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Complete Decoding

Let C be a [n, k , d ] q-ary. We are interested in a mapping that given
a vector y ∈ Fn

q provides us one of the closest codeword(s) in C .

Consider the partition of Fn
q in Voronoi regions. For each c ∈ C

D(c) = {x ∈ Fn
q | dH(x, c) ≤ dH(x, c′), c 6= c′ ∈ C}

Note that some points y can be contained in more than one region
and the decoding problem is to find in which region(s) it lays.

A trivial way of solving it is to list all the qk codewords, this has time
complexity O(nqk).
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Syndrome Decoding

Keep stored the table of qn−k possible syndromes {Hxt | x ∈ Fn
q}

and the coset leader eHxt for each of them (i.e. the smallest vector e
such that Het belongs to the coset Hxt).

To decode one substracts to the received vector y the coset leader
corresponding to its coset eHyT .

Thus now the space complexity is O(nqn−k).
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Evseev Lemma - Bounded distance d.

Let B ⊂ {e ∈ Fn
q | wH(e) ≤ d0} the set of qn−k most probable (may

be not unique) error vectors.

Lemma.- Bounded distance decoding in the sphere of radious d0 at
most doubles the error probability pc of complete decoding.

Proof: Let L be the set of coset leaders. An error pattern e outside
L contributes to pc , that is pc = Pr({e ∈ Fn

q \ L}).In the bounded
case
pb = Pr({e ∈ Fn

q\(L∩B)}) = Pr({e ∈ Fn
q\L})+Pr({e ∈ L\(L∩B)})

≤ pc + Pr({e ∈ B \ (L ∩ B)}) since |B| = |L| and B are the most
probable.Finally the last event is contained in {e ∈ Fn

q \ L}.
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Bounded distance decoding

It can be proved (see page 41 of Barg’s paper) that for almost all
long [n, k] linear codes it covering radius equals to d0(1 + o(1)). By
lemma before one can use the following adapted syndrome decoding:

I Inspect all the error patterns in a sphere of radius d0 around the
received word y.

We can also now formulate complete decoding in the following com-
binatorial way

I Given a vector y ∈ Fn
q with dH(y, C) ≤ d0 find the closest

codeword c to y.
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Bounded distance decoding

If we have the parity check matrix of our code in systematic form

H = [ Idn−k | A ]

it is easy to check that if the syndrome has weight less that d
2 then the

non-zero coordinates locate the errors in check part (the first n − k
coordinates).

Just take into account that every coset has at most one vector of
weight d

2 and we can form them just with the check part.

Thus, syndromes of weight ≤ d
2 do not need to be decoded.
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Computing d

Unfortunately computing d for an arbitrary code is as hard as decod-
ing, i.e. if one can compute a minimum weight codeword of a linear
code one can decode.More formally

Lemma.- An algorithm that finds a minimum weight codeword of a
linear code one can also decode up to bd−12 c errors.

Can you see why?
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Split syndrome decoding

We want to reduce the complexity of syndrome decoding by taking
into account a better arrangement of the table spltting the syndrome
in several parts.

As usual, let y be the received vector and s = HyT , and suppose that
t is the actual number of errors.

Consider [n] partition in L = {1, . . . ,m} and R{m + 1, . . . , n} and
Hl , Hr the corresponding partition of H.

Any error of type e = (el |er ) where

HeT = Hle
T
l + Hre

T
r = s

is a pausible candidate for decoding.

10/25



Split syndrome decoding

We want to reduce the complexity of syndrome decoding by taking
into account a better arrangement of the table spltting the syndrome
in several parts.

As usual, let y be the received vector and s = HyT , and suppose that
t is the actual number of errors.

Consider [n] partition in L = {1, . . . ,m} and R{m + 1, . . . , n} and
Hl , Hr the corresponding partition of H.

Any error of type e = (el |er ) where

HeT = Hle
T
l + Hre

T
r = s

is a pausible candidate for decoding.

10/25



Split syndrome decoding

Assume also that the number of errors in L is u where u ≤ m and
t − u ≤ n −m.

For every possible (m)-vector el , compute sl = Hle
T
l and store it in

a table Xl together with el . The size of Xl is

O
(
n

(
m

u

)
(q − 1)u

)
.

Likewise we have Xr of size

O
(
n

(
n −m

t − u

)
(q − 1)t−u

)
.
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Split syndrome decoding

We will look in Xl ,Xr for a pair of entries sl , sr that add up the
received syndrome s (for practical issues of how to order the tables
see Barg’s paper).

In practise we do not know neither the number of errors nor their
distribution in L,R. Thus we must repeat the procedure for several
choices of m and u, optimizing the choice of in order to reduce the
size of memory needed to store Xl and Xr . Since their sizes are
exponential we must choose a point where both tables are equally
populated.

Finally the entire procedure need to be repeated for t = 1, 2, . . . , d0.
An estimation of time and space complexity of this procedure can be
found in page 47 of Barg’s paper.
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Gradient like decoding

In this section we want to define a steepest descent method for Ham-
ming metric.

