On trace codes, duality and Galois invariance

EKU Seminar on Coding Theory

E. Martínez-Moro

Instituto de Investigación en Matemáticas

Acknowledgements

➡ Main reference: E. Martínez-Moro and A.P. Nicolás and I.F. Rua "On trace codes and Galois invariance over finite commutative chain rings". Finite Fields and Their Applications (2013), **22**(0), 114 – 121.

Acknowledgements

Introduction

Chain Rings

Galois Extensions of Chain Rings

Galois invariant codes

Galois closure

The picture

Introduction

Let \mathbb{F}_{q^e} be the finite field of q^e elements, q a power of a prime, and let C be a linear code over \mathbb{F}_{q^m} of length n, i.e., a linear subspace of $\mathbb{F}_{q^e}^n$. There are two classical constructions that allow us to build a linear code over \mathbb{F}_q from C.

If C has dimension k over \mathbb{F}_{q^e} and minimum distance d, then the subfield subcode (or restriction of C to \mathbb{F}_q) is defined as

$$\operatorname{Res}_{\mathbb{F}_q}(C) = C \cap \mathbb{F}_q^n.$$

The code $\operatorname{Res}_{\mathbb{F}_q}(C)$ is a \mathbb{F}_q -linear code of length n, dimension $k_s \ge ek - (e-1)n$ and minimum distance $d_s \ge d$.

Introduction

Let \mathbb{F}_{q^e} be the finite field of q^e elements, q a power of a prime, and let C be a linear code over \mathbb{F}_{q^m} of length n, i.e., a linear subspace of $\mathbb{F}_{q^e}^n$. There are two classical constructions that allow us to build a linear code over \mathbb{F}_q from C.

If C has dimension k over \mathbb{F}_{q^e} and minimum distance d, then the subfield subcode (or restriction of C to \mathbb{F}_q) is defined as

$$\operatorname{Res}_{\mathbb{F}_q}(C) = C \cap \mathbb{F}_q^n.$$

The code $\operatorname{Res}_{\mathbb{F}_q}(C)$ is a \mathbb{F}_q -linear code of length n, dimension $k_s \ge ek - (e-1)n$ and minimum distance $d_s \ge d$.

The trace code of C is given by

$$\mathrm{Tr}_{\mathbb{F}_{q^e}|\mathbb{F}_q}(\mathcal{C}) = \left\{ \left(\mathrm{Tr}_{\mathbb{F}_{q^e}|\mathbb{F}_q}(c_1), \ldots, \mathrm{Tr}_{\mathbb{F}_{q^e}|\mathbb{F}_q}(c_n) \right) \mid (c_1, \ldots, c_n) \in \mathcal{C} \right\}$$

where $\operatorname{Tr}_{\mathbb{F}_{q^e}|\mathbb{F}_q}$ denotes the trace function over \mathbb{F}_q . The dimension k_t of the trace code fulfills $k \leq ek_t$.

Chain Rings

A commutative ring R is said a chain ring if the lattice of all its ideals is a chain. This implies that R is a principal ideal ring and its chain of ideals is

$$R > \mathfrak{m} > \cdots > \mathfrak{m}^{t-1} > \mathfrak{m}^t = 0,$$

for some $t \in \mathbb{N}$, where $\mathfrak{m} = \mathfrak{N}(R)$ denotes the nilradical of R. In particular, R is a local ring and the quotient R/\mathfrak{m} is a finite field \mathbb{F}_q . If t > 1, then $\mathfrak{m}^i = Rp^i$, for $i = 1, \ldots, t$, with p any element in $\mathfrak{m}^2 \setminus \mathfrak{m}$. In such a case, any element $a \in R$ can be uniquely written as $a = \sum_{i=0}^{t-1} a_i p^i$, with $a_i \in \Gamma(R) = \{b \in R \mid b^q = b\}$.

Chain Rings

The set $\Gamma(R)$ is a coordinate set of R, i.e., a complete set of representatives of $R \mod \mathfrak{m} = Rp$. If $\pi : R \to R/\mathfrak{m}$ is the canonical projection, a monic polynomial $f \in R[x]$ is called basic irreducible if $\pi(f)$ is irreducible in $(R/\mathfrak{m})[x]$.

