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Affine space, projective space

Algebraic Geometry codes are defined w.r.t. curves in the
affine and projective space. Let IF be a field, the n-dimensional
affine space A"(IF) over T is just the vector space F”

An(F) = {(Xl,Xz7 Cee
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Algebraic Geometry codes are defined w.r.t. curves in the
affine and projective space. Let IF be a field, the n-dimensional
affine space A"(IF) over T is just the vector space F”

A"(F) = {(x1,x2,...,xn) | x; € F}.

Examples
Let x, X' be two elements in F"+1\ {0}, they are equivalent x = 0"
x" if there is a A € FF such that x = Ax’. The n-dimensional
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Affine space, projective space

Projective points

The equivalence class (projective point) containing x =
(x1,x2,...,Xn+1) Will be denoted by x = (x3 : x2 © ... @ Xp41)
(homogeneous coordinates). Thus projective points are 1 di-
mensional subespaces of A"T1(F).

If PeP"(F)and P = (x1 : x2 : ... : Xpqy1 = 0) then it is
called point at infinity, those points not at infinity are called
affine points and each of them can be uniquely represented as
P=(x1:x:...:Xp41 =1).

Any point at infinity can be uniquely represented as with a 1
at its right-most non-zero position P = (x3 : xo : ... x; =
1:0:...:0).
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Affine space, projective space

Projective points

The projective line and the projective plane

Exercise

Let F = IFq, prove that
e P"(F) contains >_"_, ¢’ points.
o P"(F) contains 3.7~3 g points at infinity.

Note: Please, try even the trivial exercises.
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Affine space, projective space

Homogenization

Let F[xq, x2, . . ., xn] be the set of polynomials with coefficients
from F. A polynomial f € F[xq, xp,...,x,] is homogeneous
of degree d if every term of f is of degree d.
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from F. A polynomial f € F[xq, xp,...,x,] is homogeneous
of degree d if every term of f is of degree d. A(E), P(E)
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Clearly fH(xi,x0,...,xp,1) = f(x1,x2,...,X,). More-
over, if we start with and homogeneous polynomial

g(x1,%2, ..., Xn, Xn+1) of degree d, L

Generalized RS
g(X]"Xz’ 000 9245 1) = f(X]-’Xz’ cee 7Xn)7 Reed-Muller
_ d—kgcH
them f has degree k < d and g = x; ;' ", Campls
Bézout and Pliicke
Thus there is a one-to-one correspondence between polyno-  [rron!functon:
mials in n variables of degree d or less and homogeneous """
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Affine space, projective space

Homogenization
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Theorem

A"(F), P"(F)
Let g(x1,x2,...,Xn, Xnt+1) be an homogeneous polynomial of

degree d over F. e
Reed-Muller
Q Ifa €T then g(axi,axy,...,Xn, AXptr1) =
d
g (X1, X2, .+« Xny Xnt1)- Gamples
eree & multplicity
Q@ f(x1,...,x,) =0 ifand only if fH(x1,... ,x,1) = 0. St and Plicke
. . . VRN R
Q If(xt:x2: .. iXnp1) = (X{ X5 :... X} 1) then Feor it
H / / /
g(xt, ..y Xn, Xny1) = 0 iff g(xq, ..., X}, X)) = 0. Exsliton
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Affine space, projective space

Homogenization

Theorem above implies that the zeros of f in A"(IF) corre-
spond precisely to affine points in P"(F) that are zeros of
fH and the concept of a point of P"(F) being a zero of a
homogeneous polynomial is well defined.
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Some classical codes

Generalized Reed-Solomon codes

For k > 0 let P, C Fg4[x] be the set of all polynomials of
degree less than k. Let « be a primitive n-th root of unity in
F, (n = g — 1), then the code

C={(f(1),f(a),...,f(a%2) | f € P} (1)

is the narrow-sense [n, k,n — k 4+ 1] RS code over Fj.
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For k > 0 let P, C Fg4[x] be the set of all polynomials of
degree less than k. Let « be a primitive n-th root of unity in
F, (n = g — 1), then the code

C={(f(1),f(a),...,f(a%2) | f € P} (1)
is the narrow-sense [n, k,n — k 4+ 1] RS code over Fj.

RS codes are BCH codes
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Some classical codes

Generalized Reed-Solomon codes

For k > 0 let P, C Fg4[x] be the set of all polynomials of
degree less than k. Let « be a primitive n-th root of unity in
F, (n = g — 1), then the code

C={(f(1),f(a),...,f(a%2) | f € P} (1)
is the narrow-sense [n, k,n — k 4+ 1] RS code over Fj.

RS codes are BCH codes
C can be extended to a [n+ 1, k, n — k + 2] code given by

C={(f(1),f(a),....f(a972),f(0)) | f € P} (2)
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Some classical codes

Generalized Reed-Solomon codes

Exercise

Show that if f € Py with kK < g then

> f(B)=0.

BeF,

Clue: ¢>2 > 55 8=0.
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Some classical codes

Generalized Reed-Solomon codes

Exercise

Show that if f € Py with kK < g then

> f(B)=0.

BeF,
Clue: ¢>2 > 55 8=0.

Thus C results from adding an overall parity check to a RS
code and the minimum weight increases.
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Some classical codes

Generalized Reed-Solomon codes

Let n be an integer 1 < n < q, and v = (70,.-.,7n-1) @
n-tuple of distinct elements of Fy, and v = (vo,...,Vp_1)
a n-tuple of non-zero elements of Fy. Let k be an integer
1< k<n, then

GRSk(v,v) = {(vwf(10),-- -, Va—1f(vn-1)) | f € Pk} (3)

are the Generalized Reed-Solomon codes over F.
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Some classical codes

Generalized Reed-Solomon codes
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Let n be an integer 1 < n < q, and v = (70,..-,7n—1) @  E MartinezMoro
n-tuple of distinct elements of Fy, and v = (vo,...,Vp_1)

a n-tuple of non-zero elements of Fy. Let k be an integer

1< k<n, then

Generalized RS
Goppa

GRSk(7,v) = {(vof(70),- -+, Va—1f(va1)) | F € P} (3) M

Examples

are the Generalized Reed-Solomon codes over F. -

e & multiplicity

ut and Pliicker

GRS codes are [n, k,n — k + 1] MDS codes Rational functions

L(D)
Evaluation

Note that both, the narrow sense RS code and the extended peaee
RS code can be seen as Generalized Reed-Solomon codes.
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Some classical codes

Generalized Reed-Solomon codes
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Since there is a one-to-one correspondence between £, _1 the
homogeneous polynomials in two variables of degree k—1 and
the non-zero polynomials of Py, let P; = (v; : 1) € P}(Fy),
we can redefine the code GRS(,v) as follows

{(vg(Po),---,vn-18(Pn-1)) | 8 € Lk—1}- (4)

Generalized RS
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Some classical codes
Goppa codes and BCH codes

Let t = ordg(n) and 3 a primitive n-th root of unity in F.
Choose 6 > 1 and let C the narrow sense BCH code of length
n and designed distance 6, i.e.

c(x) €F[x]/(x"=1)isinCec(f)=0, 1<j<é—1.
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Some classical codes
Goppa codes and BCH codes

Let t = ordg(n) and 3 a primitive n-th root of unity in Fg:
Choose 6 > 1 and let C the narrow sense BCH code of length
n and designed distance 6, i.e.

c(x) €F[x]/(x"=1)isinCec(f)=0, 1<j<é—1.

Note that

n—1

(Xn_l)zx—ﬁ’ z(:)c,zx —iyn=1-I
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Goppa codes and BCH codes

Let t = ordg(n) and 3 a primitive n-th root of unity in F.
Choose 6 > 1 and let C the narrow sense BCH code of length
n and designed distance 6, i.e.

c(x) €F[x]/(x"=1)isinCec(f)=0, 1<j<é—1.