The general principle will be to construct a set T of codewords in
such a way that given a vector y ∈ Fn

q then

1. Either y ∈ D(0),

2. or there exist a z ∈ T such that

wH(y − z) < wH(y).

Any set T ⊂ C satisfying this property will be called a test set.
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Gradient like decoding algorithm

Suppose a test set T ⊂ C has been precomputed.

I Set c = 0.

I Find z ∈ T such that

wH(y − z) < wH(y).

c← c + z, y← y − z.

I Repeat until no such a z is found.

I Output c.
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Gradient like decoding algorithm

Theorem .- For a test set T the gradient-like algorithm performs
a complete-minimum distance decoding. The time complexity is
O(n2|T |) and the space complexity is O(n|T |).

Proof: Let y /∈ D(0), then the algorithm expands y in a sum of test
vectors. Suppose that after m step no further vector is added, this
means that we brought y to D(0), that is

e = y −
m∑

u=1

zu ∈ D(0),

i.e. y ∈ D(
∑m

u=1 zu).
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Gradient like decoding algorithm

Note that if we submit a codeword 0 6= c ∈ C to the algorithm we
get

0 = c−
m∑

u=1

zu

with wH(c) > wH(c−
∑1

u=1 zu) > · · · > wH(c−
∑m−1

u=1 zu) ≥ 0.

In particular T spands C.
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Minimal vectors

Let supp(x) = {i ∈ [n] | xi 6= 0} be the support of the vector x. If
supp(x) ⊂ supp(y) (resp. ⊆) we say that x ≺ y (resp. �).

A codeword m ∈ C is said to be minimal if

0 6= c � m, and c ∈ C

implies that c = αm for a non-zero constant α ∈ Fq.

We will denote by M the set of minimal codewords of a code C. For
binary codes it can be seen also as the set of minimal supports, in
other case they define a set of projective points (”lines”) in the code.
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Minimal vectors g.d.d.

From now on q = 2.

Theorem .- For binary codesM is a test set, i.e. defines a gradient-
like algorithm that performs a complete-minimum distance decoding.

Proof: One just need to check that for y /∈ D(0) there is a codeword
c such that

wH(y + c) < wH(y).

Now spand c into a sum of minimal vectors whose support do not
intersect and we have done.

On average the time complexity of g.d.d. with M does not improve
the sydrome decoding (see Bar’s paper pages 50–51)
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Minimal vectors

Some properties of minimal supports:

1. Let E ⊂ [n] a support of a codeword c. Then E is minimal iff

rk(H(E )) = |E | − 1.

2. E is minimal ⇒ |E | ≤ n − k + 1.

3. Every support of size |E | ≤ 2d − 1 is minimal.

People with a combinatorial background can see here the definition
of a representable matroid.
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Zero neighbors

Let A ⊂ Fn
q and let X (A) be the set of all the points in Fn

q at distance
1 from A:

X (A) = {x ∈ Fn
q | dH(x,A) = 1}.

We define the boundary of A as

δ(A) = X (A) ∪ X (Fn
q \ A).

A non-zero codeword c ∈ C is called a zero neighbor if its Voronoi
region shares a common boundary with D(0), i.e.

δ(D(c)) ∩ δ(D(0)) 6= ∅.
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Zero neighbors

Note that if c ∈ C is a zero neighbors so are all its scalar multiples.
We will denote by Z the set of all the zero neighbors in C. It is a
direct consecuence of the definition that

X (D(0)) ∩ D(z) 6= ∅ ⇒ z ∈ Z.

Proof: x ∈ X (D(0)) ∩ D(z) implies that there exist a y ∈ D(0) at
distance 1 from x. Thus y ∈ δ(D(0)) ∩ δ(D(z)).
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Zero neighbors g.d.d.

Theorem .- For binary codes Z is a test set, i.e. defines a gradient-
like algorithm that performs a complete-minimum distance decoding.

Proof: Consider y /∈ D(0) and a chain of inclusions

0 = y0 ≺ y1 ≺ · · · ≺ yi−1 ≺ yi ≺ · · · ≺ y,

where wH(yi ) = i . Then there exist a i such that yi−1 ∈ D(0) and
yi ∈ δ(D(0)) \ D(0). Thus yi ∈ D(z) for some z ∈ Z and

wH(y − z) = dH(y, z) ≤ dH(y, yi ) + dH(yi , z)

< dH(y, yi ) + dH(yi , 0) = wH(y)

therefore Z is a test set.
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Size of Z

Lemma .- For all z ∈ Z the set of zero neighbors of the code C,

wH(z) ≤ 2t + 2

where t is the covering radius of C.

Proof: Let x be a point in δ(D(0)) ∩ δ(D(z)). Then

dH(0, z) ≤ dH(z, x) + dH(x, 0) ≤ (t + 1) + (t + 1).
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Size of Z

Thus we have the following upper bound for the size of Z.

Lemma .- For almost all codes |Z| ≤ qnαq(R) where

αq(R) =

 R, 0 ≤ R ≤ 1− Hq

(
q−1
2q

)
(Hq(2δ0)− (1− R))(1 + o(1)), 1− Hq

(
q−1
2q

)
≤ R ≤ 1
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