
AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

History

V.D. Goppa (1977) Codes associated with divisors. P.
Information Transmission, 13, 22-26.
...
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Tsfasman, Vlăduţ and Zink (1982) Modular curves,
Shimura curves and Goppa codes better that Gilbert-
Varshamov Bound. Math. Nachrichten, 109, 21-28.
... algebraic curves ↔ algebraic function fields

Høholdt, van Lint, Pellikaan (1998) Algebraic geome-
try codes, in Handbook of Coding Theory, Elsevier, 871-
961. Weight functions...

Mart́ınez, Munuera, Ruano Eds. (2008) Advances in
Algebraic Geometry Codes. World Scientific.

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 4 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Affine space, projective space

Algebraic Geometry codes are defined w.r.t. curves in the
affine and projective space. Let F be a field, the n-dimensional
affine space An(F) over F is just the vector space Fn

An(F) = {(x1, x2, . . . , xn) | xi ∈ F} .

Let x, x′ be two elements in Fn+1\{0}, they are equivalent x ≡
x′ if there is a λ ∈ F such that x = λx′. The n-dimensional
projective space Pn(F) over F is

Pn(F) = Fn+1/ ≡ .
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Affine space, projective space
Projective points

The equivalence class (projective point) containing x =
(x1, x2, . . . , xn+1) will be denoted by x = (x1 : x2 : . . . : xn+1)
(homogeneous coordinates). Thus projective points are 1 di-
mensional subespaces of An+1(F).

If P ∈ Pn(F) and P = (x1 : x2 : . . . : xn+1 = 0) then it is
called point at infinity, those points not at infinity are called
affine points and each of them can be uniquely represented as
P = (x1 : x2 : . . . : xn+1 = 1).

Any point at infinity can be uniquely represented as with a 1
at its right-most non-zero position P = (x1 : x2 : . . . : xi =
1 : 0 : . . . : 0).
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Affine space, projective space
Projective points

The projective line and the projective plane See the blackboard

Exercise

Let F = Fq, prove that

Pn(F) contains
∑n

i=0 qi points.

Pn(F) contains
∑n−1

i=0 qi points at infinity.

Note: Please, try even the trivial exercises.
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Affine space, projective space
Homogenization

Let F[x1, x2, . . . , xn] be the set of polynomials with coefficients
from F. A polynomial f ∈ F[x1, x2, . . . , xn] is homogeneous
of degree d if every term of f is of degree d .

If f ∈ F[x1, x2, . . . , xn] is not homogeneous and f has maxi-
mum degree d we can homogenizate it adding a variable as
follows

f H(x1, x2, . . . , xn, xn+1) = xd
n+1f

(
x1

xn+1
,

x2

xn+1
, . . . ,

xn

xn+1

)
.
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Affine space, projective space
Homogenization

Clearly f H(x1, x2, . . . , xn, 1) = f (x1, x2, . . . , xn). More-
over, if we start with and homogeneous polynomial
g(x1, x2, . . . , xn, xn+1) of degree d ,

g(x1, x2, . . . , xn, 1) = f (x1, x2, . . . , xn),

them f has degree k ≤ d and g = xd−k
n+1 f H .

Thus there is a one-to-one correspondence between polyno-
mials in n variables of degree d or less and homogeneous
polynomials of degree d in n + 1 variables.
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Affine space, projective space
Homogenization

Theorem

Let g(x1, x2, . . . , xn, xn+1) be an homogeneous polynomial of
degree d over F.

1 If α ∈ F then g(αx1, αx2, . . . , αxn, αxn+1) =
αdg(x1, x2, . . . , xn, xn+1).

2 f (x1, . . . , xn) = 0 if and only if f H(x1, . . . , xn, 1) = 0.

3 If (x1 : x2 : . . . : xn+1) = (x ′1 : x ′2 : . . . : x ′n+1) then
g(x1, . . . , xn, xn+1) = 0 iff g(x ′1, . . . , x

′
n, x
′
n+1) = 0.
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Affine space, projective space
Homogenization

Theorem above implies that the zeros of f in An(F) corre-
spond precisely to affine points in Pn(F) that are zeros of
f H and the concept of a point of Pn(F) being a zero of a
homogeneous polynomial is well defined.
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Some classical codes
Generalized Reed-Solomon codes

For k ≥ 0 let Pk ⊂ Fq[x ] be the set of all polynomials of
degree less than k. Let α be a primitive n-th root of unity in
Fq (n = q − 1), then the code

C =
{(

f (1), f (α), . . . , f (αq−2)
)
| f ∈ Pk

}
(1)

is the narrow-sense [n, k, n − k + 1] RS code over Fq.

RS codes are BCH codes See the blackboard

C can be extended to a [n + 1, k, n − k + 2] code given by

Ĉ =
{(

f (1), f (α), . . . , f (αq−2), f (0)
)
| f ∈ Pk

}
(2)
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Some classical codes
Generalized Reed-Solomon codes

Exercise

Show that if f ∈ Pk with k < q then∑
β∈Fq

f (β) = 0.

Clue: q > 2
∑

β∈Fq
β = 0.

Thus Ĉ results from adding an overall parity check to a RS
code and the minimum weight increases.
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Show that if f ∈ Pk with k < q then∑
β∈Fq
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Bézout and Plücker
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Some classical codes
Generalized Reed-Solomon codes

Let n be an integer 1 ≤ n ≤ q, and γ = (γ0, . . . , γn−1) a
n-tuple of distinct elements of Fq, and v = (v0, . . . , vn−1)
a n-tuple of non-zero elements of F∗q. Let k be an integer
1 ≤ k ≤ n , then

GRSk(γ, v) = {(v0f (γ0), . . . , vn−1f (γn−1)) | f ∈ Pk} (3)

are the Generalized Reed-Solomon codes over Fq.

