{K}=\mathbb{F}_{q^n}$ una extensión suya. La función traza satisface las siguientes propiedades:

- 1. $\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a+b) = \operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a) + \operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(b)$ para todo $a, b \in \mathbb{K}$.
- 2. $\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(ca) = c\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ para todo $c \in \mathbb{F}$ y $a \in \mathbb{K}$.
- 3. $\mathrm{Tr}_{\mathbb{K}|\mathbb{F}}$ es una transformación lineal suprayectiva de \mathbb{K} en \mathbb{F}
- 4. $\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a) = na$ para todo $a \in \mathbb{F}$.
- 5. $\operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a^q) = \operatorname{Tr}_{\mathbb{K}|\mathbb{F}}(a)$ para todo $a \in \mathbb{K}$.

– Teorema –

Sea $\mathbb F$ un cuerpo finito. Sean $\mathbb K$ una extensión finita de $\mathbb F$ y $\mathbb L$ una extensión finita de $\mathbb K$. Entonces, para todo $a\in\mathbb L$,

$$\mathrm{Tr}_{\mathbb{L}|\mathbb{F}}(a) = \mathrm{Tr}_{\mathbb{K}|\mathbb{F}}(\mathrm{Tr}_{\mathbb{L}|\mathbb{K}}(a)).$$

Sea $\mathbb{F}=\mathbb{F}_q$ un cuerpo finito y sea $\mathbb{K}=\mathbb{F}_{q^n}$ una extensión suya. La norma $\mathrm{N}_{\mathbb{K}|\mathbb{F}}(a)$ de un elemento $a\in\mathbb{K}$ sobre \mathbb{F} se define como

$$N_{\mathbb{K}|\mathbb{F}}(a) = a \cdot a^q \cdot \cdots \cdot a^{q^{n-1}}.$$

La imagen de $N_{\mathbb{K}|\mathbb{F}}(a)$, para todo $a \in \mathbb{K}$ es invariante por el automorfismo de Frobenius. Por ello, $N_{\mathbb{K}|\mathbb{F}}(a) \in \mathbb{F}$ para todo $a \in \mathbb{K}$.

Sea $\mathbb{F}=\mathbb{F}_q$ un cuerpo finito y sea $\mathbb{K}=\mathbb{F}_{q^n}$ una extensión suya. La norma $\mathrm{N}_{\mathbb{K}|\mathbb{F}}(a)$ de un elemento $a\in\mathbb{K}$ sobre \mathbb{F} se define como

$$N_{\mathbb{K}|\mathbb{F}}(a) = a \cdot a^q \cdot \cdots \cdot a^{q^{n-1}}.$$

La imagen de $N_{\mathbb{K}|\mathbb{F}}(a)$, para todo $a \in \mathbb{K}$ es invariante por el automorfismo de Frobenius. Por ello, $N_{\mathbb{K}|\mathbb{F}}(a) \in \mathbb{F}$ para todo $a \in \mathbb{K}$.

- Teorema (propiedades de la norma) -

Sea $\mathbb{F} = \mathbb{F}_q$ y sea $\mathbb{K} = \mathbb{F}_{q^n}$ una extensión suya. La función norma satisface las siguientes propiedades:

- 1. $N_{\mathbb{K}|\mathbb{F}}(ab) = N_{\mathbb{K}|\mathbb{F}}(a)N_{\mathbb{K}|\mathbb{F}}(b)$ para todo $a, b \in \mathbb{K}$.
- 2. $N_{\mathbb{K}|\mathbb{F}}$ es una transformación lineal suprayectiva de \mathbb{K} en \mathbb{F} y de \mathbb{K}^* en \mathbb{F}^* .
- 3. $N_{\mathbb{K}|\mathbb{F}}(a) = a^n$ para todo $a \in \mathbb{F}$.
- 4. $N_{\mathbb{K}|\mathbb{F}}(a^q) = N_{\mathbb{K}|\mathbb{F}}(a)$ para todo $a \in \mathbb{K}$.

- Teorema -

Sea $\mathbb F$ un cuerpo finito. Sean $\mathbb K$ una extensión finita de $\mathbb F$ y $\mathbb L$ una extensión finita de $\mathbb K$. Entonces, para todo $a\in \mathbb L$,

$$N_{\mathbb{L}|\mathbb{F}}(a) = N_{\mathbb{K}|\mathbb{F}}(N_{\mathbb{L}|\mathbb{K}}(a)).$$

Nota:

Sea $\mathbb F$ un cuerpo finito y $\mathbb K$ una extensión finita de $\mathbb F$. Si consideramos para cada $\alpha\in\mathbb K$ el endomorfismo de $\mathbb F$ -espacios vectoriales

$$x \in \mathbb{K} \mapsto \alpha x$$

entonces la norma y la traza son los dos coeficientes correspondientes del polinomio característico del endomorfismo.

