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Classical Fundamental Question of Coding Theory

Find the largest subset of Fn
2 such that any two vectors are at least

distance d apart, where the distance between two vectors is the
number of coordinates in which they differ.



Linear Version

Find the largest subspace of Fn
2 such that the minimum weight of

any non-zero vector is at least d , where the weight of a vector is
the number of non-zero coordinates in that vector.

For vectors v,w, d(v,w) = wt(v −w) hence this is the linear
version of the previous question.
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Modified Fundamental Question of Coding Theory

Find the largest subset of An such that any two vectors are at least
distance d apart, where the distance is a metric and A is an
algebraic structure.



Basic Definitions

A code C over a ring R of length n is a subset of Rn. It is linear if
it is also a submodule.

[v,w] =
∑

viwi

C⊥ = {v | [v,w] = 0, ∀w ∈ C}
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Basics

I R Frobenius ⇒ |C ||C⊥| = |R|n.

I C ⊆ C⊥ – the code is self-orthogonal.

I C = C⊥ – the code is self-dual.

I WC (y) =
∑

c∈C ywt(c).

I WC (y) = WC⊥(y) the code is formally self-dual.
Self-dual codes are of particular interest because of their
connections to unimodular lattices and invariant theory.



Basics

I R Frobenius ⇒ |C ||C⊥| = |R|n.
I C ⊆ C⊥ – the code is self-orthogonal.

I C = C⊥ – the code is self-dual.

I WC (y) =
∑

c∈C ywt(c).

I WC (y) = WC⊥(y) the code is formally self-dual.
Self-dual codes are of particular interest because of their
connections to unimodular lattices and invariant theory.



Basics

I R Frobenius ⇒ |C ||C⊥| = |R|n.
I C ⊆ C⊥ – the code is self-orthogonal.

I C = C⊥ – the code is self-dual.

I WC (y) =
∑

c∈C ywt(c).

I WC (y) = WC⊥(y) the code is formally self-dual.
Self-dual codes are of particular interest because of their
connections to unimodular lattices and invariant theory.



Basics

I R Frobenius ⇒ |C ||C⊥| = |R|n.
I C ⊆ C⊥ – the code is self-orthogonal.

I C = C⊥ – the code is self-dual.

I WC (y) =
∑

c∈C ywt(c).

I WC (y) = WC⊥(y) the code is formally self-dual.
Self-dual codes are of particular interest because of their
connections to unimodular lattices and invariant theory.



Basics

I R Frobenius ⇒ |C ||C⊥| = |R|n.
I C ⊆ C⊥ – the code is self-orthogonal.

I C = C⊥ – the code is self-dual.

I WC (y) =
∑

c∈C ywt(c).

I WC (y) = WC⊥(y) the code is formally self-dual.

Self-dual codes are of particular interest because of their
connections to unimodular lattices and invariant theory.



Basics

I R Frobenius ⇒ |C ||C⊥| = |R|n.
I C ⊆ C⊥ – the code is self-orthogonal.

I C = C⊥ – the code is self-dual.

I WC (y) =
∑

c∈C ywt(c).

I WC (y) = WC⊥(y) the code is formally self-dual.
Self-dual codes are of particular interest because of their
connections to unimodular lattices and invariant theory.



Rings of Order 4

Z4 = {0, 1, 2, 3}

F4 = {0, 1, ω, ω2}

F2 + uF2 = {0, 1, u, 1 + u}, u2 = 0

F2 + vF2 = {0, 1, v , 1 + v}, v2 = v
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Rings of Order 4

Z4 is a chain ring

F4 is a finite field and so it is within the area of classical coding
theory.
F2 + uF2 is a local ring with maximal ideal 〈u〉 (it is also a chain
ring but its generalization is not).
F2 + vF2 is a principal ideal ring isomorphic to Z2 ×Z2
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Gray Maps

The following are the distance preserving Gray maps from the rings
of order 4 to F2

2.

Z4 F4 F2 + uF2 F2 + vF2 F2
2

0 0 0 0 00
1 1 1 v 01
2 1 + ω u 1 11
3 ω 1 + u 1 + v 10



Generalizations

I Z4 generalizes to Z2k , Z2k is a chain ring.

I F4 generalizes to F2s , F2s is a finite field.

I F2 + uF2 generalizes to Rk , Rk = F2[u1, v2, . . . , uk ], u2i = 0,
which is a local ring.

I F2 + vF2 generalizes to Ak , Ak = F2[v1, v2, . . . , vk ], v2i = vi ,
which is isomorphic to Fk
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Z2k

We begin by extending the Gray map (non-linear) to the chain ring
Z2k .

Let 1i denote the all-one vector of length i and let 0i denote

the all zero vector of length i .



Z2k

We begin by extending the Gray map (non-linear) to the chain ring
Z2k . Let 1i denote the all-one vector of length i and let 0i denote

the all zero vector of length i .



Gray Maps

Then we define the Gray map φ : Z2k → Z2k−1

2 by

φ(i) =

{
02k−2−i1i 0 ≤ i ≤ 2k−2

12k−1 + φ(i − 2k−1) i > 2k−2
.



