Sums of Reciprocals of Polynomials Over Finite Fields

Xiang-dong Hou

Department of Mathematics and Statistics
University of South Florida, Tampa, 33620

$$
\begin{aligned}
& \qquad \text { Abstract } \\
& \text { Consider the following example (typical in college algebra): } \\
& \frac{1}{x^{2}}+\frac{1}{x^{2}+1}+\frac{1}{x^{2}+x}+\frac{1}{x^{2}+x+1}=\frac{4 x^{5}+6 x^{4}+8 x^{3}+6 x^{2}+3 x+1}{x^{2}(x+1)\left(x^{2}+1\right)\left(x^{2}+x+1\right)} .
\end{aligned}
$$

Now let's assume that all the coefficients in the above are from the binary field $\mathbb{F}_{2}=\mathbb{Z}_{2}=\{0,1\}$. The result becomes much cleaner:

$$
\frac{1}{x^{2}}+\frac{1}{x^{2}+1}+\frac{1}{x^{2}+x}+\frac{1}{x^{2}+x+1}=\frac{1}{\left(x^{2}+x\right)\left(x^{4}+x\right)}
$$

After a brief introduction to finite fields, we consider the sum of the reciprocals of all monic polynomials of a given degree over a finite field \mathbb{F}_{q} each raised to the power of k. When $k \leq q$, the sum has a surprisingly simple result due to mysterious cancellations that occur in the sum. We discuss this interesting phenomenon and its connection to a deeper problem.

The talk is based on a recent paper in the MAA Monthly: K. Hicks, X. Hou, G. L. Mullen, Sums of reciprocals of polynomials over finite fields, Amer. Math. Monthly, 119 (2012), 313-317.