Let *R* and *S* be two finite commutative chain rings such that $R \subset S$ and $1_R = 1_S$. We say that *S* is an extension of *R* and we denote it by *S*|*R*. Provided that \mathfrak{m} and \mathfrak{M} are the maximal ideals of *R* and *S* respectively, we say that the extension *S*|*R* is separable if $\mathfrak{m}S = \mathfrak{M}$. The last condition is equivalent to the condition $S \cong R[x]/(f)$, where (f) is the ideal generated by a monic basic irreducible polynomial $f \in R[x]$.

Chain Rings

The set $\Gamma(R)$ is a coordinate set of R, i.e., a complete set of representatives of $R \mod \mathfrak{m} = Rp$. If $\pi : R \to R/\mathfrak{m}$ is the canonical projection, a monic polynomial $f \in R[x]$ is called basic irreducible if $\pi(f)$ is irreducible in $(R/\mathfrak{m})[x]$.

Let *R* and *S* be two finite commutative chain rings such that $R \subset S$ and $1_R = 1_S$. We say that *S* is an extension of *R* and we denote it by *S*|*R*. Provided that \mathfrak{m} and \mathfrak{M} are the maximal ideals of *R* and *S* respectively, we say that the extension *S*|*R* is separable if $\mathfrak{m}S = \mathfrak{M}$. The last condition is equivalent to the condition $S \cong R[x]/(f)$, where (f) is the ideal generated by a monic basic irreducible polynomial $f \in R[x]$.

let us assume that S|R is a separable extension of finite commutative chain rings. The group G of all automorphims γ of S such that $\gamma|_R$ is the identity is called the Galois group of S|R.

It can be proven that the extension S|R is Galois, that is, $S^G = R$, where $S^G = \{s \in S \mid \gamma(s) = s, \forall \gamma \in G\}$ is the fixed subring of S. Moreover, G is isomorphic to the Galois group of the extension $\mathbb{F}_{q^e}|\mathbb{F}_q$ where \mathbb{F}_{q^e} is the residue field S/\mathfrak{M} .

let us assume that S|R is a separable extension of finite commutative chain rings. The group G of all automorphims γ of S such that $\gamma|_R$ is the identity is called the Galois group of S|R.

It can be proven that the extension S|R is Galois, that is, $S^G = R$, where $S^G = \{s \in S \mid \gamma(s) = s, \forall \gamma \in G\}$ is the fixed subring of S. Moreover, G is isomorphic to the Galois group of the extension $\mathbb{F}_{q^e}|\mathbb{F}_q$ where \mathbb{F}_{q^e} is the residue field S/\mathfrak{M} .

Thus, G is a cyclic group and it is generated by the power map $\gamma(a) = a^q$, for a suitable primitive element $a \in S$. Furthermore, the set $B = \{\gamma^i(a) \mid i = 0, \dots, e-1\}$ is a free *R*-basis of *S*, i.e., *B* is a normal basis of *S*, and we can assume w.l.o.g. that $B \subset \Gamma(S)$, the coordinate system of *S*. Moreover, *S* is also an unramified extension of *R*. So, the maximal ideal \mathfrak{M} of *S* is generated by the maximal ideal of *R*, that is, $\mathfrak{M} = S\mathfrak{m} = Sp$. Hence, the lattice of ideals of *S* is a

$$S > Sp > Sp^2 > Sp^3 > \cdots > Sp^t = 0.$$

Thus we can write any element $s \in S$ as $s = p^{l}u$, where l = 0, 1, ..., t is unique and $u \in S \setminus Sp$ is a unit of S unique modulo Sp^{t-l} . The function $\nu : S \to \{0, 1, ..., t\}$ defined by $\nu(p^{l}u) = l$ is well-defined because of the uniqueness of l. It verifies that $\nu(s) = 0$ if and only if s is a unit of S.

