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Introduction: Ordered Hamming metric

Longer Reed-Solomon codes

Recall RS codes: Fix a1,a2, . . . ,an ∈ Fq

C = {(f (a1), f (a2), ..., f (an)),deg f ≤ k − 1}

#(zeros)≤ (k − 1), so d(C) ≥ n − (k − 1)

Define

C′ = {(f ′(a1), f (a1); f ′(a2), f (a2); . . . ; f ′(an), f (an)),deg f ≤ k − 1}
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Introduction: Ordered Hamming metric

Longer Reed-Solomon codes

Recall RS codes:

C = {(f (a1), f (a2), ..., f (an)),deg f ≤ k − 1}

#(zeros)≤ (k − 1), so d(C) ≥ n − (k − 1)

Or even

C′′ = {(f ′′(a1), f ′(a1), f (a1); f ′′(a2), f ′(a2), f (a2); . . . ; f ′′(an), f ′(an),

f (an)),deg f ≤ k − 1}

If f ′(a1) = f (a1) = 0, then a1 contributes 2 to the count of zeros. Thus
what matters is the location of the rightmost nonzero entry in each
block of coordinates.
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Introduction: Ordered Hamming metric

Ordered Hamming metric

x = (x1,1, . . . , x1,r ; x2,1, . . . , x2,r ; . . . ; xn,1, . . . , xn,r )

Definition

w(x) =
n∑

i=1

max(j : xi,j+1 = · · · = xi,r = 0)

Rosenbloom-Tsfasman (1997)

Niederreiter (1988-92) considered the problem of constructing
low-discrepancy point sets in [0,1]n. The discrepancy (proximity to the
uniform distribution) is controlled by the dual distance of codes with
respect to the ordered Hamming metric.

NRT metric space
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Ordered (poset) metrics

Poset metrics

Let P(JnK,�) be a poset on JnK := {1, . . . ,n}

Ideal I ⊂ JnK : (i ∈ I and j ≺ i) imply that j ∈ I.

Let x ∈ Fn
q; supp(x) := {i ∈ JnK : xi 6= 0};

〈x〉 := smallest ideal of P that contains supp(x)

Definition (poset norm; Brualdi et al. ’95)

wP(x) := |〈x〉|; d(x , y) = wP(x − y)

Proof: wP(x + y) ≤ |〈x〉 ∪ 〈y〉| ≤ |〈x〉|+ |〈y〉| = wP(x) + wP(y)
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Ordered (poset) metrics

Examples

1. Antichain = Hamming distance

2. Single chain: 1 ≺ 2 ≺ · · · ≺ n

wP(x) =

{
0 if x = 0
max(i : xi 6= 0) otherwise

wP(x + y) ≤ max(wP(x),wP(y))

3. NRT metric

4. Hierarchical poset

5. Regular tree
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Linear codes and weight distributions

Linear codes; Weight distributions

A = subspace of linear space (Fq)
n, Fq = (α0, α1, . . . , αq−1)

Let b(w) = |{x ∈ A,wH(x) = w}| = number of vectors of Hamming wt
w

B(z0, z1) =
n∑

w=0

b(w)zn−w
0 zw

1

More detailed view:
Let ω = (ω0, ω1, . . . , ωq−1) be a type vector,

∑q−1
i=1 ωi = n

Let bω = |{x ∈ A, ](i : xi = αj) = ωj}|

B(z0, z1, . . . , zq) =
∑
x∈A

zω0(x)
0 zω1(x)

1 . . . zωq−1(x)
q−1 =

∑
ω

b(ω)zω

Even more detailed: qn variables zij , corresponding to xi = αj
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Linear codes and weight distributions

Isometry group of the space

Let d be some metric: d(x , y) = |(x − y)|
Isometry g : X → X such that d(x , y) = d(gx ,gy)

Isometries of the Hamming space: permutations σ, replacement of
coordinates: d((0,1,1), (2,1,2)) = d((2,0,0), (1,0,1))

G =(Compositions of permutations Sn and replacements Sq)= Sq o Sn
Action of G on X = Fn

q is transitive: ∀x , y ∃g ∈ G such that gx = y

Weight w : x → N such that G is transitive on spheres around 0:
Sw (0) = {x ∈ X : w(x) constant}

Examples:
G – Hamming weights

Sn – types
{id} – exact weight enumerator
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Linear codes and weight distributions