Note that
n—1 & n—1 n—1
/ _ I p—iyn—1—1
(=D = Sy ()
n—1 n—1
— XI CI(BIJrl)I
1=0 i=0
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Some classical codes
Goppa codes and BCH codes

Because c(8') =0, 1<1/<§-2, LHSin (5)isa polynomial
with lowest degree term al least 6—1, thus RHS can be written
as p(x)x°~1 with p(x) € Fye[x].

c(x)ec
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Because c(8') =0, 1<1/<§-2, LHSin (5)isa polynomial
with lowest degree term al least 6—1, thus RHS can be written
as p(x)x°~1 with p(x) € Fye[x].

x"—1

n—1
¢ p(x)x
C(X)GC@;X_ﬁi =
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Some classical codes
Goppa codes and BCH codes

Because c(8') =0, 1<1/<§-2, LHSin (5)isa polynomial
with lowest degree term al least 6—1, thus RHS can be written
as p(x)x°~1 with p(x) € Fye[x].

x"—1

n—1
- (6)
& Zx—;,ﬂ—’ =0 mod x°1.
i=0
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Some classical codes
Goppa codes and BCH codes

Because c(8') =0, 1<1/<§-2, LHSin (5)isa polynomial
with lowest degree term al least 6—1, thus RHS can be written
as p(x)x°~1 with p(x) € Fye[x].

6—1

x"—1

n—1

- (6)
& Zx—;,ﬂ—’ =0 mod x°1.

i=0

This equivalence means that if the LHS is written as a rational

function % then the numerator a(x) will be a multiple of
x)

x¥=1 (b(x) = x" — 1).
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Some classical codes
Goppa codes

Following the discussion above, fix an extension g, of Fq
(t = ordg(n) no longer needed). Let

L={y0,71,---Yn—1} CFg

and let G(x) € Fge[x] with G(;) # 0 where ; € L.

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Generalized RS
Goppa
Reed-Muller

Examples
De J

& multiplicity

Bézout and Pliicker
Rational functions
L(D)

Evaluation

GRS are AG

Diferentials and dual

Goppa mee

AG exceed

18 / 86



Some classical codes
Goppa codes

Following the discussion above, fix an extension g, of Fq
(t = ordg(n) no longer needed). Let

L={y0,71,---Yn—1} CFg

and let G(x) € Fge[x] with G(;) # 0 where ; € L.

The Goppa code I'(L, G) is the set of vectors (cp, ..., Ch-1) €
[Fg such that

> -9 =0 mod G(x). (7)

X —
i=0 20
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Some classical codes
Goppa codes

This again means that if the LHS is written as a rational
function then the numerator is a multiple of G(x) the Goppa
polynomial. Note that G(v;) # 0 guarantees that x — ; is
invertible in Fge[x]/ (G(x)).
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Some classical codes
Goppa codes. Parity check matrix.

Since

X =i G(vi) x—7i mod () (8)
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Some classical codes
Goppa codes. Parity check matrix.

Since

1 1 G(x)— G(vi)

X =i G(7i)

Substituting in eqn. (7) we
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Some classical codes
Goppa codes. Parity check matrix.

Suppose deg G(x) = w and
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Some classical codes
Goppa codes. Parity check matrix.

Suppose deg G(x) = w and
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Some classical codes
Goppa codes. Parity check matrix.

Suppose deg G(x) = w and
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Some classical codes
Goppa codes. Parity check matrix.

From (9) setting the coefficients of x* to 0 in the order k =
w—1,w—2,...,0 we have that ¢ € (L, G) if Hc" =0,
where H is

hggW 500 hn—lgw
ho(gwfl +F gW’YO) s hnfl(gwfl o gWanl)
: : : (11)
hoS gt o hea g

with h; = G("}/,')_l.
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Some classical codes
Goppa codes. Parity check matrix.

H can be reduced to the matrix H’

G(y0)™*
G(70) M0

G(vyo) gt
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Universidad deValladolid

AG codes

E. Martinez-Moro

Note that the parity check matrix H’ is the genera-

tor matrix of the GRS.(y,v) over Fg where v =

(G(v)7Y, ..., G(ya—1)71), ie. we have that G

[(L,G) = GRSw(7.v) |

q°

Since GRS, (7, V)" is also a GRS code then classical Goppa
codes are subfield subcodes of GRS codes. Rational fu

L(D)

Evaluation

GRS are AG
Diferentials and dual

Goppa mee

AG exceec

AG codes : E. Martinez-Moro (SINGACOM-UVa) 24 / 86



Some classical codes
Goppa code as a subfield subcode of a GRS code
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Proof.

The entries of H" are in Fyt. By choosing a base of F¢|[Fg each
element of [Fo« can be represented by a t x 1 column vector,
and if we replace each entry in H' by the corresponding vector
we get a matrix H” with entries in F such that H”¢” = 0,
cel(LG).
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Proof.

The entries of H" are in Fyt. By choosing a base of F¢|[Fg each
element of [Fo« can be represented by a t x 1 column vector,
and if we replace each entry in H' by the corresponding vector
we get a matrix H” with entries in F such that H”¢” = 0,
cel(LG).

The rows of H” may be independent thus k > n — wt.
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Some classical codes
Goppa code as a subfield subcode of a GRS code

Proof.

The entries of H" are in Fyt. By choosing a base of F¢|[Fg each
element of [Fo« can be represented by a t x 1 column vector,
and if we replace each entry in H' by the corresponding vector
we get a matrix H” with entries in F such that H”¢” = 0,
cel(LG).

The rows of H” may be independent thus kK > n — wt. If
0 # c € I'(L,G) has weight < w then when the LHS of
(7) is written as a rational function the numerator has degree
< w—1, but it has to be a multiple of G(x), which contradicts

the fact deg(G(x)) = w.
L]
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Some classical codes

Goppa code. Another formulation: residues.

Let R be the vector space of all the rational functions f with
coefficients in [F,: such that

Qf= ngg where a, b are relatively prime.

@ The zeros of a(x) include the zeros of G(x) with at
least the same multiplicity.

© The only possible poles of f (i.e. the zeros of b(x)) are
Y0, V1, - - - s Yn—1 With multiplicity at most one.
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Some classical codes

Goppa code. Another formulation: residues.

Let R be the vector space of all the rational functions f with

coefficients in [F,: such that
Qf= ngg where a, b are relatively prime.

@ The zeros of a(x) include the zeros of G(x) with at
least the same multiplicity.

© The only possible poles of f (i.e. the zeros of b(x))
Y0, V1, - - - s Yn—1 With multiplicity at most one.

f € R has a Laurent series expansion about ~;

f=3 fitx—m)

j=—1

where f_1 # 0 if f has a pole at ; or —; = 0 otherwise.
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Some classical codes

Goppa code. Another formulation: residues.

The residue of f(x) at ; denoted as Res,,f is the coefficient
f_1 above. Let

Cres(G,7) = {(Resyof,...,Res,, _f) | feR}  (14)
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Some classical codes

Goppa code. Another formulation: residues.

The residue of f(x) at ; denoted as Res,,f is the coefficient
f_1 above. Let

Cres(G,7) = {(Resyof,...,Res,, _f) | feR}  (14)

Exercise

Show that CRes(Gv'Y)th = F(L, G)
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Some classical codes

Generalized Reed-Muller codes

Let m > 0, n = g™ and {P4,..

r < m(q—1) and Fq[xi, ..
total degree r or less.
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Some classical codes

Generalized Reed-Muller codes

Let m >0, n=q"™ and {Py,...,P,} = A"(F,;). Let 0 <
r < m(q— 1) and Fg[xi, ..., xm], the set of polynomials of
total degree r or less.

