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LDPC codes

Let C be a binary linear code and H its parity check matrix. Assume
that each column of H has h ones and each row l ones, and l > h.

If n →∞ and l , h � then in every check a vanishing part of coordi-
nates is involved and every coordinate takes part in a vanishing part
of checks. Thus they are called Low Density Parity Check Codes.

Gallager proved that a code from a random ensemble of LDPC codes
comes close to the asymptotic G-V bound.

Thus we have nice codes, how to decode them?
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Iterated majority voting

I Find a coordinate contained in more unsatisfied checks that
satisfied ones. Invert it and recompute the syndrome.

I Repeat until no shuch coordinate is found or stop after
O(log n) rounds.

5/24



Iterated majority voting

I Find a coordinate contained in more unsatisfied checks that
satisfied ones. Invert it and recompute the syndrome.

I Repeat until no shuch coordinate is found or stop after
O(log n) rounds.

5/24



Iterated majority voting

Let e be an error, e = wt(e) and s = H ·eT (= H ·eT ).We assume that
there are functions bounding the weight of the syndrome depending
just on the number of errors

w?(e) ≤ wt(s) ≤ w?(e) = eh.

Note that the last equality comes from just taking the worst case
case, i.e. the ones of each of the columns marked by a position of the
error do not overlap the ones in the other columns marked by e.
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Iterated majority voting

Lemma .- If wt(s) > eh/2 there exist a coordinate , i , such that

wt(s + hi ) < wt(s)

where hi is the i-th column of the parity check matrix H.

In other words, flipping the i-th coordinate of the error e (or the i-
th coordinate of the received vector r the weight of the syndrome
decreases in one unit.)

Proof. Just take into account that the average number of unsatisfied
checks per coordinate is wt(s)/e > h/2.
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Iterated majority voting

Note that the asssumption of the previous lemma is satisfied if

w?(e) >
eh

2
,

which is indeed true for the case e = 1 (Note that e = 1 implies
e = ei the i-th coordinate vector and wt(s) = wt(hi ) = h).

Thus there exist a non-empty region 0 ≤ e ≤ e0 such that the in-
equality in red in this slide is satisfied for all the values of the weight
e of the error.Let us define by e0 the maximal number with such a
property.
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Iterated majority voting

For any vector of weight e ≤ e0 there exist a coordinate contained in
more than h/2 unsatisfied checks such that if we invert it:

1. We reduce by one the weight of the syndrome,

2. we add or remove an error.

Thus, taking into account the picture in the whiteboard, in the worst
case we go to the ”south-east” neighbor. Thus for successful de-
coding, even in the worst case, we do not have to leave the region
wt(e) < e0, that is, the initial point must be below the line containing
the point P = (e0, e0h/2) with slope −1.
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Let us denote e1 the first coordinate of that line with w?(e) = eh,
then e1 is a lower bound on the number of correctable errors and we
have that

Theorem .- For every vector e of weight

wt(e) <

⌊
e0
2

h + 2

h + 1

⌋
the IMV algorithm performs a succesfully decoding.
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Gallager’s emsemble

Take l copies of the identity matrix Im and form a m × ml matrix.
Permute randomly its columns. Repeat this independenly h times to
form an mh×ml parity-check matrix of the LDPC code. As m→∞
this defines an ensemble of LDPC codes of growing length.

Theorem (Zyablov-Pinser).- For almost all codes in Gallager’s en-
semble the value e0/n is > 0. If R → 1, the fraction of erros corrected
by IMV is nor less than δ0(R)/22.

δ0(R) is the smallest root of R = 1 − H2(x) is the relative Gibert-
Varshamov distance. Note that the GV distance is the maximum d0
s.t.

|C|
d0−1∑
i=0

(
n

i

)
≤ 2n.
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Complexity

Theorem.- The IMV algorithm has complexity O(n log n).

Proof. Assume that l , h are constants. Thus every chech involves l
coordinates, i.e. O(1). One decoding round is performed inO(n) time
thus one must show that each round reduces the syndrome weight by
a finite fraction.

Let e be the number of errors, then c of them will be contained in
more that h/2 unsatisfied checks. Therefore

s = wt(s) ≤ ch + (e − c)
h

2
.

I.e.

c ≥ 2s − eh

h
.
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Complexity

Now a coordinate (say i0) appears in h checks and each of this checks
involves l − 1 other coordinates. We shall thenote those coordinates
connected to i0.

