On trace codes, duality and Galois invariance

EKU Seminar on Coding Theory
E. Martínez-Moro

Instituto de Investigación en Matemáticas

i Acknowledgements

Main reference: E. Martínez-Moro and A.P. Nicolás and I.F. Rua "On trace codes and Galois invariance over finite commutative chain rings". Finite Fields and Their Applications (2013), 22(0), 114 - 121.

Acknowledgements
Introduction

Chain Rings
Galois Extensions of Chain Rings
Galois invariant codes

Galois closure
The picture

Introduction

Let $\mathbb{F}_{q^{e}}$ be the finite field of q^{e} elements, q a power of a prime, and let C be a linear code over $\mathbb{F}_{q^{m}}$ of length n, i.e., a linear subspace of $\mathbb{F}_{q^{e}}^{n}$. There are two classical constructions that allow us to build a linear code over \mathbb{F}_{q} from C.

If C has dimension k over $\mathbb{F}_{q^{e}}$ and minimum distance d, then the subfield subcode (or restriction of C to \mathbb{F}_{q}) is defined as

$$
\operatorname{Res}_{\mathbb{F}_{q}}(C)=C \cap \mathbb{F}_{q}^{n} .
$$

The code $\operatorname{Res}_{\mathbb{F}_{q}}(C)$ is a \mathbb{F}_{q}-linear code of length n, dimension $k_{s} \geq$ $e k-(e-1) n$ and minimum distance $d_{s} \geq d$.

Introduction

Let $\mathbb{F}_{q^{e}}$ be the finite field of q^{e} elements, q a power of a prime, and let C be a linear code over $\mathbb{F}_{q^{m}}$ of length n, i.e., a linear subspace of $\mathbb{F}_{q^{e}}^{n}$. There are two classical constructions that allow us to build a linear code over \mathbb{F}_{q} from C.

If C has dimension k over $\mathbb{F}_{q^{e}}$ and minimum distance d, then the subfield subcode (or restriction of C to \mathbb{F}_{q}) is defined as

$$
\operatorname{Res}_{\mathbb{F}_{q}}(C)=C \cap \mathbb{F}_{q}^{n} .
$$

The code $\operatorname{Res}_{\mathbb{F}_{q}}(C)$ is a \mathbb{F}_{q}-linear code of length n, dimension $k_{s} \geq$ $e k-(e-1) n$ and minimum distance $d_{s} \geq d$.

The trace code of C is given by
$\operatorname{Tr}_{\mathbb{F}_{q^{e}} \mid \mathbb{F}_{q}}(C)=\left\{\left(\operatorname{Tr}_{\mathbb{F}_{q^{e}} \mid \mathbb{F}_{q}}\left(c_{1}\right), \ldots, \operatorname{Tr}_{\mathbb{F}_{q^{e}} \mid \mathbb{F}_{q}}\left(c_{n}\right)\right) \mid\left(c_{1}, \ldots, c_{n}\right) \in C\right\}$
where $\operatorname{Tr}_{\mathbb{F}_{q^{e}} \mid \mathbb{F}_{q}}$ denotes the trace function over \mathbb{F}_{q}. The dimension k_{t} of the trace code fulfills $k \leq e k_{t}$.

Chain Rings

A commutative ring R is said a chain ring if the lattice of all its ideals is a chain. This implies that R is a principal ideal ring and its chain of ideals is

$$
R>\mathfrak{m}>\cdots>\mathfrak{m}^{t-1}>\mathfrak{m}^{t}=0
$$

for some $t \in \mathbb{N}$, where $\mathfrak{m}=\mathfrak{N}(R)$ denotes the nilradical of R. In particular, R is a local ring and the quotient R / \mathfrak{m} is a finite field \mathbb{F}_{q}. If $t>1$, then $\mathfrak{m}^{i}=R p^{i}$, for $i=1, \ldots, t$, with p any element in $\mathfrak{m}^{2} \backslash \mathfrak{m}$. In such a case, any element $a \in R$ can be uniquely written as $a=\sum_{i=0}^{t-1} a_{i} p^{i}$, with $a_{i} \in \Gamma(R)=\left\{b \in R \mid b^{q}=b\right\}$.

Chain Rings

The set $\Gamma(R)$ is a coordinate set of R, i.e., a complete set of representatives of $R \bmod \mathfrak{m}=R p$. If $\pi: R \rightarrow R / \mathfrak{m}$ is the canonical projection, a monic polynomial $f \in R[x]$ is called basic irreducible if $\pi(f)$ is irreducible in $(R / \mathfrak{m})[x]$.