Sea $\mathbb{F} = \mathbb{F}_q$ y sea $\mathbb{K} = \mathbb{F}_{q^n}$ una extensión suya. Una \mathbb{F} -base de \mathbb{K} de la forma $\{a, a^q \dots, a^{q^{n-1}}\}$, que consiste en un elemento a adecuado y todos sus \mathbb{F} -conjugados, recibe el nombre de base normal de \mathbb{K} sobre \mathbb{F} .

– Teorema –

Sea $\mathbb{F} = \mathbb{F}_q$ un cuerpo finito y sea $\mathbb{K} = \mathbb{F}_{q^n}$ una extensión suya. El conjunto $\{a_1, \ldots, a_n\}$ es una \mathbb{F} -base de \mathbb{K} si y sólo si

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_1^q & a_2^q & \cdots & a_n^q \\ \vdots & \vdots & & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_n^{q^{n-1}} \end{vmatrix} \neq 0$$

Sea $\mathbb{F} = \mathbb{F}_q$ y sea $\mathbb{K} = \mathbb{F}_{q^n}$ una extensión suya. Una \mathbb{F} -base de \mathbb{K} de la forma $\{a, a^q \dots, a^{q^{n-1}}\}$, que consiste en un elemento a adecuado y todos sus \mathbb{F} -conjugados, recibe el nombre de base normal de \mathbb{K} sobre \mathbb{F} .

- Teorema -

Sea $\mathbb{F} = \mathbb{F}_q$ un cuerpo finito y sea $\mathbb{K} = \mathbb{F}_{q^n}$ una extensión suya. El conjunto $\{a_1, \ldots, a_n\}$ es una \mathbb{F} -base de \mathbb{K} si y sólo si

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_1^q & a_2^q & \cdots & a_n^q \\ \vdots & \vdots & & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_n^{q^{n-1}} \end{vmatrix} \neq 0$$

Estructura multiplicativa

Sea \mathbb{K} un cuerpo de característica $p \geq 0$ y sea n un número natural. Se llama n-simo cuerpo ciclotómico sobre \mathbb{K} , denotado por $\mathbb{K}^{(n)}$, al cuerpo de descomposición sobre \mathbb{K} del polinomio $x^n-1 \in \mathbb{K}[x]$. El conjunto de raíces de ese polinomio en $\mathbb{K}^{(n)}$ se llama conjunto de n-raíces de la unidad sobre \mathbb{K} y se denota por $E^{(n)}$.

- 1. $E^{(n)}$ es un subgrupo cíclico finito del grupo multiplicativo $\mathbb{K}^{(n)}\setminus\{0\}$. Si $p\nmid n$ (en particular si p=0), entonces $E^{(n)}$ es un grupo cíclico de orden n.
- 2. Si $E^{(n)} = \langle \xi \rangle$, entonces $\mathbb{K}^{(n)} = \mathbb{K}(\xi)$.
- 3. Si $n = mp^a \operatorname{con}(m, p) = 1$, entonces se tiene que $E^{(m)} = E^{(n)} \vee \mathbb{K}^{(m)} = \mathbb{K}^{(n)}$.

Sea \mathbb{K} un cuerpo de característica $p \geq 0$. Sea $n \in \mathbb{N}$ tal que (n,p) = 1. Se llama n-raíz primitiva de la unidad, ξ , a cualquier generador de $E^{(n)}$. El polinomio que tiene como raíces todas las n-raíces primitivas de la unidad recibe el nombre de n-simo polinomio ciclotómico y se representa por $\phi_n(x)$.

Si ξ es una n-raíz primitiva de la unidad, entonces $\xi^n=1$ mientras que $\xi^m \neq 1$ para cualquier m < n. Por otra parte, es fácil ver que ξ^s es n-raíz primitiva para todo s relativamente primo con n. Así pues, el n-simo polinomio ciclotómico se puede escribir como

$$\phi_n(x) = \prod_{(s,n)=1,s < n} (x - \xi^s) \in \mathbb{K}^{(n)}[x].$$

Por tanto, si φ representa la función de Euler, el grado de $\phi_n(x)$ será $\varphi(n)$.

Sea \mathbb{K} un cuerpo de característica $p \geq 0$. Sea $n \in \mathbb{N}$ tal que (n,p)=1. Se llama n-raíz primitiva de la unidad, ξ , a cualquier generador de $E^{(n)}$. El polinomio que tiene como raíces todas las n-raíces primitivas de la unidad recibe el nombre de n-simo polinomio ciclotómico y se representa por $\phi_n(x)$.

