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Complexity Issues in Coding Theory

We will discuss a chapter from the Handbook on Coding Theory by Alexander
Barg on the complexity issues in the theory of linear error correcting codes. The
chapter deals with the complexity of algorithmic problems of constructing “good”
codes as well as the encoding and decoding of these codes.

The focus of the chapter is on asymptotic behavior of the algorithms considered.
Most of the algorithms discussed will have provable performance and complexity
estimates.

When we speak complexity, the order will either be “easy” meaning polynomial in
the code length n or “difficut” meaning exponential. The codes considered will
mainly be linear block codes.
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Conventions

Defenitons/Notions:

• algorithmic problem - includes a class of objects and a property the objects
may have. The goal is to produce objects from the class that have this
property

• mass problem - the class of instances of a particular algorithmic problem,
the answer to which may be an object, a number or a simple yes/no.

• decision problem - a mass problem whose answer is a yes/no.

• computation - a way of solving a given algorithmic problem, formalized by
an abstract computing device (machine).

• time complexity (worst-case) - Given A, an algorithm problem, is a
function of l , defined as the maximal time of computation over all instances
of length l .

• space complexity - Given A, an algorithm problem, the number of registers
used in computation.
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Conventions

Random Access Machine(RAM) - an abstract machine that performs certain
boolean operations and additions and some flow control assumed to have an
unlimited number of registers with instant access.

The RAM is used as opposed to the Turing machine mainly because of the ease of
transforming algorithms for a RAM presents less difficulty than for a Turing
Machine. Using the RAM seems realistic when the space complexity is not too
large and the model fits into the main memory of the computer.

Each instruction of the RAM is simulated by a Turing Machine program. This way
the time complexity of the two machines are related.

Steve Szabo () Complexity Issues in Coding Theory 4 / 10



Background

E n
q - the set of n length vectors over the q-ary alphabet. We consider this space a

linear space over Fq.

A subset C ⊂ E n
q is called a block code. If in addition C is a k dimensional

Fq-subspace, we say C is an [n, k] linear block code or linear code. A
generator matrix for an [n, k] linear code C is a k × n matrix G whose row space
is C . For a linear code C denote the dual space by C⊥. Note C⊥ is [n, n − k]
linear code which has a n − k × n generator matrix H. We call H the parity
check matrix of C . Note: GHT = 0.

N = {1, . . . , n}. For W ⊂ N and A a matrix with n columns, A(W ) denotes the
submatrix of A formed by the columns of A indexed by W .

For C be a [n, k] linear code given, a k-set W ⊂ N s.t. for generator matrix G of
C , G (W ) is non-singular is a information set. The remaining n − k coordinates
are called a check set.
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Algorithmic Problems

1 Code Construction - Given parameters q, n, k , d , find a generator matrix for
a q-ary [n, k , d ] linear code.

2 Encoding - A linear code can be viewed as a linear injective mapping form
E k
q to E n

q . The problem is to implement this mapping.

3 Decoding - The decoding map is f : E n
q → C s.t. for x ∈ E n

q , f (x) ∈ C is
chosen to be the closest codeword to x . If for certain x , there is more than
one value of f (x) that satisfies this, an arbitrary value is chosen. This is
called complete minimum distance decoding. We call it bounded
distance decoding if for some t, we restrict the domain of the decoding
map to {x ∈ E n

q |d(x ,C ) ≤ t}. Note: If t = b d−12 c it can be shown that the
decoding result is unique for each vector in the domain. This combinatorial
setting corresponds to what is know hard decision decoding (“hard input”
and “hard output. In contrast, a soft decision decoder accepts “soft input”
from the channel while producing “hard output” estimates of the correct
symbols based on probability information of the code symbols).

4 Numerical Parameters - compute parameters such as packing radius
(minimum distance), covering radius, weight distribution, etc.
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Asymptotically Good Codes

Given a family of q-ary block codes, this family is asymptotically good if there
exists a subset S = {Ci}∞i=1 of the family with the length of Ci , ni , the number of
codewords in Ci , Mi and d(Ci ) = di s.t.

1 lim inf i→∞ ni =∞
2 R = lim inf i→∞

logq Mi

ni
> 0

3 δ = lim inf i→∞
di
ni
> 0

If Ci is a linear code of dimension ki , logq Mi = logq q
ki = ki . So for a sequence of

linear codes, the second property becomes lim inf i→∞
ki
ni
> 0. For a code C of

length n, size M and distance d , the rate of C is (logq M)/n (in the linear case
k/n) and the relative distance is d/n.
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Gilbert-Varshamov Bound

The Hilbert entropy function is

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Define the sphere of radius r

Vq(n, r) =
r∑

i=0

(
n

i

)
(q − 1)i

and

αq(δ) = lim sup
n→∞

logq Aq(n, nδ)

n

which is the function on δ, the value the relative distance of a family of codes
approaches, giving the largest possible rate for the family as code length
approaches infinity.

Lemma: Let 0 < δ ≤ 1− 1/q where q ≥ 2. Then

lim
n→∞

logq Vq(n, bδnc)
n

= Hq(δ).

The proof is technical so we will omit it.
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Gilbert-Varshamov Bound

Asymptotic-Gilbert Varshamov Bound:
If 0 < δ ≤ 1− 1/q where q ≥ 2 then αq(δ) ≥ 1− Hq(δ).

Proof: By the Gilbert bound Aq(n, δn) = Aq(n, dδne) ≥ qn

Vq(n,dδne−1) . Since

dδne − 1 ≤ bδnc, Aq(n, δn) ≥ qn

Vq(n,bδnc) . By the lemma then,

αq(δ) = lim sup
n→∞

logq Aq(n, nδ)

n

≥ lim sup
n→∞

logq
qn

Vq(n,bδnc)

n

= lim sup
n→∞

logq q
n − logq Vq(n, bδnc)

n

≥ lim sup
n→∞

1−
logq Vq(n, bδnc)

n
= 1− Hq(δ)
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Gilbert-Varshamov Bound

The Varshamov Bound is

Aq(n, d) ≥ Bq(n, d) ≥ qn−dlogq(1+
∑d−2

i=0 (n−1
i )(q−1)i)e

Using the Varshamov bound, the Asymptotic Gilbert-Varshamov Bound can be
shown, hence the name.
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