GRS codes are [n, k , n − k + 1] MDS codes See the blackboard

Note that both, the narrow sense RS code and the extended
RS code can be seen as Generalized Reed-Solomon codes.
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Some classical codes
Generalized Reed-Solomon codes

Since there is a one-to-one correspondence between Lk−1 the
homogeneous polynomials in two variables of degree k−1 and
the non-zero polynomials of Pk , let Pi = (γi : 1) ∈ P1(Fq),
we can redefine the code GRSk(γ, v) as follows

{(v0g(P0), . . . , vn−1g(Pn−1)) | g ∈ Lk−1} . (4)
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Some classical codes
Goppa codes and BCH codes

Let t = ordq(n) and β a primitive n-th root of unity in Fqt .
Choose δ > 1 and let C the narrow sense BCH code of length
n and designed distance δ, i.e.

c(x) ∈ F[x ]/(xn − 1) is in C ⇔ c(βi ) = 0, 1 ≤ j ≤ δ − 1.

Note that

(xn − 1)
n−1∑
i=0

ci

x − β−i
=

n−1∑
i=0

ci

n−1∑
l=0

x l(β−i )n−1−l

=
n−1∑
l=0

x l
n−1∑
i=0

ci (β
l+1)i .

(5)
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Some classical codes
Goppa codes and BCH codes

Let t = ordq(n) and β a primitive n-th root of unity in Fqt .
Choose δ > 1 and let C the narrow sense BCH code of length
n and designed distance δ, i.e.

c(x) ∈ F[x ]/(xn − 1) is in C ⇔ c(βi ) = 0, 1 ≤ j ≤ δ − 1.

Note that

(xn − 1)
n−1∑
i=0

ci

x − β−i
=

n−1∑
i=0

ci

n−1∑
l=0

x l(β−i )n−1−l

=
n−1∑
l=0

x l
n−1∑
i=0

ci (β
l+1)i .

(5)

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 16 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Some classical codes
Goppa codes and BCH codes

Because c(βl) = 0, 1 ≤ l ≤ δ−2, LHS in (5) is a polynomial
with lowest degree term al least δ−1, thus RHS can be written
as p(x)xδ−1 with p(x) ∈ Fqt [x ].

c(x) ∈ C ⇔
n−1∑
i=0

ci

x − β−i
=

p(x)xδ−1

xn − 1

⇔
n−1∑
i=0

ci

x − β−i
≡ 0 mod xδ−1.

(6)

This equivalence means that if the LHS is written as a rational
function a(x)

b(x) then the numerator a(x) will be a multiple of

xδ−1 (b(x) = xn − 1).
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Some classical codes
Goppa codes

Following the discussion above, fix an extension Fqt of Fq

(t = ordq(n) no longer needed). Let

L = {γ0, γ1, . . . , γn−1} ⊂ Fqt

and let G (x) ∈ Fqt [x ] with G (γi ) 6= 0 where γi ∈ L.

The Goppa code Γ(L,G ) is the set of vectors (c0, . . . , cn−1) ∈
Fn

q such that

n−1∑
i=0

ci

x − γi
≡ 0 mod G (x). (7)
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Some classical codes
Goppa codes

This again means that if the LHS is written as a rational
function then the numerator is a multiple of G (x) the Goppa
polynomial. Note that G (γi ) 6= 0 guarantees that x − γi is
invertible in Fqt [x ]/ (G (x)).
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Some classical codes
Goppa codes. Parity check matrix.

Since

1

x − γi
≡ − 1

G (γi )

G (x)− G (γi )

x − γi
mod G (x) (8)

Substituting in eqn. (7) we have (c0, . . . , cn−1) ∈ Γ(L,G ) iff

n−1∑
i=0

ci
G (x)− G (γi )

x − γi
G (γi )

−1 ≡ 0 mod G (x) (9)
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Some classical codes
Goppa codes. Parity check matrix.

Suppose deg G (x) = w and

G (x) =
w∑

j=0

gjx
j , gj ∈ Fqt .

G (x)− G (γi )

x − γi
G (γi )

−1 = G (γi )
−1

w∑
j=0

gj

j−1∑
k=0

xkγj−1−k
i

= G (γi )
−1

w∑
k=0

xk

 w∑
j=k+1

gjγ
j−1−k
i

 .

(10)

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 21 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Some classical codes
Goppa codes. Parity check matrix.

From (9) setting the coefficients of xk to 0 in the order k =
w − 1,w − 2, . . . , 0 we have that c ∈ Γ(L,G ) if HcT = 0,
where H is

h0gw . . . hn−1gw

h0(gw−1 + gwγ0) . . . hn−1(gw−1 + gwγn−1)
...

...
...

h0
∑w

j=1 gjγ
j−1
0 . . . hn−1

∑w
j=1 gjγ

j−1
n−1

 (11)

with hi = G (γi )
−1.
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Some classical codes
Goppa codes. Parity check matrix.

H can be reduced to the matrix H ′
G (γ0)−1 . . . G (γn−1)−1

G (γ0)−1γ0 . . . G (γn−1)−1γn−1
...

...
...

G (γ0)−1γw−1
0 . . . G (γn−1)−1γw

n−1

 (12)

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 23 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Note that the parity check matrix H ′ is the genera-
tor matrix of the GRSw (γ, v) over Fqt where v =
(G (γ0)−1, . . . ,G (γn−1)−1), i.e. we have that

Γ(L,G ) = GRSw (γ, v)⊥|Fq .

Since GRSw (γ, v)⊥ is also a GRS code then classical Goppa
codes are subfield subcodes of GRS codes.
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Theorem

The Goppa code Γ(L,G ) with deg(G (x)) = w is an [n, k , d ]
code where k ≥ n − wt and d ≥ w + 1.
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Proof.

The entries of H ′ are in Fqt . By choosing a base of Fqt |Fq each
element of Fqt can be represented by a t × 1 column vector,
and if we replace each entry in H ′ by the corresponding vector
we get a matrix H ′′ with entries in Fq such that H ′′cT = 0,
c ∈ Γ(L,G ).
The rows of H ′′ may be independent thus k ≥ n − wt. If
0 6= c ∈ Γ(L,G ) has weight ≤ w then when the LHS of
(7) is written as a rational function the numerator has degree
≤ w−1, but it has to be a multiple of G (x), which contradicts
the fact deg(G (x)) = w .

Up to here the first session (28/11)
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Some classical codes
Goppa code. Another formulation: residues.

Let R be the vector space of all the rational functions f with
coefficients in Fqt such that

1 f = a(x)
b(x) where a, b are relatively prime.