The r-th order generalized Reed-Muller code of length n = g™
is

Ry(r,m) = {(F(P),....f(Pn)) | f € Fglxt, ..., xm):}
(15)
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Some classical codes

Generalized Reed-Muller codes

Note that since 89 = (3 for all 3 € Fg if we note
Fglx1,...,xm]; the set of polynomials of total degree r or
less with no variable with exponent g or higher we have

Ry(r,m) = {(F(P),....f(Pn) | f € Fqlxt, ..., xm]’}
(16)
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Some classical codes

Generalized Reed-Muller codes

Note that since 89 = (3 for all 3 € Fg if we note
Fglx1,...,xm]; the set of polynomials of total degree r or

less with no variable with exponent g or higher we have

Rq(r,m) = {(f(P1),...

JF(Pn)) | f €Fglxi,..

Fqlx1,...,xm]} is a vector space with a basis

- Xmlr }
(16)

m
B = xlele?...x;’"|0§e;<q,2e;§r
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Some classical codes

Generalized Reed-Muller codes
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Algebraic curves

An affine plane curve X is the set of affine points (x,y) €
A?(FF) denoted as X7 (IF) such that f(x,y) =0, f € F[x, y].
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Algebraic curves

An affine plane curve X is the set of affine points (x,y) €
A?(FF) denoted as X7 (IF) such that f(x,y) =0, f € F[x, y].

A projective plane curve X is the set of projective points (x :

y : z) € P?(FF) denoted (also) as X (IF) such that f(x,y,z) =
0, f € F[x, y, z] an homogeneous polynomial.
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Algebraic curves

UniversidaddeValladolid
AG codes

E. Martinez-Moro

An affine plane curve X is the set of affine points (x,y) €
A?(FF) denoted as X7 (IF) such that f(x,y) =0, f € F[x, y].

Generalized RS

A projective plane curve X is the set of projective points (x : S
y : z) € P?(F) denoted (also) as X7 (IF) such that f(x,y,z) =  cunes
0, f € F[x,y, z] an homogeneous polynomial. iy

Bézout and Pliicker

If f € F[x,y] then X¢u(IF) is called the projective closure of

Rational function

X¢(F) (i.e. we add the possible points at infinity). Lo
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Algebraic curves

Smooth curves

If f = ZI-J ajjx'y) € F[x, y] the partial derivative £, of f w.r.t.

X 1S

2 i—=1 j
fxzaz E_,IaUX yJ.
IJ

The partial derivative f, of f w.r.t. y is defined analogously.
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Algebraic curves

Smooth curves

Iff=>; ajjx'y) € F[x, y] the partial derivative £, of f w.r.t.

’X = 7 = Ia”X _yJ.

i

The partial derivative f, of f w.r.t. y is defined analogously.

A point (xg, yo) of X¢(IF) is singular if £(x0, ¥0) = f,(x0, Y0) =
0. A point of X¢(FF) is nonsingular or simple if it is not singular.

A curve that has no singular point is called nonsingular, regular
or smooth. Analogous definitions hold for projective curves.
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Algebraic curves

Example 1: Fermat curve

The Fermat curve F,,(Fq) is a projective plane curve defined
by
f(x,y,z) =x"+ym+2z"=0.
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Algebraic curves

Example 1: Fermat curve
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Algebraic curves

Example 1: Fermat curve

The Fermat curve F,,(Fq) is a projective plane curve defined
by

f(x,y,z) =x"+ym+2z"=0.
fo = mx™ 1 f, = my™ 1 f, = mz™1, thus it has no sin-

gular points if ged(m, q) = 1.

Exercise

e Find the three projective points of F3(FFy).
@ Find the nine projective points of F3(Fy).
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Algebraic curves

Example 2: Hermitian curve

Let g = r? where r is a prime power. The Hermitian curve
H,(Fy) is a projective plane curve defined by

f(x,y,z) =x"T —y"z—yz" =0.

Exercise

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Generalized RS
Goppa
Reed-Muller

Examples
Degree & multiplicity

Bézout and Pliicker

Rational functions
L(D)

Evaluation

GRS are AG

Diferentials and dual

Goppa meet

AG exceed

35/ 86



Algebraic curves

Example 2: Hermitian curve

Let g = r? where r is a prime power. The Hermitian curve
H,(Fy) is a projective plane curve defined by

f(x,y,z) =x"T —y"z—yz" =0.

Exercise

@ Show that (0:1:0) is the only point at infinity of
H(Fq).
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Algebraic curves

Example 2: Hermitian curve
Let g = r? where r is a prime power. The Hermitian curve
H,(Fy) is a projective plane curve defined by
f(x,y,z) =x"T —y'z—yz" = 0.
Since r is a multiple of the characteristic then H,(Fq) is non

singular.

Exercise

@ Show that (0:1:0) is the only point at infinity of
H(Fq).
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Algebraic curves

Example 2: Hermitian curve
Let g = r? where r is a prime power. The Hermitian curve
H,(Fy) is a projective plane curve defined by
f(x,y,z) =x"T —y'z—yz" = 0.
Since r is a multiple of the characteristic then H,(Fq) is non

singular.

Exercise
@ Show that (0:1:0) is the only point at infinity of

H(Fq).
e Find the eight affine points (x : y : 1) points of Ha(Fa4).
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Algebraic curves

Example 2: Hermitian curve

Theorem

There are r3 affine (x : y : 1) points in H,(Fg).

Proof.

z =1 implies x"*! = y" + y = Try(y) where Tr; is the trace
map from F,> to F,.

Try(y) is F,-linear and surjective, so its kernel is a 1-dim. F,-
subspace of F,2, thus has r values with Try(y) that leads to
r affine points on H,(Fy) of type (0:y : 1).

(Cont. ...)
L]
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Algebraic curves

Example 2: Hermitian curve

Theorem

There are r3 affine (x : y : 1) points in H,(Fy).

Proof.

(Cont. ...)
If x € F,2 then x""1 € F,, as r> — 1 = (r+1)(r — 1) and the
non zero elements of I, in IF,2 are those satisfying 5"~% = 1.
When y is one of the r? — r elements in F,> with Tra(y) # 0,
there are r+1 solutions x € F,2 of Try(y) = x"*1. Thus there
are (r?> — r)(r + 1) = r® — r more affine points on H,(Fy),

and the theorem follows. .
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Algebraic curves
Example 3: The Klein quartic

The Klein quartic [C4(Fy) is a projective plane curve defined
by
f(x,y,2) =x3y +y3z+23x = 0.

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Generalized RS
Goppa
Reed-Muller

Examples
Degree & multiplicity
Bézout and Pliicker

Rational functions
L(D)

Evaluation

GRS are AG
Diferentials and dual

Goppa meet

AG exceed

37 / 86



Algebraic curves
Example 3: The Klein quartic
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AG codes
The Klein quartic [C4(Fy) is a projective plane curve defined B MErite e
by
f(x,y,2) =x3y +y3z+23x = 0.

Exercise
@ Find the three partial derivatives of f and show that if LN
char(IFq) = 3 then C4(IFq) is non singular. Beézout and Plicke
o If (x:y:z)is asingular point in C4(Fg) show that Rational functions
x3y = —3y3z, 23x = 9y3z and 7y3z = 0. Evalistion
GRS are AG

@ Show that if char(Fg) # 7 then K4(Fq) is non singular. Diferentials and dual
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oq : Fgm — Fgm given by o¢(a) = a9 is an automorphism of

Fgm that fixes Fy (04 = o, where o, is the Frobenius map).
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Algebraic curves

Degree of a point

The degree of a point in a curve depends on the field under
consideration. Let g = p" (p prime) and m > 1, the map
oq : Fgm — Fgm given by o¢(a) = a9 is an automorphism of
Fgm that fixes Fy (04 = o, where o, is the Frobenius map).