Let R and S be two finite commutative chain rings such that $R \subset S$ and $1_{R}=1_{S}$. We say that S is an extension of R and we denote it by $S \mid R$. Provided that \mathfrak{m} and \mathfrak{M} are the maximal ideals of R and S respectively, we say that the extension $S \mid R$ is separable if $\mathfrak{m S}=\mathfrak{M}$. The last condition is equivalent to the condition $S \cong R[x] /(f)$, where (f) is the ideal generated by a monic basic irreducible polynomial $f \in R[x]$.

Chain Rings

The set $\Gamma(R)$ is a coordinate set of R, i.e., a complete set of representatives of $R \bmod \mathfrak{m}=R p$. If $\pi: R \rightarrow R / \mathfrak{m}$ is the canonical projection, a monic polynomial $f \in R[x]$ is called basic irreducible if $\pi(f)$ is irreducible in $(R / \mathfrak{m})[x]$.

Let R and S be two finite commutative chain rings such that $R \subset S$ and $1_{R}=1_{S}$. We say that S is an extension of R and we denote it by $S \mid R$. Provided that \mathfrak{m} and \mathfrak{M} are the maximal ideals of R and S respectively, we say that the extension $S \mid R$ is separable if $\mathfrak{m S}=\mathfrak{M}$. The last condition is equivalent to the condition $S \cong R[x] /(f)$, where (f) is the ideal generated by a monic basic irreducible polynomial $f \in R[x]$.

Galois Extensions of Chain Rings

let us assume that $S \mid R$ is a separable extension of finite commutative chain rings. The group G of all automorphims γ of S such that $\left.\gamma\right|_{R}$ is the identity is called the Galois group of $S \mid R$.

It can be proven that the extension $S \mid R$ is Galois, that is, $S^{G}=R$, where $S^{G}=\{s \in S \mid \gamma(s)=s, \forall \gamma \in G\}$ is the fixed subring of S. Moreover, G is isomorphic to the Galois group of the extension $\mathbb{F}_{q^{e}} \mid \mathbb{F}_{q}$ where $\mathbb{F}_{q^{e}}$ is the residue field S / \mathfrak{M}.

Galois Extensions of Chain Rings

let us assume that $S \mid R$ is a separable extension of finite commutative chain rings. The group G of all automorphims γ of S such that $\left.\gamma\right|_{R}$ is the identity is called the Galois group of $S \mid R$.

It can be proven that the extension $S \mid R$ is Galois, that is, $S^{G}=R$, where $S^{G}=\{s \in S \mid \gamma(s)=s, \forall \gamma \in G\}$ is the fixed subring of S. Moreover, G is isomorphic to the Galois group of the extension $\mathbb{F}_{q^{e}} \mid \mathbb{F}_{q}$ where $\mathbb{F}_{q^{e}}$ is the residue field S / \mathfrak{M}.

Galois Extensions of Chain Rings

Thus, G is a cyclic group and it is generated by the power map $\gamma(a)=a^{q}$, for a suitable primitive element $a \in S$. Furthermore, the set $B=\left\{\gamma^{i}(a) \mid i=0, \ldots, e-1\right\}$ is a free R-basis of S, i.e., B is a normal basis of S, and we can assume w.l.o.g. that $B \subset \Gamma(S)$, the coordinate system of S. Moreover, S is also an unramified extension of R. So, the maximal ideal \mathfrak{M} of S is generated by the maximal ideal of R, that is, $\mathfrak{M}=S \mathfrak{m}=S p$. Hence, the lattice of ideals of S is

$$
S>S p>S p^{2}>S p^{3}>\cdots>S p^{t}=0
$$

Galois Extensions of Chain Rings

Thus we can write any element $s \in S$ as $s=p^{\prime} u$, where $I=0,1, \ldots, t$ is unique and $u \in S \backslash S p$ is a unit of S unique modulo $S p^{t-1}$. The function $\nu: S \rightarrow\{0,1, \ldots, t\}$ defined by $\nu\left(p^{\prime} u\right)=I$ is well-defined because of the uniqueness of I. It verifies that $\nu(s)=0$ if and only if s is a unit of S.