2 The zeros of a(x) include the zeros of G (x) with at
least the same multiplicity.

3 The only possible poles of f (i.e. the zeros of b(x)) are
γ0, γ1, . . . , γn−1 with multiplicity at most one.

f ∈ R has a Laurent series expansion about γi

f =
∞∑

j=−1

fi (x − γi )
j (13)

where f−1 6= 0 if f has a pole at γi or f−1 = 0 otherwise.
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Some classical codes
Goppa code. Another formulation: residues.

The residue of f (x) at γi denoted as Resγi f is the coefficient
f−1 above. Let

CRes(G , γ) =
{(

Resγ0f , . . . ,Resγn−1f
)
| f ∈ R

}
(14)

Exercise

Show that CRes(G , γ)|Fq = Γ(L,G ).
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Some classical codes
Generalized Reed-Muller codes

Let m > 0, n = qm and {P1, . . . ,Pn} = Am(Fq). Let 0 ≤
r ≤ m(q − 1) and Fq[x1, . . . , xm]r the set of polynomials of
total degree r or less.

The r -th order generalized Reed-Muller code of length n = qm

is

Rq(r ,m) = {(f (P1), . . . , f (Pn)) | f ∈ Fq[x1, . . . , xm]r}
(15)
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Some classical codes
Generalized Reed-Muller codes

Note that since βq = β for all β ∈ Fq if we note
Fq[x1, . . . , xm]∗r the set of polynomials of total degree r or
less with no variable with exponent q or higher we have

Rq(r ,m) = {(f (P1), . . . , f (Pn)) | f ∈ Fq[x1, . . . , xm]∗r }
(16)

Fq[x1, . . . , xm]∗r is a vector space with a basis

B =

{
xe1

1 xe2
2 . . . xem

m | 0 ≤ ei < q,
m∑

i=0

ei ≤ r

}
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Bézout and Plücker
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Some classical codes
Generalized Reed-Muller codes

Clearlythe words {(f (P1), . . . , f (Pn)) | f ∈ B} spand the
code Rq(r ,m).

Exercise

Prove that {(f (P1), . . . , f (Pn)) | f ∈ B} are independent.

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 31 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Algebraic curves

An affine plane curve X is the set of affine points (x , y) ∈
A2(F) denoted as Xf (F) such that f (x , y) = 0, f ∈ F[x , y ].

A projective plane curve X is the set of projective points (x :
y : z) ∈ P2(F) denoted (also) as Xf (F) such that f (x , y , z) =
0, f ∈ F[x , y , z ] an homogeneous polynomial.

If f ∈ F[x , y ] then Xf H (F) is called the projective closure of
Xf (F) (i.e. we add the possible points at infinity).
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Algebraic curves

An affine plane curve X is the set of affine points (x , y) ∈
A2(F) denoted as Xf (F) such that f (x , y) = 0, f ∈ F[x , y ].

A projective plane curve X is the set of projective points (x :
y : z) ∈ P2(F) denoted (also) as Xf (F) such that f (x , y , z) =
0, f ∈ F[x , y , z ] an homogeneous polynomial.

If f ∈ F[x , y ] then Xf H (F) is called the projective closure of
Xf (F) (i.e. we add the possible points at infinity).

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 32 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Algebraic curves
Smooth curves

If f =
∑

i ,j aijx
iy j ∈ F[x , y ] the partial derivative fx of f w.r.t.

x is

fx =
∂f

∂x
=
∑
i ,j

iaijx
i−1y j .

The partial derivative fy of f w.r.t. y is defined analogously.

A point (x0, y0) of Xf (F) is singular if fx(x0, y0) = fy (x0, y0) =
0. A point of Xf (F) is nonsingular or simple if it is not singular.

A curve that has no singular point is called nonsingular, regular
or smooth. Analogous definitions hold for projective curves.
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Algebraic curves
Example 1: Fermat curve

The Fermat curve Fm(Fq) is a projective plane curve defined
by

f (x , y , z) = xm + ym + zm = 0.

fx = mxm−1, fy = mym−1, fz = mzm−1, thus it has no sin-
gular points if gcd(m, q) = 1.

Exercise

Find the three projective points of F3(F2).

Find the nine projective points of F3(F4).
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Bézout and Plücker
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Algebraic curves
Example 2: Hermitian curve

Let q = r 2 where r is a prime power. The Hermitian curve
Hr (Fq) is a projective plane curve defined by

f (x , y , z) = x r+1 − y r z − yz r = 0.

Since r is a multiple of the characteristic then Hr (Fq) is non
singular.

Exercise

Show that (0 : 1 : 0) is the only point at infinity of
Hr (Fq).

Find the eight affine points (x : y : 1) points of H2(F4).
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Bézout and Plücker
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Algebraic curves
Example 2: Hermitian curve

Theorem

There are r 3 affine (x : y : 1) points in Hr (Fq).
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Algebraic curves
Example 2: Hermitian curve

Theorem

There are r 3 affine (x : y : 1) points in Hr (Fq).

Proof.

z = 1 implies x r+1 = y r + y = Tr2(y) where Tr2 is the trace
map from Fr2 to Fr .
Tr2(y) is Fr -linear and surjective, so its kernel is a 1-dim. Fr -
subspace of Fr2 , thus has r values with Tr2(y) that leads to
r affine points on Hr (Fq) of type (0 : y : 1).

(Cont. ...)
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Algebraic curves
Example 2: Hermitian curve

Theorem

There are r 3 affine (x : y : 1) points in Hr (Fq).

Proof.

(Cont. ...)
If x ∈ Fr2 then x r+1 ∈ Fr , as r 2− 1 = (r + 1)(r − 1) and the
non zero elements of Fr in Fr2 are those satisfying βr−1 = 1.
When y is one of the r 2− r elements in Fr2 with Tr2(y) 6= 0,
there are r +1 solutions x ∈ Fr2 of Tr2(y) = x r+1. Thus there
are (r 2 − r)(r + 1) = r 3 − r more affine points on Hr (Fq),
and the theorem follows.
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Algebraic curves
Example 3: The Klein quartic

The Klein quartic K4(Fq) is a projective plane curve defined
by

f (x , y , z) = x3y + y 3z + z3x = 0.

Exercise

Find the three partial derivatives of f and show that if
char(Fq) = 3 then K4(Fq) is non singular.

If (x : y : z) is a singular point in K4(Fq) show that
x3y = −3y 3z , z3x = 9y 3z and 7y 3z = 0.