Let S|R be a separable extension of finite chain rings and let G be the group of R-automorphims of S. If $\gamma \in G$, then γ acts naturally over S^n coordinatewise.

A code of length *n* over *S* is any subset $C \subseteq S^n$. The code $C \subseteq S^n$ is called linear if it is a submodule of S^n , and it is called *G*-invariant (Galois invariant) if

 $\gamma(C) = C$ for all $\gamma \in G$.

The trace function Tr of an element $s \in S$ over R is defined as $Tr(s) = \sum_{\gamma \in G} \gamma(s)$. This action can be also extended to S^n coordinatewise and a code $C \subseteq S^n$ is called trace invariant if Tr(C) = C. Note that Tr(C) is a code over R.

Given a linear code C, we define the restriction of C, Res(C), as the set of all the elements of C which have components in R, i.e., $\text{Res}(C) = C \cap R^n$ and it is also a code over R.

The trace function Tr of an element $s \in S$ over R is defined as $Tr(s) = \sum_{\gamma \in G} \gamma(s)$. This action can be also extended to S^n coordinatewise and a code $C \subseteq S^n$ is called trace invariant if Tr(C) = C. Note that Tr(C) is a code over R.

Given a linear code C, we define the restriction of C, Res(C), as the set of all the elements of C which have components in R, i.e., $\text{Res}(C) = C \cap R^n$ and it is also a code over R.

A third construction is the following. If C is a linear code over R (i.e., a linear submodule of \mathbb{R}^n), then we define the extension of C as the S-linear code $\operatorname{Ext}(C) = C \otimes_{\mathbb{R}} S$, i.e., the set of all S-linear combinations of codewords in C.

Notice that if C, D are two codes over R and $C \subseteq D$, then $Ext(C) \subseteq Ext(D)$. Notice also that Res(C) = Res(Ext(Res(C))) for any code C over R.

A third construction is the following. If C is a linear code over R (i.e., a linear submodule of \mathbb{R}^n), then we define the extension of C as the S-linear code $\operatorname{Ext}(C) = C \otimes_{\mathbb{R}} S$, i.e., the set of all S-linear combinations of codewords in C.

Notice that if C, D are two codes over R and $C \subseteq D$, then $Ext(C) \subseteq Ext(D)$. Notice also that Res(C) = Res(Ext(Res(C))) for any code C over R.

Lemma.- Let *S* be a finite commutative chain ring with maximal ideal *Sp*, and let *C* be a linear code. There exist elements $c_i = (0, \ldots, 0, p^{\alpha_i}, y_{ii+1}, \ldots, y_{in}) \in C$, $i = 1, \ldots, m$, with $\alpha_i \in \mathbb{N} \cup \{0\}$ and $y_{ij} \in S$, such that the code generated by $\{c_1, \ldots, c_m\}$ is (permutationally) equivalent to *C*.

Proof: Let $\{b_1, \ldots, b_l\}$ be any generator system of *C* as submodule of S^n . Let *A* be the $l \times n$ matrix constructed by stacking the generators words $b_i = (a_{i1}, \ldots, a_{in})$, for $i = 1, \ldots, l$.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{ln} \end{bmatrix}$$

Lemma.- Let *S* be a finite commutative chain ring with maximal ideal *Sp*, and let *C* be a linear code. There exist elements $c_i = (0, \ldots, 0, p^{\alpha_i}, y_{ii+1}, \ldots, y_{in}) \in C$, $i = 1, \ldots, m$, with $\alpha_i \in \mathbb{N} \cup \{0\}$ and $y_{ij} \in S$, such that the code generated by $\{c_1, \ldots, c_m\}$ is (permutationally) equivalent to *C*.