If P = (x,y)or P=(x:y:z)in A’(Fym) or P?(F,m)

denote by 04(P) = (04(x),04(y)) and oq(P) = (og(x) :
oq(y) : 04(2)) respectively.
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Algebraic curves

Degree of a point

The degree of a point in a curve depends on the field under
consideration. Let g = p" (p prime) and m > 1, the map
oq : Fgm — Fgm given by o¢(a) = a9 is an automorphism of
Fgm that fixes Fy (04 = o, where o, is the Frobenius map).

If P = (x,y)or P=(x:y:z)in A’(Fym) or P?(F,m)
denote by 04(P) = (04(x),04(y)) and oq(P) = (og(x) :
oq(y) : 04(2)) respectively.

Exercise

o Show that that o4(P) is well defined if P € P?(F).

@ Show that if f € Fg[x, y] (or homogeneous in
Fq[x, y,z]) then f(P) =0 implies f(cq(P)) =0
(P € A%(Fgm) or P?(Fgm) respectively).
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Algebraic curves

Degree of a point

From exercise above if P € X¢(Fgm) then {o} (P
Xe(Fq m), and there are at most m distint points in the set

since a =1Id.
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Algebraic curves

Degree of a point
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AG codes
From exercise above if P € X¢(Fqm) then {0 )1i>0} C e MartineaMoro
Xe(Fq m), and there are at most m distint points in the set
since o' = Id.

A point P on X¢(Fq) of degree m over Fy is a set of m
distinct points P = {Py, ..., Pn_1} with P; € X¢(Fgm) and
Pi = 04(Po). We will denote the degree of P over F, as

Examples

deg(P). Notice that points of degree m over F, are fixed by ~ Desree & mutipiicie

Bézout and Pliicker
04 just as the elements of [y, that's why they are cosidered
to be on Xf(Fq) E)/\V;:\um functions
Evaluation
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Algebraic curves

Degree of a point
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AG codes
From exercise above if P € X¢(Fqm) then {0 )1i>0} C e MartineaMoro
Xe(Fq m), and there are at most m distint points in the set
since o' = Id.

A point P on X¢(Fq) of degree m over Fy is a set of m
distinct points P = {Py, ..., Pn_1} with P; € X¢(Fgm) and
Pi = 04(Po). We will denote the degree of P over F, as

Examples

deg(P). Notice that points of degree m over F, are fixed by ~ Desree & mutipiicie

Bézout and Pliicker

04 just as the elements of [y, that's why they are cosidered
tO be on Xf(Fq) Rational functions

L(D)
Evaluation
GRS are AG

The points of degree one on X¢(IF,) are called rational points o
or [F,-rational points.
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Algebraic curves

Example: Degree of points in a elliptic curve

Consider the elliptic curve defined by

f(x,y,2) = x> +x22 + 22 + y?z + yz° € Fa[x, y, 2].
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Algebraic curves

Example: Degree of points in a elliptic curve
Consider the elliptic curve defined by
f(x,y,2) = x> +x22 + 22 + y?z + yz° € Fa[x, y, 2].
A point at infinity satisfies z = 0, thus x3 = 0, therefore

there is only one point at infinity P = (0 : 1 : 0) and is
[F>-rational.
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Algebraic curves

Example: Degree of points in a elliptic curve

Universidad deValladolid
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Consider the elliptic curve defined by E. Martinez-Moro

f(x,y,2) = x> +x22 + 22 + y?z + yz° € Fa[x, y, 2].

A point at infinity satisfies z = 0, thus x3 = 0, therefore

there is only one point at infinity P = (0 : 1 : 0) and is

IF>-rational.

When considering the affine points we can assume z = 1, thus oot

X34+ x+1=y?+y. If x,y € Fy then .
3 _ _ 2 Evatitio
X>+x+1=1#0=y"+y GRS are AG

Diferentials and dual

thus the only Fo-rational point is Py.
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Algebraic curves

Example: Degree of points in a elliptic curve (Cont.)
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Consider now x,y € F4. If y = 0,1 then 0 = y? + y, but
x3 4+ x 4+ 1 has no solution in Fy.
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Algebraic curves

Example: Degree of points in a elliptic curve (Cont.)

Consider now x,y € F4. If y = 0,1 then 0 = y? + y, but
x3 4+ x 4+ 1 has no solution in Fy.

If y = w,@ are the roots of y> +y = 1, thus x3 + x =
x(x +1)? = 0. Therefore the points of degree 2 are

Pi={0:w:1),0:0: 1)}, P,={(1:w:1),(1:2:1)}
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Algebraic curves

Intersection multiplicity

When defining AG codes we will need to compute the points
in the intersection of two curves and the multiplicity at the
point of intersection.
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Algebraic curves

Intersection multiplicity

When defining AG codes we will need to compute the points
in the intersection of two curves and the multiplicity at the
point of intersection.

We will not define it because the definition is quite technical.
Instead of it we will show with the following example how can
we compute multiplicity similarly to the way multiplicity of
zeros is computed for one variable polynomials.
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Algebraic curves

Intersection multiplicity example

Consider the elliptic curve defined by

f(x,y,2) = x> +x22 + 22 + y?z + yz° € For[x, y, 2].
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Algebraic curves

Intersection multiplicity example
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AG codes

Consider the elliptic curve defined by

E. Martinez-Moro

f(x,y,2) = x> +x22 + 22 + y?z + yz° € For[x, y, 2].

Intersection with x = 0:
We have either z = 0 or z = 1. In the first case we get P Conelized £
and in the latter (0:w:1),(0:&: 1) € P3(Fy). e il

Examples
Degree & multiplicity
Bézout and Pliicker
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Algebraic curves

Intersection multiplicity example

Universidad deValladolid

. G codes
Consider the elliptic curve defined by ol

E. Martinez-Moro

f(x,y,2) = x> +x22 + 22 + y?z + yz° € For[x, y, 2].

Intersection with x = 0:
We have either z = 0 or z = 1. In the first case we get Py, =i

and in the latter (0:w:1),(0: & : 1) € P2(Fy). e il
We can see this in two ways:

Examples
Degree & multiplicity
Bézout and Pliicker
Rational functions
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Algebraic curves

Intersection multiplicity example

Consider the elliptic curve defined by
f(x,y,2) = x> +x22 + 22 + y?z + yz° € For[x, y, 2].

Intersection with x = 0:
We have either z = 0 or z = 1. In the first case we get P
and in the latter (0:w:1),(0: & : 1) € P2(Fy).
We can see this in two ways:
@ The curve and x = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 1.
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Algebraic curves

Intersection multiplicity example
Universidad deValladolid

. G codes
Consider the elliptic curve defined by ol

E. Martinez-Moro

f(x,y,2) = x> +x22 + 22 + y?z + yz° € For[x, y, 2].

Intersection with x = 0:

We have either z = 0 or z = 1. In the first case we get P
and in the latter (0:w:1),(0: & : 1) € P2(Fy).

We can see this in two ways:

Degree & multiplicity

@ The curve and x = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 1.

@ The curve and x = 0 intersect at two points in P?(F2),
one with degree 1 and the second with degree 2, both
with with intersection multiplicity 1. (Notice that there
are more points of higher degress)
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Intersection multiplicity example
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Intersection with x% = 0:

Notice that x> = 0 is the union of the line x = 0 with itself.
Thus any point at x*> = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus
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Algebraic curves

Intersection multiplicity example

Intersection with x% = 0:

Notice that x> = 0 is the union of the line x = 0 with itself.
Thus any point at x*> = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus

o The curve and x? = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 2.
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Algebraic curves

Intersection multiplicity example

Intersection with x% = 0:

Notice that x> = 0 is the union of the line x = 0 with itself.
Thus any point at x*> = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus

o The curve and x? = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 2.