Example

Z8 → F4
2

0 → 0000
1 → 0001
2 → 0011
3 → 0111
4 → 1111
5 → 1110
6 → 1100
7 → 1000



Rank and Kernel

Let C a code over Z2k . Define the rank of C , denoted rank(C ), as
the minimum number of generators of the code C , and the kernel
of C , denoted K (C ), as the set

K (C ) = {v | v ∈ C , v + C = C}.



Singleton Bound

If C is a linear code over Z2k of length n then⌊dL(C )− 1

2k−1

⌋
≤ n − rank(C ). (1)

A code meeting this bound is said to be Maximum Distance with
respect to Rank with the Lee weight, or Lee MDR.

It is Lee MDS if it meets the stronger bound⌊dL(C )− 1

2k−1

⌋
≤ n − log2k |C |. (2)
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Kernels

Theorem
Let C be a code over Z2k of type {δ0, δ1, . . . , δk−1}. If
m = dim(K (φ(C ))), then

m ∈
{ k−1∑

i=0

δi ,

k−1∑
i=0

δi + 1, . . . ,
k−1∑
i=0

δi + δk−2 − 2,
k−1∑
i=0

δi + δk−2

}
.

Moreover, there exist such a code C for any m in the interval.



Linear Image

Theorem
Let C be a code over Z2k , k > 2. Then φ(C ) is linear if and only if
C is permutation equivalent to a code with generator matrix of the
form (

2k−2Iδk−2
2k−2A 2k−2B

0 2k−1Iδk−1
2k−1T

)
, (3)

where A,B and T are matrices over Z2k with all entries in
{0, 1} ⊂ Z2k .



Formally Self-Dual Codes over Z4

Theorem
Let C be a formally self-dual code over Z4 with respect to the Lee
weight enumerator, then the image of C under the Gray map has
the weight enumerator of a formally self-dual code.

Often self-dual codes will produce binary self-dual codes but not
always.
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Examples

Table: Binary Images of Self-dual Codes over Z4

Code Length Binary Image Orthogonality

A1 1 [2, 1, 2] Linear Code Self-Dual
D⊕4 4 [8, 4, 4] Linear Code Self-Dual
D⊕6 6 [12, 6, 4] Linear Code Not Self-Dual
E+
7 7 (14, 27, 4) Non-linear Code Not Self-Dual

D⊕8 8 [16, 8, 4] Linear Code Not Self-Dual
E8 8 (16, 28, 4) Non-linear Code Not Self-Dual
K8 8 [16, 8, 4] Linear Code Self-Dual
K′8 8 [16, 8, 4] Linear Code Self-Dual
O8 8 (16, 28, 4) Non-linear Code Not Self-Dual
Q8 8 [16, 8, 4] Linear Code Not Self-Dual



The ring Rk

Rk = F2[u1, u2, . . . , uk ]/〈u2i = 0, uiuj = ujui 〉

Theorem
The ring Rk is a local ring with unique maximal ideal
mk = Iu1,u2,...,uk . This ideal consists of all non-units and has

|mk | = |Rk |
2 .
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Representation of Elements

Let uA =
∏

1∈A ui . Any element in Rk can be written as∑
A⊆{1,2,...,k}

cAuA, cA ∈ F2.



The ring Rk

The ring Rk has cardinality:

|Rk | = 2(2
k )

The rings is neither principal nor a chain ring for k ≥ 2, but it is
Frobenius.
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Gray Map

φR1(a + bu1) = (b, a + b)

φRk
(a + buk) = (φRk−1

(b), φRk−1
(a) + φRk−1

(b))

The map is linear.
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Alternate Gray Map

View Rk as a vector space over F2 with basis
{uA : A ⊆ {1, 2, . . . , k}}.

Define the Gray map of each uA and then extend it linearly to all
of Rk .
Fix an ordering on the subsets of {1, 2, . . . , k}, that will be defined
recursively as follows:

{1, 2, . . . , k} = {1, 2, . . . , k − 1} ∪ {k}.

Denote by ψk : Rk → F2k
2 and define it as follows:

ψk(uA) = (cB)B⊆{1,2,...,k},

where

cB =

{
1 ifB ⊆ A
0 otherwise.
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wL(uA) = 2|A|. (4)

The map ψk is equivalent to φk
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Gray Image

Theorem
If C is a binary code that is the Gray image of a linear code over
Rk then its automorphism group contains k distinct
automorphisms which are involutions corresponding to multiplying
by the units 1 + ui , for i = 1, 2, · · · , k .

Theorem
If C is a self-dual code over Rk , then φk(C ) is a binary self-dual
code of length 2kn.
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Theorem
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Reed Muller Codes

Theorem
The Reed-Muller codes RM(r ,m) are the images of linear codes
over the ring Rk of length 2m−k under the Gray map φk for all
m ≥ k and for all r with 0 ≤ r ≤ m.