Weight-like functions (Inner distributions)

Definition
Let (Fn

q,P) be a poset metric space. A mapping s : Fn
q → Zm is called a

shape mapping if it is constant on the orbits of T ∈ GLP(n). The value
that this maping takes on the orbit of a vector x ∈ Fn

q is called the
shape of x .
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Shapes and MacWilliams identities

Inner distribution; NRT space

Let X = Fr
q, 1 ≺ 2 ≺ · · · ≺ r (a chain).

|x | = max(i : xi+1 = · · · = xr = 0);dP(x , y) = |x−y |

B < GL(q, r) group of upper triangular r × r matrices
with nonzero main diagonal

G=(permutations of chains (Sn) and action of B on each chain)

Orbits are formed of vectors with e1 chains of weight 1, e2 chains of
weight 2,..., er chains of weight r ; all e = (e0,e1, . . . ,er ) that partition n

Shape distribution of the code A:

BA(z0, z1, . . . , zr ) =
∑

e

b(e)ze0
0 ze1

2 . . . zer
r

Martin and Stinson, ’99; Skriganov ’98
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Shapes and MacWilliams identities

MacWilliams equations for shape distributions

Theorem (Martin-Stinson ’99, Bierbrauer ’07, B.-Purkayastha ’09, Park-B. ’10)

Let A ⊂ Fn
q and A⊥ be its dual code. Then

BA⊥(u0,u1, . . . ,ur ) =
1
|A|

BA(z0, z1, . . . , zr )

where
z0 = u0 + (q − 1)

r∑
i=1

qi−1ui ,

zr−j+1 = u0 + (q − 1)
j−1∑
i=1

qi−1uk − qj−1uj , 1 ≤ j ≤ r .

Remarks. 1. MacWilliams equation for weights does not hold.
2. The shapes in the dual code A⊥ are measured from the opposite
side (e.g., from the right).
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Shapes and MacWilliams identities

Krawtchouk polynomials

Let C,C⊥ be a pair of dual linear codes

Classically,

b⊥(w) =
1
|C|

n∑
k=0

b(k)Kw (k), w = 0,1, . . . ,n

where (Kk (·)) is the family of discrete orthogonal polynomials on {0,1, . . . ,n}
with weight

(n
i

)
(q − 1)i/qn.

The NRT case: For every shape e

b⊥(e) = 1
|C|
∑

f b(f )Ke(f )

(Kf (e) = Kf1,...,fr (e1, . . . ,er )) discrete orthogonal polynomials of r
variables
(orthogonal on the set of shapes (partitions) with weight

( n
e1,...,er

)∏r
i=0(q

i−r−1(q − 1))ei .)

Use Delsarte’s theory to set up a Linear Programming Bound on codes
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Shapes and MacWilliams identities

Bounds on codes

0.1 0.2 0.3 0.4 0.5 0.6
∆

0.2

0.4

0.6

0.8

1.0

R
r=2 q=2

LP Hr = 2L

Elias

GV

Plotkin

LP HGeneralL

Work with Punarbasu Purkayastha, [1]
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Linear-algebraic approach to shape distributions

MacWilliams equations for shape distributions

Linear-algebraic approach (with Woomyoung Park, [3]).

(Dept of ECE/Inst. for Systems Research University of Maryland, College Park, MD 20742[.1in])Ordered linear codes April 10, 2013 15 / 35



Linear-algebraic approach to shape distributions

MacWilliams equations for shape distributions

1. Recall the Hamming case (MacWilliams): Define the rank function
of an [n, k ] linear code C

ZC(x , y) =
n∑

u=0

k∑
v=0

Rv
u xyyv

where Rv
u = |{F ⊂ JnK : |F | = u, rank(G(F )) = v}|. Define the Tutte

polynomial by
TC(x , y) = ZC(x − 1, y − 1)

Then
TC(x , y) = TC⊥(y , x)

Greene’s theorem:

A(x , y) = yn−k (x − y)kTC
(x + (q − 1)y

x − y
,

x
y

)
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Linear-algebraic approach to shape distributions

MacWilliams equations for shape distributions

2. The ordered Hamming (NRT) space:
The multivariate Tutte polynomial of C:

Z (q, z) =
∑

e

∑
A∈I(P)

shape(A)=e

q−ρA
r∏

i=1

zei
i , where z = (z1, z2, . . . , zr )

Lemma:

Z⊥(q, z1, z2, . . . , zr ) = qρE−nr zn
r Z
(

q,
qzr−1

zr
,
q2zr−2

zr
, . . . ,

qr−1z1

zr
,
qr

zr

)
.

