
Coding Theory as Pure Mathematics

Steven T. Dougherty

February 24, 2013



Origins of Coding Theory

How does one communicate electronic information effectively?
Namely can one detect and correct errors made in transmission?

Shannon’s Theorem: You can always communicate effectively no
matter how noisy the channel.
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Classical Fundamental Question of Coding Theory

What is the largest (linear) subset of Fn
2 you can have such that

any two words are at least d apart, where two words are s units
apart if they differ in s places.

For linear codes minimum distance becomes minimum weight,
where wt(v) is the number of non-zero elements of v, since
wt(v −w) = d(v,w).
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Mathematical Foundations

A code C of length n is a subset of Fn
q of size M and minimum

distance d , denoted [n,M, d ].

If C is linear M = qk , k the dimension, and it is denoted by
[n, k, d ].
Attached to the ambient space is the inner-product

[v,w] =
∑

viwi .

Define C⊥ = {v | [v,w] = 0,∀w ∈ C}.
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Mathematical Foundations

If C is a linear code in Fn
q then dim(C ) + dim(C⊥) = n.

All codes have a minimal generating set (basis) so it has a
generating matrix G . The code C⊥ has a generating matrix H
(parity check matrix) so

v ∈ C ⇐⇒ HvT = 0.

The matrix H is used extensively in decoding.
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Example: Hamming Code

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



Then C is a [7, 4, 3] code such that any vector in Fn
2 is at most

distance 1 from a unique vector in the code.
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I Construction of a communication system where errors in
communication are not only detected but corrected.

I Cryptography and secret sharing schemes
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I Constructing lattices

I Connections to number theory (modular forms, etc.)

I Connection to designs (constructing, proving non-existence
and proving non-isomorphic)

I Connections to algebraic geometry

I Connections to combinatorics
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Singleton Bound

Theorem
Let C be an [n, qk , d ] code, then d ≤ n − k + 1.

Proof.
Consider the first n − (d − 1) coordinates. These must all be
distinct, otherwise the distance between two vectors would be less
than d . Hence k ≤ n − (d − 1) = n − d + 1.

If C meets this bound the code is called a Maximum Distance
Separable (MDS) code.
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Singleton Bound

Theorem
A set of s MOLS of order q is equivalent to an MDS an
[s + 2, q2, s + 1] MDS code.

Extremely difficult question in pure mathematics.



Jessie MacWilliams (1917-1990)

Theorem
(MacWilliams I) Let C be a linear code over a finite field, then
every Hamming isometry C → Rn can be extended to a monomial
transformation.

Hamming Weight Enumerator:

WC (x , y) =
∑
c∈C

xn−wt(c)ywt(c)

Theorem
(MacWilliams Relations) Let C be a linear code over Fq then

WC⊥(x , y) =
1

|C |
WC (x + (q − 1)y , x − y).
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A big step forward – Gray Map

Classical Coding Theory gets a shock!

φ : Z4 → F2
2

0 → 00

1 → 01

2 → 11

3 → 10

A non-linear distance preserving map. Many interesting non-linear
binary codes are actually images of linear codes (modules) over Z4.
Important weight in Z4 is Lee weight, i.e. the weight of the binary
image.
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A New Beginning

It now becomes interesting to study codes over a larger class of
alphabets with an algebraic structure, namely rings.



Codes over Rings

New Definitions

field → ring

dimension → rank, type, other

Hamming weight → appropriate metric

vector space → module



Modified Fundamental Question of Coding Theory

What is the largest (linear) subspace of Rn, R a ring, such that
any two vectors are at least d units apart, where d is with respect
to the appropriate metric?



Jay Wood

What is the largest class of codes you can use for coding theory?

You want both MacWilliams Theorems to be true in order to use
most of the tools of coding theory.

Answer: Frobenius Rings
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Frobenius Rings

Definition of Frobenius Rings
A module M over a ring R is injective if, for every pair of left
R-modules B1 ⊂ B2 and every R-linear mapping f : B1 → M, the
mapping f extends to an R-linear mapping f : B2 → M.

For a commutative ring R, R is Frobenius if and only if the R
module R is injective.
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MacWilliams I revisted

Theorem
(MacWilliams I) (A) If R is a finite Frobenius ring and C is a
linear code, then every hamming isometry C → Rn can be
extended to a monomial transformation.

(B)If a finite commutative ring R satisfies that all of its Hamming
isometries between linear codes allow for monomial extensions,
then R is a Frobenius ring.
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Frobenius Rings

For Frobenius rings R, R̂ has a generating character χ, such that
χa(b) = χ(ab).



MacWilliams relations revisited

Complete Weight Enumerator:

Define WC (x0, x1, . . . , xk) =
∑

c∈C x
ni (c)
i where ni (c) is the

number of occurences of the i-th element of R in c.

The matrix Ti

is given by:
(Ti )a,b = (χa(b)) (1)

where a and b are in R.

Theorem
(Generalized MacWilliams Relations) Let C be a linear code over a
Frobenius rings R then

WC⊥(x0, x1, . . . , xk) =
1

|C |
WC (T · (x0, x1, . . . , xk)) (2)
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Non Frobenius Example

For example:
Let

R = F2[X ,Y ]/(X 2,Y 2,XY ) = F2[x , y ],

where x2 = y2 = xy = 0.
R = {0, 1, x , y , 1 + x , 1 + y , x + y , 1 + x + y}.
The maximal ideal is m = {0, x , y , x + y}.
m⊥ = m = {0, x , y , x + y}.
m is a self-dual code of length 1.
But |m||m⊥| 6= |R|.