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Generalized RS

Reed-Muller

Examples
Degree & multiplicity
Bézout and Pliicker

Rational functions
L(D)
Evaluation
GRS AG
Diferentials and dual

Goppa mee

AG exceed

44 / 86



Algebraic curves

Intersection multiplicity example

Intersection with x% = 0:

Notice that x> = 0 is the union of the line x = 0 with itself.
Thus any point at x*> = 0 and the elliptic curve occurs twice
as frequently as it did at x = 0. Thus

o The curve and x? = 0 intersect at three degree 1 points
in P2(F4) with intersection multiplicity 2.

@ The curve and x = 0 intersect at two points in P?(F2),
one with degree 1 and the second with degree 2, both
with with intersection multiplicity 2.
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Intersection multiplicity example
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Intersection with z = 0:

We have seen that there is only one point P, of the elliptic

curve with z = 0. P, has degree 1 over any extension field of "~
F>. When we plug z = 0 in the equation of the elliptic curve ST

we get x3 = 0, thus P,, occurs with multiplicity 3.

ed-Muller
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Algebraic curves

Intersection multiplicity example

Intersection with z = 0:

We have seen that there is only one point P, of the elliptic
curve with z = 0. P, has degree 1 over any extension field of
F>. When we plug z = 0 in the equation of the elliptic curve
we get x3 = 0, thus P,, occurs with multiplicity 3.

Intersection with z2 = 0:
As in the case x> = 0 we double the multiplicities obtained
above, thus Py, occurs on the intersection with multiplicity 6.
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Algebraic curves

Intersection multiplicity example

Intersection with y = 0:
z =0 is not possible (= x = 0), so z = 1land we have

X4+x+1=0.
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Intersection multiplicity example
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Intersection with y = 0:
z =0 is not possible (= x = 0), so z = 1land we have

X4+x+1=0.
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The solutions to this equation occur in Fg and give us the Reed. Muller
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Algebraic curves

Intersection multiplicity example

Universidad deValladolid

AG codes

Intersection with y = 0: E. Martinez-Moro
z =0 is not possible (= x = 0), so z = 1land we have

X4+x+1=0.

The solutions to this equation occur in g and give us the
points

Examples
Degree & multiplicity

(@:0:1), (a?:0:1), (o*:0:1) < P(Fg) Bezout and Plick

Rational functions

Threfore over Fg there are 3 points in the intersection, each L(D)

Evaluation

of them of degree 1 and multiplicity 1. Over [F» they combine Geaens
in a single degree 3 point P3 with intersection multiplicity 1.
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Bézout's theorem
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We have seen that there is a “type” of uniformity when count-
ing properly the number of points in the intersection of two
curves, where properly means take into account both degree
and multiplicity. This was stated in the following theorem
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Algebraic curves

Bézout's theorem

We have seen that there is a “type” of uniformity when count-
ing properly the number of points in the intersection of two
curves, where properly means take into account both degree
and multiplicity. This was stated in the following theorem

Theorem (Bézout)

Let f,g be homogeneous polynomials in F[x,y, z]| of degrees
dr, dg respectively. Suppose that f and g have no common
nonconstant polynomial factors. Then Xf and X, intersect
at drdg points counted with multiplicity and degree.
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Divisors
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A divisor D on X over F is a formal sum e

D=> npP, (17)

where np is an integer and P is a point of arbitrary degre on
the curve X, with only a finite number of np being nonzero.
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Algebraic curves

Divisors

A divisor D on X over F is a formal sum

D=> npP, (17)

where np is an integer and P is a point of arbitrary degre on
the curve X, with only a finite number of np being nonzero.

The divisor D is efective if np > 0 for all P. The support
supp(D) of the divisor D is the set {P | np # 0}. The degree
of the divisor is

deg(D) = _ npdeg(P). (18)
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Intersection divisor
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If X1 and A5 are two projective curves then their intersection
divisor over IF denoted by X1 N A, = > npP where the suma-
tion runs over all the poins both in X7 and X5 and np is the
multiplicity of the point in the intersection of the curves.
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If X1 and A5 are two projective curves then their intersection
divisor over IF denoted by X1 N A, = > npP where the suma-
tion runs over all the poins both in X7 and X5 and np is the
multiplicity of the point in the intersection of the curves.

If X1 and A are defined by homogeneous polynomials of de- "
grees dr, dg respectively with no common nonconstant poly- == wr
nomial factors then
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Algebraic curves

Intersection divisor example

Consider the elliptic curve defined by

f(x,y,2) = x>+ x22 + 22 + y?z + yz° € Fa[x, y, 2].
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Algebraic curves

Intersection divisor example

Consider the elliptic curve defined by

f(x,y,2) = x>+ x22 + 22 + y?z + yz° € Fa[x, y, 2].

@ Intersection with x = 0: Py, + Ps.
o Intersection with x2 = 0: 2P + 2P;.
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Consider the elliptic curve defined by

f(x,y,2) = x>+ x22 + 22 + y?z + yz° € Fa[x, y, 2].
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Consider the elliptic curve defined by
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f(x,y,2) = x>+ x22 + 22 + y?z + yz° € Fa[x, y, 2].

Intersection with x = 0: P + P1.
Intersection with x2 = 0: 2P, + 2P;.
Intersection with z = 0: 3P.
Intersection with z2 = 0: 6P.
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Algebraic curves

Pliiker's formula
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When finding the minimum distance of an AG code it will

be connected to the genus of a curve. This is related to a
topological concept of the same name but quite offtopic in
this course. We will just show Pliiker’s formula that will serve
in our case as a definiton for the genus.
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Algebraic curves

Pliiker's formula

When finding the minimum distance of an AG code it will
be connected to the genus of a curve. This is related to a
topological concept of the same name but quite offtopic in
this course. We will just show Pliiker’s formula that will serve
in our case as a definiton for the genus.

Theorem (Pliiker's formula)
The genus of a nonsingular projective plane curve determined
by an homogeneous polynomial of degree d > 1 is

(20)
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Algebraic Geometry codes

Rational functions
Universidad deValladolid
AG codes
In the classical examples we have shown all codes were func- E. Martinez-Moro

tion evaluation of “points” where the fucntion runs through
a certain verctor space. For AG-codes we start with the defi-
nition of such functions.
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Algebraic Geometry codes

Rational functions

Universidad deValladolid

AG codes
In the classical examples we have shown all codes were func- E. Martinez-Moro
tion evaluation of “points” where the fucntion runs through
a certain verctor space. For AG-codes we start with the defi-
nition of such functions.

Let p(x,y,z) an homogeneous polynomial that defines a pro- -
jective curve X over F. We define the field of rational func-
tions on X over F as Degree & multipic

g g,h homogeneous, . |
F(X) = E lsame degree, pjf h> U {0} / Ry . (21) Ti::?nal functions

where f/g =x f'/g" if fg’ — f'g is a multiple of p(x, y, z).
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Algebraic Geometry codes

Divisor of a rational function

Exercise

Show that F(X') is a field containing IF' as a subfield. No-
tice that the class of 0 is precisely when g is a multiple of

p(x,y,z).
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Show that F(X') is a field containing IF' as a subfield. No-
tice that the class of 0 is precisely when g is a multiple of ‘=

p(x,y, z). Rt Malkr

Let f = % € F(X) such that f 2y 0. Then the divisor of f is S
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div(Ff) = (X N Xg) — (X' N Xp) (22)
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Algebraic Geometry codes

Divisor of a rational function

Exercise

Show that F(X') is a field containing IF' as a subfield. No-
tice that the class of 0 is precisely when g is a multiple of

p(x,y,z).