Proof: Let $\{b_1, \ldots, b_l\}$ be any generator system of *C* as submodule of S^n . Let *A* be the $l \times n$ matrix constructed by stacking the generators words $b_i = (a_{i1}, \ldots, a_{in})$, for $i = 1, \ldots, l$.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{ln} \end{bmatrix}$$

Since S is a principal ideal ring, it is possible to transform A by a sequence of elementary transformations into a matrix of the form

	$\begin{bmatrix} p^{\nu_1} \\ 0 \end{bmatrix}$	$y_{12} p^{ u_2}$	· · · ·		У1 _{k+1} У2 _{k+1}	· · · ·	У1n У2n
	÷	÷	÷.,	÷	÷		:
<i>B</i> =	0	0	•••	$p^{ u_m}$	y _{mm+1}	•••	y _{mn}
	0	0	0	0	0	• • •	0
	÷	1	-	÷		γ_{12}	:
	0	0	0	0	0		0

where $\nu_1 \leq \nu_2 \leq \cdots \leq \nu_m < t$, $\nu_i \leq \nu(y_{ij})$, for all $i = 1, \ldots, m$ and $j = i + 1, \ldots, n$, and $\nu_i > \nu(y_{ki})$, for all $i = 1 = 1, \ldots, m$ and k < i (unless $y_{ki} = 0$).

Notice that only row operations and column permutations are needed in such a transformation, so the first *m* rows of *B* generate a code C'permutationally equivalent to *C*.

Main Theorem

Theorem.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. A S-linear code C is G-invariant if and only if C = Ext(Res(C)) or, equivalently, if and only if the S-submodule C admits a generator system in \mathbb{R}^n .

Corollary

Let *C* be a linear *S*-code. If *G* is the Galois group of S|R, the code $C_G = \bigcap_{\gamma \in G} \gamma(C)$ is the largest *G*-invariant subcode of *C*. This code is called the *G*-core of *C*. As a consequence of the main theorem we obtain the relationship between the *G*-core of *C* and the extension-restriction code.

Corollary.- Let S|R be a separable extension of finite commutative chain rings with Galois group G, and let C be a linear S-code. If $C_G = \bigcap_{\gamma \in G} \gamma(C)$, then $C_G = \text{Ext}(\text{Res}(C)) = \text{Ext}(\text{Res}(C_G))$.

Corollary

Let C be a linear S-code. If G is the Galois group of S|R, the code $C_G = \bigcap_{\gamma \in G} \gamma(C)$ is the largest G-invariant subcode of C. This code is called the G-core of C. As a consequence of the main theorem we obtain the relationship between the G-core of C and the extension-restriction code.

Corollary.- Let S|R be a separable extension of finite commutative chain rings with Galois group G, and let C be a linear S-code. If $C_G = \bigcap_{\gamma \in G} \gamma(C)$, then $C_G = \text{Ext}(\text{Res}(C)) = \text{Ext}(\text{Res}(C_G))$.

Corollary

Proof.- Let D = Ext(Res(C)). This is a *G*-invariant subcode of *C* by the previous Theorem, and so $D = D_G$. On the other hand, $D \subseteq C$, thus $D = D_G \subseteq C_G$, which is *G*-invariant. Using again the main theorem, $C_G = \text{Ext}(\text{Res}(C_G)) \subseteq \text{Ext}(\text{Res}(C)) = D$. This concludes the proof.

Invariance

Lemma.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. For any S-linear code C

 $\operatorname{Res}(C) \subseteq \operatorname{Tr}(C).$

Moreover, if C is G-invariant, then

 $\operatorname{Res}(C) = \operatorname{Tr}(C).$

Lemma.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. Then, for any $v \in S^n$, $v \in Ext(Tr(Sv))$.

Invariance

Lemma.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. For any S-linear code C

 $\operatorname{Res}(C) \subseteq \operatorname{Tr}(C).$

Moreover, if C is G-invariant, then

 $\operatorname{Res}(C) = \operatorname{Tr}(C).$

Lemma.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. Then, for any $v \in S^n$, $v \in Ext(Tr(Sv))$.

Invariance Theorem

Theorem.- For any separable extension S|R of finite commutative chain rings, and for any *S*-linear code *C*,

 $\operatorname{Res}(C) = \operatorname{Tr}(C)$

if and only if C is invariant under the Galois group of S|R.

The Galois closure \overline{C} of an arbitrary code C over S is the smallest Galois closed code over S containing C. It may be obtained from C by taking the span of all images of some set of generators of C under the Galois automorphisms.