A different form of this relation: introduce the shape-rank distribution of
a code

Rv
e , |{A ∈ I(P) : shape(A) = e, rank(G(A)) = v}|.

Z (y−1, z) =
∑

e

k∑
v=0

Rv
e z1

e1z2
e2 . . . zr

er yv .
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Linear-algebraic approach to shape distributions

MacWilliams equations for shape distributions

Introduce the Tutte polynomial of a linear code:

T (x ,y) ,
∑

e

∑
A∈I(P)

shape(A)=e

(x − 1)ρ(E)−ρ(A)(y1 − 1)e1 × . . .

× (yr−1 − 1)er−1(yr − 1)|A|−ρ(A).

Lemma:
T⊥(x , y1, . . . , yr ) = T (yr , yr−1, . . . , y1, x).
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Linear-algebraic approach to shape distributions

Extensions

t th Generalized Poset Distance [2,3]

dt(C) = min{|〈D〉| : D is an [n, t ] subcode of C}

Aj(I) = |{D : D ⊆ C,dim(D) = j , 〈D〉 = I}|

Dm(I) =
m∑

u=0

[ u−1∏
i=0

(qm − qi)
]
Au(I), m ≥ 0

Dm
e =

∑
I:shape(I)=e

Dm(I)

Dm(z0, z1, . . . , zr ) =
∑

e

Dm
e ze0

0 . . . zer
r , m ≥ 0.

Theorem

Dm(z0, z1, . . . , zr ) = qmkzr
nZ
(

qm,
zr−1 − zr

zr
,
zr−2 − zr−1

zr
, . . . ,

z0 − z1

zr

)
(Dept of ECE/Inst. for Systems Research University of Maryland, College Park, MD 20742[.1in])Ordered linear codes April 10, 2013 19 / 35



Transmission over channels

Transmission over channels

S. Tavildar and P. Viswanath (2006) considered a wireless
transmission system with fading

A B

r parallel channels

Transmission goes over r parallel channels with increasing SNR; the
channels are subordinated so that if transmission over channel i is lost,
then so are transmissions over channels 1, . . . , i − 1.
NRT metric emerges as figure of merit (A. Ganesan and P. Vontobel)
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Transmission over channels

Ordered symmetric channel

Transmit pairs of bits (r=2)

00 00

11

10

01
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Transmit pairs of bits (r=2)
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Transmission over channels

Ordered symmetric channel

Transmit pairs of bits (r=2)

Correct transmission

00 00

11

10

01

ε0
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Transmission over channels

Ordered symmetric channel

Transmit pairs of bits (r=2)

Correct transmission
Error 1 ε0 > ε1

00 00

11

10

01

ε0

ε1

(Dept of ECE/Inst. for Systems Research University of Maryland, College Park, MD 20742[.1in])Ordered linear codes April 10, 2013 23 / 35



Transmission over channels

Ordered symmetric channel

Transmit pairs of bits (r=2)

Correct transmission
Error 1 ε0 > ε1

Error 2: no information about 1st bit
ε1 > ε2/2

00 00

11

10

01

ε0

ε1

ε2/2

ε2/2
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Transmission over channels

Ordered symmetric channel: General definition

Definition
Let ε = (ε0, ε1, . . . , εr ), where 0 ≤ εi ≤ 1 for all i and

∑
i εi = 1. Let

Wr : Fr
q → Fr

q be a memoryless vector channel defined by

Wr (y |x) =
εi

qi−1(q − 1)
, where dP(x , y) = i ,1 ≤ i ≤ r ,

and Wr (y |x) = ε0 if y = x .
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Transmission over channels

Ordered symmetric channel: Properties

Let shape(y) = e = (e1,e2, . . . ,er ), where ei is the number of blocks
of ordered weight i

Wr (y |0) = εe0
0

(
ε1

q − 1

)e1

· · ·
(

εr
qr−1(q − 1)

)er

=
εe0
0

qwP(y)

r∏
i=1

(
qεi

q − 1

)ei

.