Let f = £ € F(X) such that f %#x 0. Then the divisor of f is
div(F) = (X N X) — (X N Xy) (22)

By Bézout theorem deg (div (f)) = dpdg — dpdy = 0. Since

f is an equivalence class remains to proof that div(f) is well
defined. This is true but we will not prove it.
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Algebraic Geometry codes

Divisor of a rational function

Exercise
Let X the elliptic curve
f(x,y,2) =x3+x22+ 22 + y?z + yz? € Flx, y, z].

where char(F) = 2. Let f = £ and f' = % where g = x>+ 2,
h=2% g =2z>+y?> +yzand h' = xz. Let P, = (0:1:0)
and P,={(1:w:1),(1:@:1)}.

o Show that f =~y f'.

@ Show that div(f) = 2P> — Pw.

@ Show that div(f’) = 2P, — P.
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Algebraic Geometry codes
The vector space L(D)

Given two divisors on a curve we will say

D=> npP=D' =) npP

provided that np > n, for all the points. (l.e. D is effective
if D = 0).
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Given a divisor D on a projective curve X over F let

Examples
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Given two divisors on a curve we will say

D=> npP=D' =) npP

provided that np > n, for all the points. (l.e. D is effective
if D = 0).
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Given a divisor D on a projective curve X over F let

Examples

Degree & multiplicity

L(D) = {f € F(X) | f 7 0, div(f) + D = 0} U{0}. (23) "™

L(D)

Evaluation
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Algebraic Geometry codes
The vector space L(D)

Theorem

Let D be a divisor on a projective curve X. The following
statements hold:

e Ifdeg(D) <0, then L(D) = {0}.
e The constant functions are in L(D) if and only if D = 0.

e If P is a point in X with P ¢ supp(D), then P is not a
pole in any f € L(D).
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Algebraic Geometry codes
The vector space L(D)

Proof.

o If f € L(D) with f %y 0 then div(f)+ D > 0, i.e.
deg(div(f) + D) > 0, but deg(div(f) + D) = deg(D),
which is a contradiction.
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Algebraic Geometry codes
The vector space L(D)

Universidad deValladolid

AG codes

E. Martinez-Moro

Proof.

o If f € L(D) with f %y 0 then div(f)+ D > 0, i.e.
deg(div(f) + D) > 0, but deg(div(f) + D) = deg(D),
which is a contradiction. Generaized RS

@ Let f %y 0 a constant function. If f € L(D) then e
div(f) + D > 0. But div(f) = 0 (is constant), thus
D = 0. Conversely, if D = 0 then div(f)+ D =D = 0.
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Algebraic Geometry codes
The vector space L(D)

Proof.
o If f € L(D) with f %y 0 then div(f)+ D > 0, i.e.
deg(div(f) + D) > 0, but deg(div(f) + D) = deg(D),
which is a contradiction.

@ Let f %y 0 a constant function. If f € L(D) then
div(f) + D > 0. But div(f) = 0 (is constant), thus

D = 0. Conversely, if D = 0 then div(f)+ D =D = 0.

e If Pis apolein f € L(D) with P ¢ supp(D) then the
coefficient of P in div(f) 4+ D of X" is negative,
contradicting f € L(D).
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Geometric Reed Solomon codes

Evaluating rational functions in L(D)

Let p(x,y,z) an homogeneous polynomial that defines a pro-
jective curve X over . Let D be a divisor on X' and choose
aset P = {P1,..., Py} of n distinct Fg-rational points on
X such that supp(D) NP = 0. If we order the points in P
consider the evaluation map

evp: L(D) — Fg

£ evp(f) = (F(PL).....f(P)) Y
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Geometric Reed Solomon codes

Evaluating rational functions in L(D)

Let p(x,y,z) an homogeneous polynomial that defines a pro-
jective curve X over . Let D be a divisor on X' and choose
aset P = {P1,..., Py} of n distinct Fg-rational points on
X such that supp(D) NP = 0. If we order the points in P
consider the evaluation map

evp: L(D) — Fg

£ evp(f) = (F(PL).....f(P)) Y

Exercise

Is evp well defined?
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Geometric Reed Solomon codes

Evaluating rational functions in L(D)
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If f € L(D) then P; is not a pole of f, however if f is repre-
sented by £ then h may have P; as a zero occurring in X' N X},
and it will occur at least so many times in X N &X,. If we
choose £ to represent f then f(P;) = 3, we must avoid this
situation. It can be shown that for any f € L(D) we can
choose a representative £ with h(P;) # 0.

Evaluation

AG codes : E. Martinez-Moro (SINGACOM-UVa) 59 / 86



Geometric Reed Solomon codes

Evaluating rational functions in L(D)
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If f € L(D) then P; is not a pole of f, however if f is repre-

sented by £ then h may have P; as a zero occurring in X' N X},

and it will occur at least so many times in X N &X,. If we

choose £ to represent f then f(P;) = 3, we must avoid this
situation. It can be shown that for any f € L(D) we can

choose a representative £ with h(P;) # 0.

Suppose now that f has two such representatives £ ~y %

where h(P;) # 0 # H'(P;). Then gh’' — g’h is a polyno-

mial multiple of p and p(P;) = 0. Thus g(P;)W(P;) =  evluaton
g (P)h(P)), i.e. E(P;) = &.(P)).
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Geometric Reed Solomon codes

Definition of the codes

Exercise

Prove that evp is a [F4-linear mapping.
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Geometric Reed Solomon codes

Definition of the codes

With the notation above we define the algebraic geometry
code associated to X', P and D to be

C(X,P,D) = {evp(f) | f € L(D)}. (25)
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Geometric Reed Solomon codes

Riemann-Roch

In order to get some information on the dimension and
minimum distance we will use the following version of the
Riemann-Roch's Theorem.

Theorem (Riemann-Roch)

Let D a divisor in a nonsingular projective plane curve X over
F, of genus g. Then

o dim(L(D)) > deg(D)+1—g.
e Furthermore, if deg(D) > 2g — 2 then

dim(L(D)) = deg(D) +1 — g.
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Geometric Reed Solomon codes

Riemann-Roch

Theorem

Let D a divisor in a nonsingular projective plane curve X over
F, of genus g. Let P a set of n distinct IF4-rational points on
X such that supp(D) NP = (). Assume that

2g —2 < deg(D) < n.
Then C(X,P, D) is an [n, k,d]| code over F, where

k =deg(D)+1—g.
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Geometric Reed Solomon codes

Riemann-Roch
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In order to check k = deg(D) +1— g by Riemann-Roch theo-
rem we just need to show that evp has trivial kernel. Suppose
that evp(f) = 0, then f(P;) = 0 for all /, i.e. is a zero of
f, since P; ¢ supp(D) we have div(f)+ D — (3.7 P;) = 0.
Therefore f € L(D — (3.7, P;)), but deg(D) < n, thus
deg(D—(>_/_; Pi)) < 0and we have L(D—(>_7_; P;)) = {0}
and f =0.
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Geometric Reed Solomon codes

Riemann-Roch
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AG codes

PrOOf. E. Martinez-Moro

In order to check k = deg(D) +1— g by Riemann-Roch theo-
rem we just need to show that evp has trivial kernel. Suppose
that evp(f) = 0, then f(P;) = 0 for all /, i.e. is a zero of
f, since P; ¢ supp(D) we have div(f)+ D — (3.7 P;) = 0.
Therefore f € L(D — (3.7, P;)), but deg(D) < n, thus
deg(D—(>_/_; Pi)) < 0and we have L(D—(>_7_; P;)) = {0}
and f =0.