Show that if char(Fq) 6= 7 then K4(Fq) is non singular.
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Algebraic curves
Degree of a point

The degree of a point in a curve depends on the field under
consideration. Let q = pr (p prime) and m ≥ 1, the map
σq : Fqm → Fqm given by σq(α) = αq is an automorphism of
Fqm that fixes Fq (σq = σr

p where σp is the Frobenius map).

If P = (x , y) or P = (x : y : z) in A2(Fqm) or P2(Fqm)
denote by σq(P) = (σq(x), σq(y)) and σq(P) = (σq(x) :
σq(y) : σq(z)) respectively.

Exercise

Show that that σq(P) is well defined if P ∈ P2(Fq).

Show that if f ∈ Fq[x , y ] (or homogeneous in
Fq[x , y , z ]) then f (P) = 0 implies f (σq(P)) = 0
(P ∈ A2(Fqm) or P2(Fqm) respectively).
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Algebraic curves
Degree of a point

The degree of a point in a curve depends on the field under
consideration. Let q = pr (p prime) and m ≥ 1, the map
σq : Fqm → Fqm given by σq(α) = αq is an automorphism of
Fqm that fixes Fq (σq = σr

p where σp is the Frobenius map).

If P = (x , y) or P = (x : y : z) in A2(Fqm) or P2(Fqm)
denote by σq(P) = (σq(x), σq(y)) and σq(P) = (σq(x) :
σq(y) : σq(z)) respectively.

Exercise

Show that that σq(P) is well defined if P ∈ P2(Fq).

Show that if f ∈ Fq[x , y ] (or homogeneous in
Fq[x , y , z ]) then f (P) = 0 implies f (σq(P)) = 0
(P ∈ A2(Fqm) or P2(Fqm) respectively).

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 38 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Algebraic curves
Degree of a point

From exercise above if P ∈ Xf (Fqm) then
{
σi

q(P) | i ≥ 0
}
⊆

Xf (Fqm), and there are at most m distint points in the set
since σm

q = Id.

A point P on Xf (Fq) of degree m over Fq is a set of m
distinct points P = {P0, . . . ,Pm−1} with Pi ∈ Xf (Fqm) and
Pi = σi

q(P0). We will denote the degree of P over Fq as
deg(P). Notice that points of degree m over Fq are fixed by
σq just as the elements of Fq, that’s why they are cosidered
to be on Xf (Fq).

The points of degree one on Xf (Fq) are called rational points
or Fq-rational points.
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Algebraic curves
Example: Degree of points in a elliptic curve

Consider the elliptic curve defined by

f (x , y , z) = x3 + xz2 + z3 + y 2z + yz2 ∈ F2[x , y , z ].

A point at infinity satisfies z = 0, thus x3 = 0, therefore
there is only one point at infinity P∞ = (0 : 1 : 0) and is
F2-rational.

When considering the affine points we can assume z = 1, thus
x3 + x + 1 = y 2 + y . If x , y ∈ F2 then

x3 + x + 1 = 1 6= 0 = y 2 + y

thus the only F2-rational point is P∞.
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Algebraic curves
Example: Degree of points in a elliptic curve (Cont.)

Consider now x , y ∈ F4. If y = 0, 1 then 0 = y 2 + y , but
x3 + x + 1 has no solution in F4.

If y = ω, ω̄ are the roots of y 2 + y = 1, thus x3 + x =
x(x + 1)2 = 0. Therefore the points of degree 2 are

P1 = {(0 : ω : 1), (0 : ω̄ : 1)}, P2 = {(1 : ω : 1), (1 : ω̄ : 1)}
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Algebraic curves
Intersection multiplicity

When defining AG codes we will need to compute the points
in the intersection of two curves and the multiplicity at the
point of intersection.

We will not define it because the definition is quite technical.
Instead of it we will show with the following example how can
we compute multiplicity similarly to the way multiplicity of
zeros is computed for one variable polynomials.
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Algebraic curves
Intersection multiplicity

When defining AG codes we will need to compute the points
in the intersection of two curves and the multiplicity at the
point of intersection.

We will not define it because the definition is quite technical.
Instead of it we will show with the following example how can
we compute multiplicity similarly to the way multiplicity of
zeros is computed for one variable polynomials.
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Algebraic curves
Intersection multiplicity example

Consider the elliptic curve defined by

f (x , y , z) = x3 + xz2 + z3 + y 2z + yz2 ∈ F2r [x , y , z ].

Intersection with x = 0:
We have either z = 0 or z = 1. In the first case we get P∞
and in the latter (0 : ω : 1), (0 : ω̄ : 1) ∈ P2(F4).
We can see this in two ways:

The curve and x = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 1.

The curve and x = 0 intersect at two points in P2(F2),
one with degree 1 and the second with degree 2, both
with with intersection multiplicity 1. (Notice that there
are more points of higher degress)
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Algebraic curves
Intersection multiplicity example

Intersection with x2 = 0:
Notice that x2 = 0 is the union of the line x = 0 with itself.
Thus any point at x2 = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus

The curve and x2 = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 2.

The curve and x = 0 intersect at two points in P2(F2),
one with degree 1 and the second with degree 2, both
with with intersection multiplicity 2.
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Algebraic curves
Intersection multiplicity example

Intersection with x2 = 0:
Notice that x2 = 0 is the union of the line x = 0 with itself.
Thus any point at x2 = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus

The curve and x2 = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 2.

The curve and x = 0 intersect at two points in P2(F2),
one with degree 1 and the second with degree 2, both
with with intersection multiplicity 2.

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 44 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Algebraic curves
Intersection multiplicity example

Intersection with x2 = 0:
Notice that x2 = 0 is the union of the line x = 0 with itself.
Thus any point at x2 = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus

The curve and x2 = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 2.

The curve and x = 0 intersect at two points in P2(F2),
one with degree 1 and the second with degree 2, both
with with intersection multiplicity 2.

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 44 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Algebraic curves
Intersection multiplicity example

Intersection with z = 0:
We have seen that there is only one point P∞ of the elliptic
curve with z = 0. P∞ has degree 1 over any extension field of
F2. When we plug z = 0 in the equation of the elliptic curve
we get x3 = 0, thus P∞ occurs with multiplicity 3.