Link to Arikan’s polar codes (W. Park & AB, [6])
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Transmission over channels

Ordered symmetric channel: Properties

Assume that
ε0 >

ε1
q − 1

> · · · > εr
qr−1(q − 1)

Proposition

The capacity of Wr (ε) equals

C (Wr (ε)) = r(1− hq,r (ε)),

where

hq,r (ε) ,
1
r

(
Hq(ε) +

r∑
i=1

εi logq(q
i−1(q − 1))

)
and Hq(ε) = −

∑r
i=0 εi logq εi .

Recall: If r = 1, C = 1 + ε log ε
q−1 + (1− ε) log(1− ε)
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Transmission over channels

Extensions

Links to wire-tap channel and polar codes (W.Park - A.B.)

Suppose that transmission between A and B is in fading environment
desribed by OSC

Channel to E is also OSC (stochastically degraded)
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Association schemes and duality

Association schemes

(X ,R),R = (R0,R1, . . . ,RD) is called an association scheme if

X × X =
D⊔

i=0
Ri ; Ri symmetric; R0 diagonal

given x , y ∈ Rk , |{z ∈ X : (x , z) ∈ Ri , (x , y) ∈ Rj}| is a function of
i , j , k

Example: X = Fn
q,Ri = {(x , y) ∈ X 2 : dH(x , y) = i}, i = 0,1, . . . ,n

A is called a translation association scheme if for all R ∈ R

(x , y) ∈ Ri ⇒ (x + z, y + z) ∈ Ri , z ∈ X .

R.C. Bose (1952-59), P. Delsarte (1973), Brouwer, Cohen, Neumaier (1989)
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Association schemes and duality

Duality

Dual code A⊥ = {y ∈ X : x ·y = 0 for all x ∈ A}

Dual scheme of a translation scheme A :

Let X ∗ = {χ : X → C∗} be the group of characters of X , X ∼= X ∗

Characters form an association scheme A∗ with relations
R∗i = {(χ, ψ) : Eiη = η}, where η = χ−1ψ.

Generally A 6∼= A∗

Dual code is the subgroup

A′ = {χ ∈ X ∗|χ(x) = 1 for all x ∈ A}

Identifying X and X ∗ preserves the group, but not the as-
sociation scheme. In other words, A and A′ live in differ-
ent (metric) spaces (i.e., the metric structures for A′ and
A⊥ are different)
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Association schemes and duality

Association schemes from group action

Let X = Fn
q, G < GL(q,n) a linear group acting on X

Example: G is the group of linear isometries for a metric d
e.g., for dHamming, G = (F∗q)n Sn

x , y ∈ X are equivalent, x ∼ y , if there is T ∈ G such that y = Tx

Let X := X/∼ be the set of orbits, |X | = D + 1.

Consider the partition R = {Rα|α ∈ X} of X × X given by

Rα = {(x , y) ∈ X 2|x − y ∈ α}, α ∈ X .

Proposition

The pair (X ,R) forms a translation association scheme A with D
classes.
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Association schemes and duality

Example (W. Martin)

Consider the NRT metric space. Its group of linear isometries:
G = Br o Sn (upper-triangular matrices and permutations)

A = (Fnr
q ,R = (Re))

(x , y) ∈ Fnr
q × Fnr

q is in Re iff shape(x − y) = e.
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Association schemes and duality

Self-dual posets

Under which conditions the orthogonal code is the same as the dual
code?
Call P⊥ a dual poset of P if P⊥ is a poset on JnK such that if i � j in P

then i � j in P⊥. Call P self-dual if P ∼= P⊥

Theorem
Suppose that A is a translation association scheme on X whose
classes are given by orbits of the group GLP(n) of linear isometries of
a poset metric space (X ,P). Then A∗ ∼= A⊥ if and only if P is self-dual.

(Work with Marcelo Firer [4])
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Association schemes and duality

Research directions

1. Construct codes for the NRT metric (e.g., what is a good definition
of the Hamming code? Simplex code?). See [Rosenbloom and
Tsfasman ’97], but details are to be filled in.

2. Examples of posets on which shapes are manageable (they are not
even on regular trees).

3. If such posets are found, study their association schemes. Do any
nice families of polynomials arise?

4. Extend the study of poset association schemes to the case {0,1}N.

5. Is there a good concept of ordered matroids (in some special cases)
that would connect to poset codes?
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Association schemes and duality
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