Suppose that evp(f) has minimum weight d. Thus f(P;)) =0 . ...
for n — d indices {j; | 1 < j < n—d}. Thus f € L(D — )
(Zj'-';fl P;)) and therefore deg(D — (Zj";ld P;;)) > 0. Hence Dferenil ard dul
deg(D) — (n—d) > 0.
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AG exceed
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Geometric Reed Solomon codes

AG codes

E. Martinez-Moro

As a corollary of previous theorem we have that if {fi, ..., fc}
is a basis of L(D) then a generator matrix of the code
C(X,P,D)is

i(P1) f(P2) f1(Pn)
H(P1) f(P2) | f2(Pp) (26)
(P F(Po) ... fu(Ph)

Evaluation
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Geometric Reed Solomon codes ey

Reed-Solomon codes are AG codes
Universidad deValladolid

AG codes
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Consider the projective curve X over F given by z = 0. The
points in the curve are (x : y : 0). Let P = (1:0:0),
Po = (0 : 1 :0) and Pq,...P4—1 the remaining rational
points. For narrow sense RS codes we will let n=¢q¢ — 1 and
P = {P1,...Pg_1} and for the extended narrow-sense RS
codes n =g and P = {Po,... Pg_1}.

GRS are AG
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Geometric Reed Solomon codes

Reed-Solomon codes are AG codes
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Consider the projective curve X over F given by z = 0. The
points in the curve are (x : y : 0). Let P = (1:0:0),
Po = (0 : 1 :0) and Pq,...P4—1 the remaining rational
points. For narrow sense RS codes we will let n=¢q¢ — 1 and
P = {P1,...Pg_1} and for the extended narrow-sense RS
codes n =g and P = {Po,... Pg_1}.

Fix k (1 < k < n)andlet D= (k—1)Psx (D = 0 when
k = 1). We have that supp(D) NP = @ and X is non
singular of genus g = 0. Also k — 1 = deg(D) > 2g — 2 thus
dim(L(D)) = deg(D)+ 1 — g = k.

GRS are AG
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Geometric Reed Solomon codes

Reed-Solomon codes are AG codes

2 k—1
93:{1}
yy y

is a basis of L(D).
First div(x//y/) = jPy — jPso, thus div(x//y/) + D = jPy —
(k —1 — j)Pso which is effective since 0 < j < k — 1.

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Rational fu

L(D)

Evaluation

GRS are AG
Diferentials and dual

Goppa mee

AG exceec

66 / 86



Geometric Reed Solomon codes

Reed-Solomon codes are AG codes
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AG codes

2 kfl
% — {1 i % k]_} E. Martinez-Moro
y'y %

is a basis of L(D).
First div(x//y/) = jPy — jPso, thus div(x//y/) + D = jPy —
(k —1 — j)Pso which is effective since 0 < j < k — 1.

Consider a linear combination of elements of B

GRS are AG

= g/h and by definition of ~y g must be a multiple of z,
clearly this multiple should be 0 since z does not appear on
f, therefore a; = 0 for all /.
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Geometric Reed Solomon codes

Reed-Solomon codes are AG codes

Using B, any nonzero element f € L(D) can be written

g\x,y,z
f(XayaZ):(yd)’ va Zgjxj d=

with gg # 0 and d < k — 1.
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Geometric Reed Solomon codes

Reed-Solomon codes are AG codes

Using 9B, any nonzero element f € L(D) can be written as

g\x,y,z
f(XayaZ):(yd)’ va Zgjxj d=

with gg # 0 and d < k — 1.

Notice that g(x,y,z) is the homogenization in Fg[x, y]| of

m(x) = 27:0 gjx’ thus there is a 1-1 relation between the
elements of L(D) and those of Py C Fg[x].
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Geometric Reed Solomon codes

Reed-Solomon codes are AG codes
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Geometric Reed Solomon codes

Reed-Solomon codes are AG codes
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AG codes
Moreover, if 8 € F, then m(3) = f(3,1,0) and additionally B (Ot
f(8,1,0) = f(xo,yo,zo) where (6:1:0) = (x0: ¥ : 20).

Let « a primitive element of Fy and order the points P; =
(o' :1:0)forl < i< n The discussion shows that the
following sets are the same

{(m(1), m(c), ..., m(a"" 1)) | m(x) € Py}

{(f(P1),f(P2),...,f(Pn)) | f €L(D)}

and by R-R theorem deg(D)+1—g=k—-1+4+1+40 = k, e
d > n—deg(G) = n— k+ 1, hence by Singleton Bound
d =n— k+1 and they are MDS. Ol
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Geometric Reed Solomon codes

Generalized Reed-Solomon codes are AG codes

As an exercise show that Generalized Reed-Solomon codes are
AG codes using the discussion above and using the following
steps:
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Geometric Reed Solomon codes

Generalized Reed-Solomon codes are AG codes

As an exercise show that Generalized Reed-Solomon codes are
AG codes using the discussion above and using the following
steps:
o Let v =(90,...,7n—1) a n-tuple of distinct elements of
Fg, and v = (v, ..., vs-1) € Fg. Compute the
polynomial given by the Lagrange Interpolation Formula

ZH

i=0 J;é/

o Let X be the curve defined by z =0 and h(x,y) the
homogenization of polynomial p(x) of degree d < n—1.
We will assume that the v;'s are noncero, thus h # 0.
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Geometric Reed Solomon codes

Generalized Reed-Solomon codes are AG codes

(]

AG codes

Let u(x,y,z) = h(;gy) € Fq(X) and

P ={P1,P>,..., Py} such that P; = (vj—1 : 1:0).

Pso=(1:0:0)and D= (k—1)P
Prove that u(P;) = vj_1.
Prove that supp(D) NP = (.

Since the divisor of any element in Fg(X') is cero then

deg(D) = k — 1.
Prove that a basis of L(D) is

Prove that GRSk(v,v) = C(X, P, D)

: E. Martinez-Moro (SINGACOM-UVa)

— div(u).
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Geometric Reed Solomon codes

A worked example
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Geometric Reed Solomon codes

A worked example
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Let X = F3(IF4) the Fermat curve over [F4 given by the eqn.

B4y 422 =0
It has nine projective points given by

Q| P

Py | P3| Py | Ps| Pg| P | Pg
0O/ 0|0 |1l |a|la|l|a|a
l|la|a|0]0]0 |1 |11
1/1(1(1(1]1|0|0/|0

where @ = a2 =1+ a.

GRS are AG
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Geometric Reed Solomon codes
A worked example
By R-R's theorem dim(L(3Q)) = 3. The functions

X y
'x+y'y+z

are regular outside @ and have a pole of order 2 and 3 respec-
tively. They are a basis of L(D).

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Evaluation
GRS are AG
Diferentials and dual

Goppa mee

AG exceec

72 / 86



Geometric Reed Solomon codes
A worked example
By R-R's theorem dim(L(3Q)) = 3. The functions

X y
'x+y'y+z

are regular outside @ and have a pole of order 2 and 3 respec-
tively. They are a basis of L(D).

A generator matrix of C(X, P, D) is

1 11 1 1 1 1 1
G = 0 01 a aal a &
a a 0 0 0 1 1 1

and by R-R d > 5 but having a look to G clearly d = 5.
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Geometric Goppa Codes

Diferentials
Let V be a vector space over F(X). An F-linear map D :

F(X) — V is called a derivation if it satifies the product rule

D(fg) = fD(g) + gD(f).
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Geometric Goppa Codes

Diferentials

Let V be a vector space over F(X). An F-linear map D :
F(X) — V is called a derivation if it satifies the product rule

D(fg) = fD(g) + gD(f).