Galois invariant codes

Let $S \mid R$ be a separable extension of finite chain rings and let G be the group of R-automorphims of S. If $\gamma \in G$, then γ acts naturally over S^{n} coordinatewise.
A code of length n over S is any subset $C \subseteq S^{n}$. The code $C \subseteq S^{n}$ is called linear if it is a submodule of S^{n}, and it is called G-invariant (Galois invariant) if

$$
\gamma(C)=C \text { for all } \gamma \in G
$$

Galois invariant codes

The trace function Tr of an element $s \in S$ over R is defined as $\operatorname{Tr}(s)=$ $\sum_{\gamma \in G} \gamma(s)$. This action can be also extended to S^{n} coordinatewise and a code $C \subseteq S^{n}$ is called trace invariant if $\operatorname{Tr}(C)=C$. Note that $\operatorname{Tr}(C)$ is a code over R.

Given a linear code C, we define the restriction of $C, \operatorname{Res}(C)$, as the set of all the elements of C which have components in R, i.e., $\operatorname{Res}(C)=C \cap R^{n}$ and it is also a code over R.

Galois invariant codes

The trace function Tr of an element $s \in S$ over R is defined as $\operatorname{Tr}(s)=$ $\sum_{\gamma \in G} \gamma(s)$. This action can be also extended to S^{n} coordinatewise and a code $C \subseteq S^{n}$ is called trace invariant if $\operatorname{Tr}(C)=C$. Note that $\operatorname{Tr}(C)$ is a code over R.

Given a linear code C, we define the restriction of C, $\operatorname{Res}(C)$, as the set of all the elements of C which have components in R, i.e., $\operatorname{Res}(C)=C \cap R^{n}$ and it is also a code over R.

Galois invariant codes

A third construction is the following. If C is a linear code over R (i.e., a linear submodule of R^{n}), then we define the extension of C as the S-linear code $\operatorname{Ext}(C)=C \otimes_{R} S$, i.e., the set of all S-linear combinations of codewords in C.

Notice that if C, D are two codes over R and $C \subseteq D$, then $\operatorname{Ext}(C) \subseteq$ $\operatorname{Ext}(D)$. Notice also that $\operatorname{Res}(C)=\operatorname{Res}(\operatorname{Ext}(\operatorname{Res}(C)))$ for any code C over R.

Galois invariant codes

A third construction is the following. If C is a linear code over R (i.e., a linear submodule of R^{n}), then we define the extension of C as the S-linear code $\operatorname{Ext}(C)=C \otimes_{R} S$, i.e., the set of all S-linear combinations of codewords in C.

Notice that if C, D are two codes over R and $C \subseteq D$, then $\operatorname{Ext}(C) \subseteq$ $\operatorname{Ext}(D)$. Notice also that $\operatorname{Res}(C)=\operatorname{Res}(\operatorname{Ext}(\operatorname{Res}(C)))$ for any code C over R.

Lemma: Canonical Form

Lemma.- Let S be a finite commutative chain ring with maximal ideal $S p$, and let C be a linear code. There exist elements $c_{i}=$ $\left(0, \ldots, 0, p^{\alpha_{i}}, y_{i i+1}, \ldots, y_{i n}\right) \in C, i=1, \ldots, m$, with $\alpha_{i} \in \mathbb{N} \cup\{0\}$ and $y_{i j} \in S$, such that the code generated by $\left\{c_{1}, \ldots, c_{m}\right\}$ is (permutationally) equivalent to C.

Proof: Let $\left\{b_{1}, \ldots, b_{1}\right\}$ be any generator system of C as submodule of S^{n}. Let A be the $I \times n$ matrix constructed by stacking the generators words $b_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$, for $i=1, \ldots, l$.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{l 1} & a_{l 2} & \cdots & a_{l n}
\end{array}\right]
$$

Lemma: Canonical Form

Lemma.- Let S be a finite commutative chain ring with maximal ideal $S p$, and let C be a linear code. There exist elements $c_{i}=$ $\left(0, \ldots, 0, p^{\alpha_{i}}, y_{i i+1}, \ldots, y_{i n}\right) \in C, i=1, \ldots, m$, with $\alpha_{i} \in \mathbb{N} \cup\{0\}$ and $y_{i j} \in S$, such that the code generated by $\left\{c_{1}, \ldots, c_{m}\right\}$ is (permutationally) equivalent to C.