Intersection with z2 = 0:
As in the case x2 = 0 we double the multiplicities obtained
above, thus P∞ occurs on the intersection with multiplicity 6.
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Algebraic curves
Intersection multiplicity example

Intersection with y = 0:
z = 0 is not possible (⇒ x = 0), so z = 1and we have

x3 + x + 1 = 0.

The solutions to this equation occur in F8 and give us the
points

(α : 0 : 1), (α2 : 0 : 1), (α4 : 0 : 1) ∈ P(F8)

Threfore over F8 there are 3 points in the intersection, each
of them of degree 1 and multiplicity 1. Over F2 they combine
in a single degree 3 point P3 with intersection multiplicity 1.

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 46 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Algebraic curves
Bézout’s theorem

We have seen that there is a “type” of uniformity when count-
ing properly the number of points in the intersection of two
curves, where properly means take into account both degree
and multiplicity. This was stated in the following theorem

Theorem (Bézout)

Let f , g be homogeneous polynomials in F[x , y , z ] of degrees
df , dg respectively. Suppose that f and g have no common
nonconstant polynomial factors. Then Xf and Xg intersect
at df dg points counted with multiplicity and degree.
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Algebraic curves
Divisors

A divisor D on X over F is a formal sum

D =
∑

nPP, (17)

where nP is an integer and P is a point of arbitrary degre on
the curve X , with only a finite number of nP being nonzero.

The divisor D is efective if nP ≥ 0 for all P. The support
supp(D) of the divisor D is the set {P | nP 6= 0}. The degree
of the divisor is

deg(D) =
∑

nPdeg(P). (18)
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Bézout and Plücker
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Algebraic curves
Intersection divisor

If X1 and X2 are two projective curves then their intersection
divisor over F denoted by X1∩X2 =

∑
nPP where the suma-

tion runs over all the poins both in X1 and X2 and nP is the
multiplicity of the point in the intersection of the curves.

If X1 and X2 are defined by homogeneous polynomials of de-
grees df , dg respectively with no common nonconstant poly-
nomial factors then

deg(X1 ∩ X2) = df dg . (19)
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Algebraic curves
Intersection divisor example

Consider the elliptic curve defined by

f (x , y , z) = x3 + xz2 + z3 + y 2z + yz2 ∈ F2[x , y , z ].

Intersection with x = 0: P∞ + P1.

Intersection with x2 = 0: 2P∞ + 2P1.

Intersection with z = 0: 3P∞.

Intersection with z2 = 0: 6P∞.

Intersection with y = 0: P3.
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Algebraic curves
Plüker’s formula

When finding the minimum distance of an AG code it will
be connected to the genus of a curve. This is related to a
topological concept of the same name but quite offtopic in
this course. We will just show Plüker’s formula that will serve
in our case as a definiton for the genus.

Theorem (Plüker’s formula)

The genus of a nonsingular projective plane curve determined
by an homogeneous polynomial of degree d ≥ 1 is

g =
(d − 1)(d − 2)

2
. (20)

Up to here the second session (29/11)
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Algebraic Geometry codes
Rational functions

In the classical examples we have shown all codes were func-
tion evaluation of “points” where the fucntion runs through
a certain verctor space. For AG-codes we start with the defi-
nition of such functions.

Let p(x , y , z) an homogeneous polynomial that defines a pro-
jective curve X over F. We define the field of rational func-
tions on X over F as

F(X ) =

({
g

h
|
g ,h homogeneous,
same degree, p - h

}
∪ {0}

)
/ ≈X . (21)

where f /g ≈X f ′/g ′ if fg ′ − f ′g is a multiple of p(x , y , z).
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Algebraic Geometry codes
Divisor of a rational function

Exercise

Show that F(X ) is a field containing F as a subfield. No-
tice that the class of 0 is precisely when g is a multiple of
p(x , y , z).

Let f = g
h ∈ F(X ) such that f 6≈X 0. Then the divisor of f is

div(f ) = (X ∩ Xg )− (X ∩ Xh) (22)

By Bézout theorem deg (div (f )) = dpdg − dpdh = 0. Since
f is an equivalence class remains to proof that div(f ) is well
defined. This is true but we will not prove it.
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Algebraic Geometry codes
Divisor of a rational function

Exercise

Let X the elliptic curve

f (x , y , z) = x3 + xz2 + z3 + y 2z + yz2 ∈ F[x , y , z ].

where char(F) = 2. Let f = g
h and f ′ = g ′

h′ where g = x2+z2,
h = z2, g ′ = z2 + y 2 + yz and h′ = xz . Let P∞ = (0 : 1 : 0)
and P2 = {(1 : ω : 1), (1 : ω̄ : 1)}.

Show that f ≈X f ′.

Show that div(f ) = 2P2 − P∞.

Show that div(f ′) = 2P2 − P∞.
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Algebraic Geometry codes
The vector space L(D)

Given two divisors on a curve we will say

D =
∑

nPP � D ′ =
∑

n′PP

provided that nP ≥ n′P for all the points. (I.e. D is effective
if D � 0).

Given a divisor D on a projective curve X over F let

L(D) = {f ∈ F(X ) | f 6≈X 0, div(f ) + D � 0} ∪ {0}. (23)

Exercise

Prove that L(D) is a F-vector space.
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Bézout and Plücker
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Algebraic Geometry codes
The vector space L(D)

Theorem

Let D be a divisor on a projective curve X . The following
statements hold:

If deg(D) < 0, then L(D) = {0}.
The constant functions are in L(D) if and only if D � 0.

If P is a point in X with P /∈ supp(D), then P is not a
pole in any f ∈ L(D).
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Algebraic Geometry codes
The vector space L(D)

Proof.

If f ∈ L(D) with f 6≈X 0 then div(f ) + D � 0, i.e.
deg(div(f ) + D) ≥ 0, but deg(div(f ) + D) = deg(D),
which is a contradiction.

Let f 6≈X 0 a constant function. If f ∈ L(D) then
div(f ) + D � 0. But div(f ) = 0 (is constant), thus
D � 0. Conversely, if D � 0 then div(f ) + D = D � 0.