Si ξ es una n-raíz primitiva de la unidad, entonces $\xi^n=1$ mientras que $\xi^m \neq 1$ para cualquier m < n. Por otra parte, es fácil ver que ξ^s es n-raíz primitiva para todo s relativamente primo con n. Así pues, el n-simo polinomio ciclotómico se puede escribir como

$$\phi_n(x) = \prod_{(s,n)=1,s < n} (x - \xi^s) \in \mathbb{K}^{(n)}[x].$$

Por tanto, si φ representa la función de Euler, el grado de $\phi_n(x)$ será $\varphi(n)$.

Sea $\mathbb{K} = \mathbb{Q}$ y n = 4. En ese caso,

$$E^{(4)} = \{1, -1, i, -i\} = \langle i \rangle = \langle -i = i^3 \rangle.$$

Así pues, las 4-raíces primitivas de la unidad son $\{i,-i\}$ y el cuarto polinomio ciclotómico

$$\phi_4(x) = (x - i)(x + i) = x^2 + 1.$$

- 1. $x^n 1 = \prod_{d|n} \phi_d(x)$.
- 2. Si \mathbb{F} es el cuerpo primo de \mathbb{K} , entonces $\phi_n(x) \in \mathbb{F}[x]$. Si la característica de \mathbb{F} es cero, entonces $\phi_n(x) \in \mathbb{Z}[x]$.

La proposición anterior permite calcular los polinomios ciclotómicos de forma recursiva. Es fácil ver que $\phi_1(x)=x-1$ y que $\phi_2(x)=x+1$, pues 1 y -1 son, respectivamente, 1-raíces y 2-raíces primitivas de la unidad. Ahora bien, utilizando la proposición anterior podemos ver que

$$\phi_3(x) = \frac{x^3 - 1}{\phi_1(x)} = \frac{x^3 - 1}{x - 1} = x^2 + x + 1,$$

$$\phi_4(x) = \frac{x^4 - 1}{\phi_1(x)\phi_2(x)} = \frac{x^4 - 1}{(x - 1)(x + 1)} = x^2 + 1.$$

Y así sucesivamente.

Sea $\mathbb{K} = \mathbb{F}_q$. Entonces \mathbb{K} es el (q-1)-simo cuerpo ciclotómico sobre cualquier subcuerpo suyo \mathbb{F} .

- Proposición -

Sea $d \neq n$ un divisor de n. Entonces, el n-simo polinomio ciclotómico $\phi_n(x)$ divide al cociente $\frac{x^n-1}{x^d-1}$ en $\Pi[x]$, donde Π representa el cuerpo primo.

Sea $\mathbb{K} = \mathbb{F}_q$. Entonces \mathbb{K} es el (q-1)-simo cuerpo ciclotómico sobre cualquier subcuerpo suyo \mathbb{F} .

Proposición –

Sea $d \neq n$ un divisor de n. Entonces, el n-simo polinomio ciclotómico $\phi_n(x)$ divide al cociente $\frac{x^n-1}{x^d-1}$ en $\Pi[x]$, donde Π representa el cuerpo primo.

- Teorema -

Sea $\mathbb{K} = \mathbb{F}_q$. Entonces $\phi_n(x)$ se factoriza como producto de $\frac{\phi(n)}{d}$ factores irreducibles del mismo grado d. Además, d es el menor nmero natural que cumple $q^d \equiv 1 \pmod{n}$. Si la característica de \mathbb{K} es cero, entonces $\phi_n(x)$ es irreducible en $\mathbb{Q}[x]$ y, por tanto, en $\mathbb{Z}[x]$.

Ejemplo:

Sea $\phi_{12}(x)=x^4-x^2+1$ el 12-polinomio ciclotómico. Por el resultado anterior, este polinomio es irreducible en $\mathbb{Q}[x]$ y, por tanto, sobre $\mathbb{Z}[x]$. Si ahora trabajamos sobre $\mathbb{F}_7[x]$, puesto que $7^2\equiv 1 \pmod{12}$, el polinomio $\phi_{12}(x)$ se factoriza como producto de dos polinomios irreducibles de grado 2. Esto es,

$$\phi_{12}(x) = x^4 - x^2 + 1 = (x^2 + 2)(x^2 + 4).$$

Lo mismo sucede sobre $\mathbb{F}_{11}[x]$. En este caso, $11^2 \equiv 1 \pmod{12}$ y entonces

$$\phi_{12}(x) = x^4 - x^2 + 1 = (x^2 + 6x + 1)(x^2 + 5x + 1).$$

Por Itimo, puesto que \mathbb{F}_{13} es cuerpo de descomposición del polinomio $x^{12}-1$, el polinomio $\phi_{12}(x)$ deberá escindirse sobre él y factorizarse como producto de cuatro polinomios de grado uno. Esto es,

$$\phi_{12}(x) = x^4 - x^2 + 1 = (x+2)(x+6)(x+7)(x+11).$$