Proof: Let $\left\{b_{1}, \ldots, b_{l}\right\}$ be any generator system of C as submodule of S^{n}. Let A be the $I \times n$ matrix constructed by stacking the generators words $b_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$, for $i=1, \ldots, l$.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{l 1} & a_{l 2} & \cdots & a_{l n}
\end{array}\right]
$$

Lemma: Canonical Form

Since S is a principal ideal ring, it is possible to transform A by a sequence of elementary transformations into a matrix of the form

$$
B=\left[\begin{array}{ccccccc}
p^{\nu_{1}} & y_{12} & \cdots & y_{1 k} & y_{1 k+1} & \cdots & y_{1 n} \\
0 & p^{\nu_{2}} & \cdots & y_{2 k} & y_{2 k+1} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & p^{\nu_{m}} & y_{m m+1} & \cdots & y_{m n} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where $\nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{m}<t, \nu_{i} \leq \nu\left(y_{i j}\right)$, for all $i=1, \ldots, m$ and $j=i+1, \ldots, n$, and $\nu_{i}>\nu\left(y_{k i}\right)$, for all $i=1=1, \ldots, m$ and $k<i$ (unless $y_{k i}=0$).

Lemma: Canonical Form

Notice that only row operations and column permutations are needed in such a transformation, so the first m rows of B generate a code C^{\prime} permutationally equivalent to C.

Main Theorem

Theorem.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. A S-linear code C is G-invariant if and only if $C=\operatorname{Ext}(\operatorname{Res}(C))$ or, equivalently, if and only if the S-submodule C admits a generator system in R^{n}.

Corollary

Let C be a linear S-code. If G is the Galois group of $S \mid R$, the code $C_{G}=\bigcap_{\gamma \in G} \gamma(C)$ is the largest G-invariant subcode of C. This code is called the G-core of C. As a consequence of the main theorem we obtain the relationship between the G-core of C and the extensionrestriction code.

Corollary.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G, and let C be a linear S-code. If $C_{G}=\bigcap \gamma(C)$, then $C_{G}=\operatorname{Ext}(\operatorname{Res}(C))=\operatorname{Ext}\left(\operatorname{Res}\left(C_{G}\right)\right)$.

Corollary

Let C be a linear S-code. If G is the Galois group of $S \mid R$, the code $C_{G}=\bigcap_{\gamma \in G} \gamma(C)$ is the largest G-invariant subcode of C. This code is called the G-core of C. As a consequence of the main theorem we obtain the relationship between the G-core of C and the extensionrestriction code.

Corollary.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G, and let C be a linear S-code. If $C_{G}=\bigcap_{\gamma \in G} \gamma(C)$, then $C_{G}=\operatorname{Ext}(\operatorname{Res}(C))=\operatorname{Ext}\left(\operatorname{Res}\left(C_{G}\right)\right)$.

Corollary

Proof.- Let $D=\operatorname{Ext}(\operatorname{Res}(C))$. This is a G-invariant subcode of C by the previous Theorem, and so $D=D_{G}$. On the other hand, $D \subseteq C$, thus $D=D_{G} \subseteq C_{G}$, which is G-invariant. Using again the main theorem, $C_{G}=\operatorname{Ext}\left(\operatorname{Res}\left(C_{G}\right)\right) \subseteq \operatorname{Ext}(\operatorname{Res}(C))=D$. This concludes the proof.

Invariance

Lemma.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. For any S-linear code C

$$
\operatorname{Res}(C) \subseteq \operatorname{Tr}(C)
$$

Moreover, if C is G-invariant, then

$$
\operatorname{Res}(C)=\operatorname{Tr}(C)
$$

Lemma.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. Then, for any $v \in S^{n}, v \in$ Ext (Tr (Sv)).

Invariance

Lemma.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. For any S-linear code C

$$
\operatorname{Res}(C) \subseteq \operatorname{Tr}(C)
$$

Moreover, if C is G-invariant, then

$$
\operatorname{Res}(C)=\operatorname{Tr}(C)
$$

Lemma.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. Then, for any $v \in S^{n}, v \in$ Ext $(\operatorname{Tr}(S v))$.

Invariance Theorem

Theorem.- For any separable extension $S \mid R$ of finite commutative chain rings, and for any S-linear code C,

$$
\operatorname{Res}(C)=\operatorname{Tr}(C)
$$

if and only if C is invariant under the Galois group of $S \mid R$.

Galois closure

The Galois closure \bar{C} of an arbitrary code C over S is the smallest Galois closed code over S containing C. It may be obtained from C by taking the span of all images of some set of generators of C under the Galois automorphisms.