If P is a pole in f ∈ L(D) with P /∈ supp(D) then the
coefficient of P in div(f ) + D of X is negative,
contradicting f ∈ L(D).
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Geometric Reed Solomon codes
Evaluating rational functions in L(D)

Let p(x , y , z) an homogeneous polynomial that defines a pro-
jective curve X over Fq. Let D be a divisor on X and choose
a set P = {P1, . . . ,Pn} of n distinct Fq-rational points on
X such that supp(D) ∩ P = ∅. If we order the points in P
consider the evaluation map

evP : L(D) −→ Fn
q

f 7−→ evP(f ) = (f (P1), . . . , f (Pn))
(24)

Exercise

Is evP well defined?
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Geometric Reed Solomon codes
Evaluating rational functions in L(D)

If f ∈ L(D) then Pi is not a pole of f , however if f is repre-
sented by g

h then h may have Pi as a zero occurring in X ∩Xh

and it will occur at least so many times in X ∩ Xg . If we
choose g

h to represent f then f (Pi ) = 0
0 , we must avoid this

situation. It can be shown that for any f ∈ L(D) we can
choose a representative g

h with h(Pi ) 6= 0.

Suppose now that f has two such representatives g
h ≈X

g ′

h′

where h(Pi ) 6= 0 6= h′(Pi ). Then gh′ − g ′h is a polyno-
mial multiple of p and p(Pi ) = 0. Thus g(Pi )h′(Pi ) =

g ′(Pi )h(Pi ), i.e. g
h (Pi ) = g ′

h′ (Pi ).
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Geometric Reed Solomon codes
Definition of the codes

Exercise

Prove that evP is a Fq-linear mapping.

With the notation above we define the algebraic geometry
code associated to X , P and D to be

C(X ,P,D) = {evP(f ) | f ∈ L(D)} . (25)
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Geometric Reed Solomon codes
Riemann-Roch

In order to get some information on the dimension and
minimum distance we will use the following version of the
Riemann-Roch’s Theorem.

Theorem (Riemann-Roch)

Let D a divisor in a nonsingular projective plane curve X over
Fq of genus g. Then

dim(L(D)) ≥ deg(D) + 1− g.

Furthermore, if deg(D) > 2g − 2 then

dim(L(D)) = deg(D) + 1− g .
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Geometric Reed Solomon codes
Riemann-Roch

Theorem

Let D a divisor in a nonsingular projective plane curve X over
Fq of genus g. Let P a set of n distinct Fq-rational points on
X such that supp(D) ∩ P = ∅. Assume that

2g − 2 < deg(D) < n.

Then C(X ,P,D) is an [n, k , d ] code over Fq where

k = deg(D) + 1− g .
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Geometric Reed Solomon codes
Riemann-Roch

Proof.

In order to check k = deg(D) + 1−g by Riemann-Roch theo-
rem we just need to show that evP has trivial kernel. Suppose
that evP(f ) = 0, then f (Pi ) = 0 for all i , i.e. is a zero of
f , since Pi /∈ supp(D) we have div(f ) + D − (

∑n
i=1 Pi ) � 0.

Therefore f ∈ L(D − (
∑n

i=1 Pi )), but deg(D) < n, thus
deg(D−(

∑n
i=1 Pi )) < 0 and we have L(D−(

∑n
i=1 Pi )) = {0}

and f = 0.
Suppose that evP(f ) has minimum weight d . Thus f (Pi ) = 0
for n − d indices {ij | 1 ≤ j ≤ n − d}. Thus f ∈ L(D −
(
∑n−d

j=1 Pij )) and therefore deg(D − (
∑n−d

j=1 Pij )) ≥ 0. Hence
deg(D)− (n − d) ≥ 0.
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Geometric Reed Solomon codes

As a corollary of previous theorem we have that if {f1, . . . , fk}
is a basis of L(D) then a generator matrix of the code
C(X ,P,D) is

f1(P1) f1(P2) . . . f1(Pn)
f2(P1) f2(P2) . . . f2(Pn)

...
fk(P1) fk(P2) . . . fk(Pn)

 . (26)
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Geometric Reed Solomon codes
Reed-Solomon codes are AG codes

Consider the projective curve X over Fq given by z = 0. The
points in the curve are (x : y : 0). Let P∞ = (1 : 0 : 0),
P0 = (0 : 1 : 0) and P1, . . .Pq−1 the remaining rational
points. For narrow sense RS codes we will let n = q − 1 and
P = {P1, . . .Pq−1} and for the extended narrow-sense RS
codes n = q and P = {P0, . . .Pq−1}.

Fix k (1 ≤ k ≤ n) and let D = (k − 1)P∞ (D = 0 when
k = 1). We have that supp(D) ∩ P = ∅ and X is non
singular of genus g = 0. Also k − 1 = deg(D) > 2g − 2 thus
dim(L(D)) = deg(D) + 1− g = k .
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Geometric Reed Solomon codes
Reed-Solomon codes are AG codes

B =

{
1,

x

y
,

x2

y 2
, . . .

xk−1

yk−1

}
is a basis of L(D).
First div(x j/y j) = jP0 − jP∞, thus div(x j/y j) + D = jP0 −
(k − 1− j)P∞ which is effective since 0 ≤ j ≤ k − 1.

Consider a linear combination of elements of B

f =
k−1∑
j=0

aj
x j

y j
≈X 0.

f = g/h and by definition of ≈X g must be a multiple of z ,
clearly this multiple should be 0 since z does not appear on
f , therefore ai = 0 for all i .
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Geometric Reed Solomon codes
Reed-Solomon codes are AG codes

Using B, any nonzero element f ∈ L(D) can be written as

f (x , y , z) =
g(x , y , z)

yd
, g(x , y , z) =

d∑
j=0

gjx
jyd−j

with gd 6= 0 and d ≤ k − 1.

Notice that g(x , y , z) is the homogenization in Fq[x , y ] of

m(x) =
∑d

j=0 gjx
j thus there is a 1-1 relation between the

elements of L(D) and those of Pk ⊆ Fq[x ].
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Geometric Reed Solomon codes
Reed-Solomon codes are AG codes

Using B, any nonzero element f ∈ L(D) can be written as

f (x , y , z) =
g(x , y , z)

yd
, g(x , y , z) =

d∑
j=0

gjx
jyd−j

with gd 6= 0 and d ≤ k − 1.