Example

Let X be the projective line with funtion field F(x). Define
D(F) = " iajx'~! for a polynomial F =" a;x' € F[x] and
extend this to quotients by

5 <F> _ GD(F) - FD(G)

G G2

Then D : F(x) — F(x) is a derivation.
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Geometric Goppa Codes

Local ring at a point

The set of all derivations D : F(X) — V will be denoted by
Der(X,V) (or Der(X) if V¥ = F(X)). Notice that Der(X, V)
is a F(X')-vector space.
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Geometric Goppa Codes

Local ring at a point

The set of all derivations D : F(X) — V will be denoted by
Der(X,V) (or Der(X) if V¥ = F(X)). Notice that Der(X, V)
is a F(X')-vector space.

Let X be a projective variety and P be a point on X. Then a
rational function f is called regular in the point P if one can
find homogeneous polynomials F and G same degree, such
that G(P) # 0 and f is the coset of F/G.

The set of all the regular rational functions at P will be de-
noted by Op(&X), the local ring at P and indeed it is a local
ring, i.e. it has a unique maximal ideal, given by

Mp = {f € Op(X) | f(P) = 0} (27)
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Geometric Goppa Codes

Local ring at a point
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in the point P =(0:0:1). S
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Geometric Goppa Codes

Local ring at a point

Example

In P2(F) consider the parabola X’ defined by XZ — Y2 = 0.

now with It has one point at infinity Poc = (1:0:0). The

function x/y is equal to y/z on the curve, hence it is regular

in the point P =(0:0:1).

% is regular in P and this function is equal to

and therefore also regular in P.
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Geometric Goppa Codes

Local parameters

Let see that Mp is generated by a single element (i.e. is a
principal ideal). Let X be a smooth curve in A%(F) defined
by the equation f =0, and let P = (a, b) be a point on it.

Mp = (x—a,y—b) and
f(P)(x—a) + f,(P)(y — b) =0 mod Mp
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Geometric Goppa Codes

Local parameters

Let see that Mp is generated by a single element (i.e. is a
principal ideal). Let X be a smooth curve in A%(F) defined
by the equation f =0, and let P = (a, b) be a point on it.

Mp = (x—a,y—b) and
f(P)(x—a) + f,(P)(y — b) =0 mod Mp

The F-vector space Mp /M3 has dimension 1 and therefore
Mp has one generator. Let g € F[x] be the coset of a
polynomial G. Then g is a generator of Mp if and only if
dpG is not a constant multiple of dpf, where

dpf = f(a, b)(x — a) + Fy(a, b)(y — b).
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Geometric Goppa Codes

Local parameters

Let < t >= Mp, and z € Op(X), then it can be written in
a unique way as
z=ut",

where v is a unit and m € Ng. The function t is called a local
parameter or uniformizing parameter in P.

If m > 0, then P is a zero of multiplicity m of z. We write
m = ordp(z) = vp(z). (vp(0) = ).
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Geometric Goppa Codes

Differential forms

Theorem

Let < t >= Mp a local paramenter for t, then there exist a
unique derivation

D; :F(X) — F(X) s.t. Di(t) =1, (28)

Moreover, Der(X') is one dimensional over F(X) and D; is a
basis element.
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Geometric Goppa Codes

Differential forms

Theorem

Let < t >= Mp a local paramenter for t, then there exist a
unique derivation

D; :F(X) — F(X) s.t. Di(t) =1, (28)

Moreover, Der(X') is one dimensional over F(X) and D; is a
basis element.

A rational differential form or differential on X" is an F(X)
linear map from Der(X) to F(X). The set of all rational
differential forms on X is denoted by Q(X).

AG codes : E. Martinez-Moro (SINGACOM-UVa)

Universidad deValladolid

AG codes

E. Martinez-Moro

Generalized RS
Goppa

Reed-Muller

Examples

Degree & multiplicity

Bézout and Pliicker

Rational functions
L(D)

Evaluation

GRS are AG
Diferentials and dual

Goppa mee

AG exceed

78 / 86



Geometric Goppa Codes

Differential forms
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Consider the map d : F(X) — Q(X) given by for each f €
F(X) the image df : Der(X) — F(X) is defined by df(D) =
D(f) for all D € Der(X). Then d is a derivation. and provides
to Q(X') a vector space structure over F(X).
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Geometric Goppa Codes

Differential forms

Universidad deValladolid

AG codes

E. Martinez-Moro

Consider the map d : F(X) — Q(X) given by for each f €
F(X) the image df : Der(X) — F(X) is defined by df(D) =
D(f) for all D € Der(X). Then d is a derivation. and provides
to Q(X') a vector space structure over F(X).

Theorem

The space Q(X) has dimension 1 over F(X) and d; is a basis
for every point P € X with local parameter t. L)
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Geometric Goppa Codes

Differential forms
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That is, for each differential we have a unique representation

w = fpdtp , where fp is a rational function at point P. We
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Geometric Goppa Codes

Differential forms
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w = fpdtp , where fp is a rational function at point P. We
can not evaluate P at w as by w(P) = fp(P) since it depends
on the choice of tp.
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Geometric Goppa Codes

Differential forms

That is, for each differential we have a unique representation
w = fpdtp , where fp is a rational function at point P. We
can not evaluate P at w as by w(P) = fp(P) since it depends
on the choice of tp.

Let w € Q(X). The order or valuation of w in P is defined by
ordp(w) = vp(w) := vp(fp). It is called regular if it has no
poles. This definition does not depend on the choices made.

The canonical divisor (w) of the differential w is defined by

W=(w)=_ vpw)P. (29)

Pex

If D is a divisor, Q(D) = {w € Q(X) | (w) — D > 0}.
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Geometric Goppa Codes

Residues. Definition of the codes

Let P € X and t is a local parameter, let w = fd; a differential
form , f =) a;jt’, then the residue at point P is defined as

Resp(w) = a_1.
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Geometric Goppa Codes

Residues. Definition of the codes

Let P € X and t is a local parameter, let w = fd; a differential
form , f =) a;jt’, then the residue at point P is defined as

Resp(w) = a_j.

As usual, Let D be a divisor on X and choose a set P =
{P1,...,Pn} of ndistinct Fg-rational points on X’ such that
supp(D) NP = 0.

The linear code C*(P, D) of length n over Fy is the image of
the linear map o : w(}_ P; — D) — [y defined by

a*(n) = (Resp,(n), Resp,(n), . . ., Resp,(n)). (30)
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Geometric Goppa Codes

Parameters of the code. Duality

Theorem

The code C*(P, D) has dimension k* = n— deg(D) +g — 1
and minimum distance d* > deg(D) — 2g + 2.

The proof follows from Riemann-Roch’s theorem and the
isomorphims between L(W — D) and Q(D).
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Geometric Goppa Codes

Parameters of the code. Duality

Theorem

The code C*(P, D) has dimension k* = n— deg(D) +g — 1
and minimum distance d* > deg(D) — 2g + 2.

The proof follows from Riemann-Roch’s theorem and the
isomorphims between L(W — D) and Q(D).

Theorem

The codes C*(P, D) and C(P, D) are dual codes.

The proof follows from the residue theorem that states
Y pcx Resp(w) = 0.
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Geometric Goppa Codes

Geometric Goppa Codes are evaluation codes

Theorem

Let X be a curve defined over Fy . Let P = {P1,...,Pp}
rational points on X. Then there exists a differential form w
with simple poles at the P; such that Resp,(w) =1 for all i.
Furthermore

C*(P,D)=C(P,W+»_P;—D)

for all divisors D that have a support disjoint from P, where
W is the divisor of w.
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