Galois closure

Proposition.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. If C is a S-linear code, and \bar{C} is its Galois closure, then $\operatorname{Tr}(C)=\operatorname{Tr}(\bar{C})$.

Proof: Since $C \subseteq \bar{C}$ we have $\operatorname{Tr}(C) \subseteq \operatorname{Tr}(\bar{C})$. On the other hand, let $c \in \bar{C}$, then $c=\sum_{j} \lambda_{j} \sigma_{j}\left(c_{j}\right)$ where $\lambda_{j} \in S, c_{j} \in C$ and $\sigma_{j} \in G$. Now, because $\operatorname{Tr}(x)=\operatorname{Tr}(\sigma(x))$ for all $x \in S^{n}$, we have that

$$
\begin{gathered}
\operatorname{Tr}(c)=\operatorname{Tr}\left(\sum_{j} \lambda_{j} \sigma_{j}\left(c_{j}\right)\right)=\sum_{j} \operatorname{Tr}\left(\lambda_{j} \sigma_{j}\left(c_{j}\right)\right) \\
=\sum_{j} \operatorname{Tr}\left(\sigma_{j}^{-1}\left(\lambda_{j}\right) c_{j}\right)=\operatorname{Tr}\left(\sum_{j} \sigma_{j}^{-1}\left(\lambda_{j}\right) c_{j}\right) \in \operatorname{Tr}(C) \quad \square
\end{gathered}
$$

Galois closure

Proposition.- Let $S \mid R$ be a separable extension of finite commutative chain rings with Galois group G. If C is a S-linear code, and \bar{C} is its Galois closure, then $\operatorname{Tr}(C)=\operatorname{Tr}(\bar{C})$.

Proof: Since $C \subseteq \bar{C}$ we have $\operatorname{Tr}(C) \subseteq \operatorname{Tr}(\bar{C})$. On the other hand, let $c \in \bar{C}$, then $c=\sum_{j} \lambda_{j} \sigma_{j}\left(c_{j}\right)$ where $\lambda_{j} \in S, c_{j} \in C$ and $\sigma_{j} \in G$. Now, because $\operatorname{Tr}(x)=\operatorname{Tr}(\sigma(x))$ for all $x \in S^{n}$, we have that

$$
\begin{gathered}
\operatorname{Tr}(c)=\operatorname{Tr}\left(\sum_{j} \lambda_{j} \sigma_{j}\left(c_{j}\right)\right)=\sum_{j} \operatorname{Tr}\left(\lambda_{j} \sigma_{j}\left(c_{j}\right)\right) \\
=\sum_{j} \operatorname{Tr}\left(\sigma_{j}^{-1}\left(\lambda_{j}\right) c_{j}\right)=\operatorname{Tr}\left(\sum_{j} \sigma_{j}^{-1}\left(\lambda_{j}\right) c_{j}\right) \in \operatorname{Tr}(C) \quad \square
\end{gathered}
$$

Galois closure

Theorem [Delsarte].-
Let $S \mid R$ be a separable extension of finite commutative chain rings. If C is a S-linear code, then $\operatorname{Res}(C)^{\perp}=\operatorname{Tr}\left(C^{\perp}\right)$, where C^{\perp} is the orthogonal complement to C with respect to the usual scalar product, and $\operatorname{Res}(C)^{\perp}$ is the orthogonal complement of $\operatorname{Res}(C)$ in R^{n}.

Proof:
Since $S \mid R$ is Galois, the bilinear form $B: S \times S \rightarrow R$ defined by $B(x, y)=\operatorname{Tr}(x y)$ is non degenerate. The proof follows the lines of the classical Delsarte's theorem

Galois closure

Theorem [Delsarte].-
Let $S \mid R$ be a separable extension of finite commutative chain rings. If C is a S-linear code, then $\operatorname{Res}(C)^{\perp}=\operatorname{Tr}\left(C^{\perp}\right)$, where C^{\perp} is the orthogonal complement to C with respect to the usual scalar product, and $\operatorname{Res}(C)^{\perp}$ is the orthogonal complement of $\operatorname{Res}(C)$ in R^{n}.

Proof:

Since $S \mid R$ is Galois, the bilinear form $B: S \times S \rightarrow R$ defined by $B(x, y)=\operatorname{Tr}(x y)$ is non degenerate. The proof follows the lines of the classical Delsarte's theorem

The picture

Instituto de Matemáticas