Notice that g(x , y , z) is the homogenization in Fq[x , y ] of

m(x) =
∑d

j=0 gjx
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Geometric Reed Solomon codes
Reed-Solomon codes are AG codes

Moreover, if β ∈ Fq then m(β) = f (β, 1, 0) and additionally
f (β, 1, 0) = f (x0, y0, z0) where (β : 1 : 0) = (x0 : y0 : z0).

Let α a primitive element of Fq and order the points Pi =
(αi : 1 : 0) for 1 ≤ i ≤ n. The discussion shows that the
following sets are the same

{(m(1),m(α), . . . ,m(αn−1)) | m(x) ∈ Pk}

{(f (P1), f (P2), . . . , f (Pn)) | f ∈ L(D)}

and by R-R theorem deg(D) + 1 − g = k − 1 + 1 + 0 = k,
d ≥ n − deg(G ) = n − k + 1, hence by Singleton Bound
d = n − k + 1 and they are MDS.
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Geometric Reed Solomon codes
Generalized Reed-Solomon codes are AG codes

As an exercise show that Generalized Reed-Solomon codes are
AG codes using the discussion above and using the following
steps:

Let γ = (γ0, . . . , γn−1) a n-tuple of distinct elements of
Fq, and v = (v0, . . . , vn−1) ∈ Fn

q. Compute the
polynomial given by the Lagrange Interpolation Formula

p(x) =
n−1∑
i=0

vi

∏
j 6=i

x − γj

γi − γj
.

Let X be the curve defined by z = 0 and h(x , y) the
homogenization of polynomial p(x) of degree d ≤ n− 1.
We will assume that the vi ’s are noncero, thus h 6= 0.
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Geometric Reed Solomon codes
Generalized Reed-Solomon codes are AG codes

Let u(x , y , z) = h(x ,y)
yd ∈ Fq(X ) and

P = {P1,P2, . . . ,Pn} such that Pi = (γi−1 : 1 : 0).
P∞ = (1 : 0 : 0) and D = (k − 1)P∞ − div(u).

Prove that u(Pi ) = vi−1.

Prove that supp(D) ∩ P = ∅.
Since the divisor of any element in Fq(X ) is cero then
deg(D) = k − 1.

Prove that a basis of L(D) is

B =

{
u, u

x

y
, u

x2

y 2
, . . . u

xk−1

yk−1

}
Prove that GRSk(γ, v) = C(X ,P,D)
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Geometric Reed Solomon codes
A worked example

Let X = F3(F4) the Fermat curve over F4 given by the eqn.

x3 + y 3 + z3 = 0

It has nine projective points given by

Q P1 P2 P3 P4 P5 P6 P7 P8

0 0 0 1 α ᾱ 1 α ᾱ
1 α ᾱ 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0

where ᾱ = α2 = 1 + α.
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Geometric Reed Solomon codes
A worked example

By R-R’s theorem dim(L(3Q)) = 3. The functions

1,
x

x + y
,

y

y + z

are regular outside Q and have a pole of order 2 and 3 respec-
tively. They are a basis of L(D).

A generator matrix of C(X ,P,D) is

G =

 1 1 1 1 1 1 1 1
0 0 1 α ᾱ 1 α ᾱ
ᾱ α 0 0 0 1 1 1


and by R-R d ≥ 5 but having a look to G clearly d = 5.

Up to here the third session (30/11)
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Geometric Reed Solomon codes
A worked example

By R-R’s theorem dim(L(3Q)) = 3. The functions

1,
x

x + y
,

y

y + z

are regular outside Q and have a pole of order 2 and 3 respec-
tively. They are a basis of L(D).

A generator matrix of C(X ,P,D) is

G =

 1 1 1 1 1 1 1 1
0 0 1 α ᾱ 1 α ᾱ
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Geometric Goppa Codes
Diferentials

Let V be a vector space over F(X ). An F-linear map D :
F(X )→ V is called a derivation if it satifies the product rule

D(fg) = fD(g) + gD(f ).

Example

Let X be the projective line with funtion field F(x). Define
D(F ) =

∑
iaix

i−1 for a polynomial F =
∑

aix
i ∈ F[x ] and

extend this to quotients by

D

(
F

G

)
=

GD(F )− FD(G )

G 2

Then D : F(x)→ F(x) is a derivation.
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Geometric Goppa Codes
Local ring at a point

The set of all derivations D : F(X ) → V will be denoted by
Der(X ,V) (or Der(X ) if V = F(X )). Notice that Der(X ,V)
is a F(X )-vector space.

Let X be a projective variety and P be a point on X . Then a
rational function f is called regular in the point P if one can
find homogeneous polynomials F and G same degree, such
that G (P) 6= 0 and f is the coset of F/G .

The set of all the regular rational functions at P will be de-
noted by OP(X ), the local ring at P and indeed it is a local
ring, i.e. it has a unique maximal ideal, given by

MP = {f ∈ OP(X ) | f (P) = 0} (27)
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Geometric Goppa Codes
Local ring at a point

The set of all derivations D : F(X ) → V will be denoted by
Der(X ,V) (or Der(X ) if V = F(X )). Notice that Der(X ,V)
is a F(X )-vector space.

Let X be a projective variety and P be a point on X . Then a
rational function f is called regular in the point P if one can
find homogeneous polynomials F and G same degree, such
that G (P) 6= 0 and f is the coset of F/G .

The set of all the regular rational functions at P will be de-
noted by OP(X ), the local ring at P and indeed it is a local
ring, i.e. it has a unique maximal ideal, given by

MP = {f ∈ OP(X ) | f (P) = 0} (27)

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 74 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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Geometric Goppa Codes
Local ring at a point

Example

In P2(F) consider the parabola X defined by XZ − Y 2 = 0.
now with It has one point at infinity P∞ = (1 : 0 : 0). The
function x/y is equal to y/z on the curve, hence it is regular
in the point P = (0 : 0 : 1).

(2xz+z2)
(y2+z2) is regular in P and this function is equal to (2x+z)

(x+z)
and therefore also regular in P∞.
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Geometric Goppa Codes
Local parameters

Let see that MP is generated by a single element (i.e. is a
principal ideal). Let X be a smooth curve in A2(F) defined
by the equation f = 0, and let P = (a, b) be a point on it.