Lifts

Define Πj ,k : Rj → Rk by Πj ,k(ui ) = 0 if i > k and the identity
elsewhere. That is Πj ,k is the projection of Rj to Rk . Note that if
j ≤ k , then Πj ,k is the identity map on Rj .

If C = Πj ,k(C ′) for some C ′ and j ≥ k, then C ′ is said to be a lift
of C .



Lifts

Define Πj ,k : Rj → Rk by Πj ,k(ui ) = 0 if i > k and the identity
elsewhere. That is Πj ,k is the projection of Rj to Rk . Note that if
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Lifts and Projections of Self-Dual Codes

Theorem
If C is a self-dual code over Rk then there exists a self-dual code
C ′ over Rj , for j > k, with Πj ,k(C ′) = C.



Self-Dual Codes

Theorem
Self-dual codes over Rk exist for all lengths and for all k.

A self-dual code over Rk is Type II if the Lee weights are all
multiples of 4. A self-dual code over F2 is Type II if the Hamming
weights are all multiples of 4.
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Self-Dual Codes

Theorem
Self-dual codes over Rk exist for all lengths and for all k.

A self-dual code over Rk is Type II if the Lee weights are all
multiples of 4. A self-dual code over F2 is Type II if the Hamming
weights are all multiples of 4.



Self-Dual Codes

Theorem
Let C be a self-dual code over Rk then ψk(C ) is a binary self-dual
code of length 2k . If C is a Type II code then ψk(C ) is Type II and
if C is Type I then ψk(C ) is Type I.



Cyclic Codes

A code C is cyclic if (a0, a1, . . . , an−1) ∈ C implies
(an−1, a0, a1, . . . , an−2) ∈ C .

A code C is b-quasi-cyclic if (a0, a1, . . . , an−1) ∈ C implies
(a0−b, a1−b, . . . , an−1−b) ∈ C .
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Cyclic Codes

Theorem
Let C be a cyclic code of length n over the ring Rk . Then ψk(C )
is a 2k - quasi-cyclic binary linear code of length 2kn.



Good Codes

Using cyclic codes and self-dual codes we have found many good
binary codes as images under the Gray maps.



The Ring Ak

Ak = F2[v1, v2, . . . , vk ]/〈v2i = vi , vivj = vjvi 〉



Gray Maps

φA1(a + bv1) = (a, a + b)

φAk
(a + buk) = (φAk−1

(a), φAk−1
(a) + φAk−1

(b))



Gray Maps

OrderF2k
2 again.

Let Ψk : Ak → F2k
2 . Define

Ψk(vB) =
∑
E⊆B

wE (5)

where F ∈ Pk and

(wE )F =

{
1 E ⊆ F
0 otherwise.

(6)

Then Ψk(
∑
αBvB) =

∑
αBΨk(vB).
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OrderF2k
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2 . Define
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∑
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Gray Maps

The two Gray maps are equivalent.



Inner Products

Over Ak , the Euclidean inner product is:

[v,w] =
∑

viwi

and the Hermitian is

[v,w]H =
∑

viwi

where vi = 1 + vi .



Elements of Ak

Each element of Ak is of the form
∑

B∈Pk
αBvB where αB ∈ F2,

and Pk is the power set of the set {1, 2, 3, . . . , k}.

For A,B ⊆ {1, 2, . . . , k} we have that vAvB = vA∪B which gives
that ∑

B∈Pk

αBvB ·
∑
C∈Pk

βCvC =
∑
D∈Pk

(
∑

B∪C=D

αBβC )vD .
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The Ring Ak

Theorem
The ring Ak has characteristic 2 and cardinality 22

k
. The ring Ak is

not a local ring.



Chinese Remainder Theorem

Theorem
The ideal 〈w1,w2, . . . ,wk〉, where wi ∈ {vi , 1 + vi}, is a maximal

ideal of cardinality 22
k−1. Denote these maximal ideals by mi .

There are 2k such ideals and me
i = mi for all i and e ≥ 1. Hence

its index of stability is 1. Moreover the direct sum of any two of
these ideals is Ak .

Theorem
The ring Ak is isomorphic via the Chinese Remainder Theorem to
F2k
2 . Consequently, the ring Ak is a principal ideal ring.
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Euclidean Self-Dual Codes

Theorem
Euclidean self-dual codes exist if and only if the length is
congruent to 0 (mod 2).

Theorem
The image under the Gray map of a Euclidean self-dual code is a
binary self-dual code.
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Odd formally self-dual codes

I There exist odd formally self-dual codes of all lengths over Ak

for all k .

I Linear odd formally self-dual codes exist over Z4 and Rk for
all lengths greater than 1.
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What we have done

I Each of the rings of order 4 has been generalized in a natural
way with a corresponding Gray map.

I The standard classes of codes have been examined over these
rings and their Gray images examined.

I These rings have been used to produce interesting (good)
binary codes.

I Computationally rich example. If C is a formally self-dual
code over Z4,Rk or Ak then the image under the
corresponding Gray map is a binary formally self-dual code.
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