Useful rings

I Principal Ideal Rings – all ideals generated by a single element

I Local rings – rings with a unique maximal ideal

I chain ring – a local rings with ideals ordered by inclusion
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Chinese Remainder Theorem

Let R be a finite commutative ring and let a be an ideal of R.

Let Ψa : R → R/a denote the canonical homomorphism x 7→ x + a.
Let R be a finite commutative ring and let m1, . . . ,mk be the
maximal ideals of R. Let e1, . . . , ek be their indices of stability.
Then the ideals me1

1 , . . . ,m
ek
k are relatively prime in pairs and∏k

i=1m
ei
i = ∩ki=1m

ei
i = {0}.
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Chinese Remainder Theorem

Theorem
(Chinese Remainder Theorem) The canonical ring homomorphism
Ψ : R →

∏k
i=1 R/mei

i , defined by x 7→ (x (mod me1
1 ), . . . , x

(mod mek
k )), is an isomorphism.

Given codes Ci of length n over R/mei
i (i = 1, . . . , k), we define

the code C = CRT(C1, . . . ,Ck) of length n over R as:

C = {Ψ−1(v1, . . . , vk) : vi ∈ Ci (i = 1, . . . , k)}
= {v ∈ Rn : Ψ

m
ti
i

(v) ∈ Ci (i = 1, . . . , k)}.
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Chinese Remainder Theorem

Theorem
If R is a finite commutative Frobenius ring, then R is isomorphic
via the Chinese Remainder Theorm to R1 × R2 × · · · × Rs where
each Ri is a local Frobenius ring.

Theorem
If R is a finite commutative principal ideal ring then then R is
isomorphic to R1 × R2 × · · · × Rs where each Ri is a chain ring.
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MDR Codes

Theorem
Let C be a linear code over a principal ideal ring, then

dH(C ) ≤ n − rank(C ) + 1.

Codes meeting this bound are called MDR (Maximum Distance
with respect to Rank) codes.

Theorem
Let C1,C2, . . . ,Cs be codes over Ri . If Ci is an MDR code for each
i then C = CRT (C1,C2, . . . ,Cs) is an MDR code . If Ci is an
MDS code of the same rank for each i , then
C = CRT (C1,C2, . . . ,Cs) is an MDS code.



MDR Codes

Theorem
Let C be a linear code over a principal ideal ring, then

dH(C ) ≤ n − rank(C ) + 1.

Codes meeting this bound are called MDR (Maximum Distance
with respect to Rank) codes.

Theorem
Let C1,C2, . . . ,Cs be codes over Ri . If Ci is an MDR code for each
i then C = CRT (C1,C2, . . . ,Cs) is an MDR code . If Ci is an
MDS code of the same rank for each i , then
C = CRT (C1,C2, . . . ,Cs) is an MDS code.



MDR Codes

Theorem
Let C be a linear code over a principal ideal ring, then

dH(C ) ≤ n − rank(C ) + 1.

Codes meeting this bound are called MDR (Maximum Distance
with respect to Rank) codes.

Theorem
Let C1,C2, . . . ,Cs be codes over Ri . If Ci is an MDR code for each
i then C = CRT (C1,C2, . . . ,Cs) is an MDR code . If Ci is an
MDS code of the same rank for each i , then
C = CRT (C1,C2, . . . ,Cs) is an MDS code.



Generating vectors

Over Z6, 〈(2, 3)〉 = {(0, 0), (2, 3), (4, 0), (0, 3), (2, 0), (4, 3)}.

This is strange since we would rather have say it is generated by(
2 0
0 3

)
.
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Generator Matrices over Chain Rings
Let R be a finite chain ring with maximal ideal m = Rγ with e its
nilpotency index.
The generator matrix for a code C over R is permutation
equivalent to a matrix of the following form:

Ik0 A0,1 A0,2 A0,3 · · · · · · A0,e

0 γIk1 γA1,2 γA1,3 · · · · · · γA1,e

0 0 γ2Ik2 γ2A2,3 · · · · · · γ2A2,e
...

... 0
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 γe−1Ike−1 γe−1Ae−1,e


(3)

A code with generator matrix of this form is said to have type
{k0, k1, . . . , ke−1}. It is immediate that a code C with this
generator matrix has

|C | = |R/m|
∑e−1

i=0 (e−i)ki . (4)
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Minimal Generating Sets

Definition
Let Ri be a local ring with unique maximal ideal mi , and let
w1, · · · ,ws be vectors in Rn

i . Then w1, · · · ,ws are modular
independent if and only if

∑
αjwj = 0 implies that αj ∈ mi for all

j .

Definition
The vectors v1, · · · , vk in Rn are modular independent if
Φi (v1), · · · ,Φi (vk) are modular independent for some i , where
R = CRT (R1,R2, . . . ,Rs) and Φi is the canonical map.
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Let C be a code over R. The codewords c1, c2, · · · , ck is called a
basis of C if they are independent, modular independent and
generate C . In this case, each ci is called a generator of C .
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Minimal Generating Sets

Theorem
All linear codes over a Frobenius ring have a basis.
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I MacWilliams I and II still hold.

I We have a new algebraic Singleton bound.

I We have a new notion of a basis.
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Coding Theory.

I Find interesting connections to number theory, algebra, and
combinatorics in this setting.

I Find applications outside of mathematics.
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