MP = 〈x − a, y − b〉 and
fx(P)(x − a) + fy (P)(y − b) ≡ 0 mod M2

P

The F-vector space MP/M2
P has dimension 1 and therefore

MP has one generator. Let g ∈ F[x ] be the coset of a
polynomial G . Then g is a generator of MP if and only if
dPG is not a constant multiple of dP f , where

dP f = fx(a, b)(x − a) + Fy (a, b)(y − b).
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Geometric Goppa Codes
Local parameters

Let < t >=MP , and z ∈ OP(X ), then it can be written in
a unique way as

z = utm,

where u is a unit and m ∈ N0. The function t is called a local
parameter or uniformizing parameter in P.

If m > 0, then P is a zero of multiplicity m of z . We write
m = ordP(z) = υP(z). ( υP(0) =∞).
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Bézout and Plücker
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Geometric Goppa Codes
Differential forms

Theorem

Let < t >=MP a local paramenter for t, then there exist a
unique derivation

Dt : F(X )→ F(X ) s.t. Dt(t) = 1, (28)

Moreover, Der(X ) is one dimensional over F(X ) and Dt is a
basis element.

A rational differential form or differential on X is an F(X )
linear map from Der(X ) to F(X ). The set of all rational
differential forms on X is denoted by Ω(X ).
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Bézout and Plücker
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Geometric Goppa Codes
Differential forms

Consider the map d : F(X ) → Ω(X ) given by for each f ∈
F(X ) the image df : Der(X )→ F(X ) is defined by df (D) =
D(f ) for all D ∈ Der(X ). Then d is a derivation. and provides
to Ω(X ) a vector space structure over F(X ).

Theorem

The space Ω(X ) has dimension 1 over F(X ) and dt is a basis
for every point P ∈ X with local parameter t.
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Geometric Goppa Codes
Differential forms

That is, for each differential we have a unique representation
ω = fPdtP , where fP is a rational function at point P. We
can not evaluate P at ω as by ω(P) = fP(P) since it depends
on the choice of tP .

Let ω ∈ Ω(X ). The order or valuation of ω in P is defined by
ordP(ω) = υP(ω) := υP(fP). It is called regular if it has no
poles. This definition does not depend on the choices made.

The canonical divisor (ω) of the differential ω is defined by

W = (ω) =
∑
P∈X

υP(ω)P. (29)

If D is a divisor, Ω(D) = {ω ∈ Ω(X ) | (ω)− D � 0}.
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Geometric Goppa Codes
Differential forms

That is, for each differential we have a unique representation
ω = fPdtP , where fP is a rational function at point P. We
can not evaluate P at ω as by ω(P) = fP(P) since it depends
on the choice of tP .

Let ω ∈ Ω(X ). The order or valuation of ω in P is defined by
ordP(ω) = υP(ω) := υP(fP). It is called regular if it has no
poles. This definition does not depend on the choices made.

The canonical divisor (ω) of the differential ω is defined by

W = (ω) =
∑
P∈X

υP(ω)P. (29)

If D is a divisor, Ω(D) = {ω ∈ Ω(X ) | (ω)− D � 0}.
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Geometric Goppa Codes
Residues. Definition of the codes

Let P ∈ X and t is a local parameter, let ω = fdt a differential
form , f =

∑
ai t

i , then the residue at point P is defined as

ResP(ω) = a−1.

As usual, Let D be a divisor on X and choose a set P =
{P1, . . . ,Pn} of n distinct Fq-rational points on X such that
supp(D) ∩ P = ∅.

The linear code C?(P,D) of length n over Fq is the image of
the linear map α? : ω(

∑
Pi − D)→ Fn

q defined by

α?(η) = (ResP1(η),ResP2(η), . . . ,ResPn(η)). (30)
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Bézout and Plücker
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Geometric Goppa Codes
Parameters of the code. Duality

Theorem

The code C?(P,D) has dimension k? = n − deg(D) + g − 1
and minimum distance d? ≥ deg(D)− 2g + 2.

The proof follows from Riemann-Roch’s theorem and the
isomorphims between L(W − D) and Ω(D).

Theorem

The codes C?(P,D) and C(P,D) are dual codes.

The proof follows from the residue theorem that states∑
P∈X ResP(ω) = 0.
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Geometric Goppa Codes
Parameters of the code. Duality

Theorem

The code C?(P,D) has dimension k? = n − deg(D) + g − 1
and minimum distance d? ≥ deg(D)− 2g + 2.

The proof follows from Riemann-Roch’s theorem and the
isomorphims between L(W − D) and Ω(D).

Theorem

The codes C?(P,D) and C(P,D) are dual codes.

The proof follows from the residue theorem that states∑
P∈X ResP(ω) = 0.

AG codes : E. Mart́ınez-Moro (SINGACOM-UVa) 82 / 86



AG codes

E. Mart́ınez-Moro

History

An(F), Pn(F)

Classical codes

Generalized RS

Goppa

Reed-Muller

Curves

Examples

Degree & multiplicity
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AG codes

Rational functions

L(D)

Evaluation

GRS are AG

Diferentials and dual

GV bound

Goppa meet

AG exceed

Geometric Goppa Codes
Geometric Goppa Codes are evaluation codes

Theorem

Let X be a curve defined over Fq . Let P = {P1, . . . ,Pn}
rational points on X . Then there exists a differential form ω
with simple poles at the Pi such that ResPi

(ω) = 1 for all i .
Furthermore

C ?(P,D) = C (P,W +
∑

Pi − D)

for all divisors D that have a support disjoint from P, where
W is the divisor of ω.
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Further topics and reading

ADVANCES IN 
ALGEBRAIC GEOMETRY 

CODES

Series on Coding Theory and Cryptology – Vol. 5

Series on Coding Theory and Cryptology – Vol. 5

Vol. 5

Advances in Algebraic Geometry Codes presents the 
most successful applications of algebraic geometry 
to the field of error-correcting codes, which are 
used in the industry when one sends information 
through a noisy channel. The noise in a channel 
is the corruption of a part of the information due 
to either interferences in the telecommunications 
or degradation of the information-storing support 
(for instance, compact disc). An error-correcting 
code thus adds extra information to the message 
to be transmitted with the aim of recovering the 
sent information. With contributions form renowned 
researchers, this pioneering book will be of value to 
mathematicians, computer scientists, and engineers 
in information theory.
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