Proposition.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. If C is a S-linear code, and \overline{C} is its Galois closure, then $\operatorname{Tr}(C) = \operatorname{Tr}(\overline{C})$.

Proof: Since $C \subseteq \overline{C}$ we have $\operatorname{Tr}(C) \subseteq \operatorname{Tr}(\overline{C})$. On the other hand, let $c \in \overline{C}$, then $c = \sum_j \lambda_j \sigma_j(c_j)$ where $\lambda_j \in S, c_j \in C$ and $\sigma_j \in G$. Now, because $\operatorname{Tr}(x) = \operatorname{Tr}(\sigma(x))$ for all $x \in S^n$, we have that

$$\mathrm{Tr}(c) = \mathrm{Tr}\left(\sum_{j} \lambda_j \sigma_j(c_j)\right) = \sum_{j} \mathrm{Tr}\left(\lambda_j \sigma_j(c_j)\right)$$

 $= \sum_{j} \mathrm{Tr}\left(\sigma_j^{-1}(\lambda_j)c_j\right) = \mathrm{Tr}\left(\sum_{j} \sigma_j^{-1}(\lambda_j)c_j\right) \in \mathrm{Tr}(\mathcal{C}) \quad \Box$

Proposition.- Let S|R be a separable extension of finite commutative chain rings with Galois group G. If C is a S-linear code, and \overline{C} is its Galois closure, then $\operatorname{Tr}(C) = \operatorname{Tr}(\overline{C})$.

Proof: Since $C \subseteq \overline{C}$ we have $\operatorname{Tr}(C) \subseteq \operatorname{Tr}(\overline{C})$. On the other hand, let $c \in \overline{C}$, then $c = \sum_j \lambda_j \sigma_j(c_j)$ where $\lambda_j \in S, c_j \in C$ and $\sigma_j \in G$. Now, because $\operatorname{Tr}(x) = \operatorname{Tr}(\sigma(x))$ for all $x \in S^n$, we have that

$$\operatorname{Tr}(\boldsymbol{c}) = \operatorname{Tr}\left(\sum_{j} \lambda_{j} \sigma_{j}(\boldsymbol{c}_{j})\right) = \sum_{j} \operatorname{Tr}\left(\lambda_{j} \sigma_{j}(\boldsymbol{c}_{j})\right)$$
$$= \sum_{j} \operatorname{Tr}\left(\sigma_{j}^{-1}(\lambda_{j})\boldsymbol{c}_{j}\right) = \operatorname{Tr}\left(\sum_{j} \sigma_{j}^{-1}(\lambda_{j})\boldsymbol{c}_{j}\right) \in \operatorname{Tr}(\boldsymbol{C}) \quad \Box$$

Theorem [Delsarte].-

Let S|R be a separable extension of finite commutative chain rings. If C is a S-linear code, then $\operatorname{Res}(C)^{\perp} = \operatorname{Tr}(C^{\perp})$, where C^{\perp} is the orthogonal complement to C with respect to the usual scalar product, and $\operatorname{Res}(C)^{\perp}$ is the orthogonal complement of $\operatorname{Res}(C)$ in \mathbb{R}^n .

Proof:

Since S|R is Galois, the bilinear form $B : S \times S \to R$ defined by B(x,y) = Tr(xy) is non degenerate. The proof follows the lines of the classical Delsarte's theorem

Theorem [Delsarte].-

Let S|R be a separable extension of finite commutative chain rings. If C is a S-linear code, then $\operatorname{Res}(C)^{\perp} = \operatorname{Tr}(C^{\perp})$, where C^{\perp} is the orthogonal complement to C with respect to the usual scalar product, and $\operatorname{Res}(C)^{\perp}$ is the orthogonal complement of $\operatorname{Res}(C)$ in \mathbb{R}^n .

Proof:

Since S|R is Galois, the bilinear form $B : S \times S \to R$ defined by B(x,y) = Tr(xy) is non degenerate. The proof follows the lines of the classical Delsarte's theorem \Box

The picture