Thus flipping a coordinate changes the value of h checks and affects at
most to other h(l−1) coordinates connected with it. Suppose that all
of them where contained (before flipping) in more that h/2 unsatisfied
checks and should have to be inverted in the present decoding round.
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Complexity

Suppose also (we go for the worst case)that inverting the i0-th coor-
dinate change the status in such a way that flipping the connected
ones does not reduce the weight of s, thus the algorithm leaves them
unchange.

Let us mark all the coordinates that need to be inverted during one
decoding round, a single flip can remove at most

h(l − 1) + 1 marks.
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Complexity

Thus the number of coordinates inverted (during a round) is greater
than

c

h(l − 1) + 1
.

Inverting one coordinate reduces the weight of the syndrome in at
least one unit, thus after a round

s − c

h(l − 1) + 1
≤ s

(
1− 2s − eh

sh(h(l − 1) + 1)

)
and the expresion in red is < 1 thus we are done.
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Parallel iterated majority voting

I In parallel, mark all coordinates contained in more unsatisfied
checks that satisfied ones. Invert them and recompute the
syndrome.

I Repeat until no coordinates can be marked.
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Graphs

Let G = (V1 ∪ V2,E ) be a bipartite graph. G is called (l , h)-regular
if the degree of every vertex in V1 is l and the degree of every vertex
in V2 is h, h < l .

Let |V2| = n, thus |V1| = hn/l . Now we form the matrix A with rows
numbered by vertices from V1 and column with vertices from V2. Let
vi ∈ V1 and v ′j ∈ V2, then aij = 1 iff (vi , v

′
j ) ∈ E .

Note that n − k ≤ nh/l thus k > n − nh/l = n(1− h/l) and thus A
is the parity check matrix of a code C(G ) of rate R > 1− h/l .
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Graphs

Lemma .- Suppose that every group of e ≤ a = αn h-regular vertices
has at least (3/4+ε)he neighbors. Then IMV applied to C(G ) corrects
αn/2 errors.

The key idea is that any not too large subset of h-regular vertices has
not to few neighbors.

A bipartite graph is called a (l , h, α, γ)-expander if every subset U ⊆
V1 of cardinal at most a fraction of h-regular vertices has at least
γ|U| neighbors,more formally

|U| < αn⇒ |{u′ ∈ V2 | ∃u ∈ U , (u, u′) ∈ E}| ≥ γ|U|.
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Graphs

Proof .- We shall show that the expansion in the lemma ensures
e ≤ e0.

The total number of checks with errors is (by asumption of the lemma)

wt(s) + x >
3

4
he

where x denotes the number of satisfied checks with errors.

Now, any unsatisfied check contains at least one error and every satis-
fied check with at least one error contains at least two errors, therefore

wt(s) + 2x ≤ he.
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Graphs

Now by the two expresions in red in the previous slide we get that
wt(s) > eh/2 for any vector of weight up to e ≤ a, thus e < e0 by
definition of the latter one.

Note that the lemma corresponds to choosing the graph G so that
w?(e) is nearly eh/2 but unfortunatelly the level of expansion greater
than 3/4 is not really known for explicit constructions of families of
expanders, though an average random bipartite graph could probably
have a good expansion.
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Graphs

Theorem .- Let G = (V1 ∪ V2,E ) a randomly chosen (l , h)-regular
graph with |V2| = n, |V1| = hn/l . Then for all 0 < α < 1 a set of
αn vertices in V2 will have (on the average) at least

n
h

l
(1− (1− α)l)

neighbors.
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Regular-Graph codes

An explicit construction:

Let H be a parity check matrix of a binary [l ,m, βl ]-code C. A the
v × n vertices vs. edges incidence matrix of a l regular graph. The
parity check matrix H of the Regular-Graph code C(G ,H) is obtained
by replacing the ith row in A by its l−m copies an then replacing the
l all-one columns in these l −m rows by l columns of H, 1 ≤ i ≤ v .

Note that n − k ≤ (l −m)v , thus 1− R ≤ 2−mv/n since lv = 2n,
and therefore

mv/n − 1 = 2m/l − 1 ≤ R.

See an example in the whiteboard.
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Parallel Decoding R-G codes

I In parallel, for each of the v subsets, if the current setting of
coordinates is within distance βl/4 of a codeword of C, mark all
the coordinated that should be flipped to get such a codeword.
Invert the marked coordinates.

I Repeat O(log n) rounds.
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