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Resolution of the Conjecture on Exceptional APN
Function When the First and the Second Terms

Have Odd Degrees
Carlos Agrinsoni1, Heeralal Janwa1, Moises Delgado2
[{carlos.agrinsoni,heeralal.janwa,moises.delgado}@upr.edu]

1 Department of Mathematics
University of Puerto Rico at Rio Piedras
17 University Ave. Ste 1701 San Juan PR, 00925-2537
2 Mathematics Physics
University of Puerto Rico Cayey
205 Calle Antonio R. Barcelo, Cayey, 00736

An almost perfect non-linear (APN) function on F2n is one whose directional derivative on
nonzero elements is at most two to one. The APN functions have applications in coding
theory, cryptography, and sequence designs. A function that is APN over F2n and also on
infinitely many extensions is called an exceptional APN function. Janwa and Wilson, Janwa,
McGuire and Wilson, Jedlicka, and finally McGuire and Hernando in 2011 [1] proved that the
exceptional APN monomials up to CCZ equivalence are the Gold f(x) = x2

k+1 and Kasami-
Welch f(x) = x2

2k−2k+1 monomials. Aubrey, McGuire, and Rodier [5] conjectured that up
to CCZ equivalence, the only exceptional APN functions are the ones from these two fam-
ilies of monomials. They also established that the odd degrees are necessarily the Gold or
Kasami-Welch exponents. For the converse, substantial progress has been made by Delgado
and Janwa [3, 4], and Ferard [2] when the degree of the second term is odd. Only a few excep-
tions remain in the literature for these cases. Here we present proofs for the remaining cases
and thus establish a resolution of this conjecture. We deduce our results as a consequence of
our recent theorems and algorithms for absolute irreducibility testing of multivariate polyno-
mials over finite fields. These absolute irreducibility results are of considerable importance
in applications of computer algebra in coding theory and cryptography.
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Two and Three Weight Codes via Our GU Codes

Eddie A. Arrieta, Heeralal Janwa [{eddie.arrieta,heeralal.janwa}@upr.edu]

Department of Mathematics
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Linear codes with few weights have applications in cryptography, association schemes, de-
signs, strongly regular graphs, finite group theory, finite geometries, among other disciplines.
For two weight codes, see [4] , for three and few weights codes [5], [6], and [7]. We use
our GU code construction to obtain two-weight, three-weight and few-weights linear codes.
Consequently, we also give elementary constructions of two-weight codes in Calderbank and
Kantor [4], of three-weight codes and few weights codes given by Ding [6], and Tonchev and
Jungnickel [7]. We determine the optimal parameters of additive quaternary codes of short
length.
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Construction of Entangled Assisted Quantum
Error Correcting Codes from

Monomial-Cartesian codes
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A monomial-Cartesian code is evaluated through monomials on Cartesian sets. It is a gen-
eralization of toric codes, affine Cartesian codes and J-affine variety codes, etc. In this talk,
we discuss monomial-Cartesian codes. First compute the minimum distance of a monomial-
Cartesian code and then determine the dual of monomial-Cartesian code using the tools of
linear algebra. later, using duality, we give a necessary and sufficient condition on an LCD,
self-orthogonal and self-dual codes. As an application, we consider a class of Quantum codes
called Entanglement Assisted Quantum Qrror Correcting Code (EAQECC)s. Here we first
prove that an EAQECC is maximum distance seperable (MDS) if and only if the correspond-
ing linear code is MDS. This leads to the construction of MDS EAQECCs to MDS codes
with l dimensional Hulls. We later show that there exists an MDS code of dimension k with
l dimensional Hull, 0 ≤ l ≤ k. Finally, we present some MDS EAQECCs with the minimum
distance better than the EAQECCs available in the literature for a given entangled state c.



Construction and Linearity of Some Zps-Linear
Generalized Hadamard Codes∗

Dipak K. Bhunia , Cristina Fernández-Córdoba, Mercè Villanueva
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08193 Cerdanyola del Vallès, Spain

Let Zps be the ring of integers modulo ps with s ≥ 1 and p prime. The set of n-tuples over
Zps is denoted by Znps . A code over Zp of length n is a nonempty subset of Znp , and it is
linear if it is a subspace of Znp . Similarly, a nonempty subset of Znps is a Zps -additive if it is
a subgroup of Znps . Note that, when p = 2 and s = 1, a Zps -additive code is a binary linear
code and, when p = 2 and s = 2 , it is a quaternary linear code or a linear code over Z4.

In [5], a Gray map from Z4 to Z2
2 is defined as φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1)

and φ(3) = (1, 0). There exist different generalizations of this Gray map, which go from Zps
to

Zps−1

p [2, 3, 6, 7]. The one given in [2] is the map φ : Zps → Zps−1

p defined as follows:

φ(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Y, (1)

where u ∈ Zps , [u0, u1, . . . , us−1]p is the p-ary expansion of u, that is, u =
∑s−1
i=0 p

iui, and
Y is a matrix of size (s− 1)× ps−1 which columns are the elements of Zs−1p .

Then, we define Φ : Znps → Znps−1

p as the component-wise Gray map φ.

Let C be a Zps -additive code of length n. We say that its image C = Φ(C) is a Zps -linear
code of length ps−1n. Since C is a subgroup of Znps , it is isomorphic to an abelian structure
Zt1ps × Zt2ps−1 × · · · × Zts−1

p2 × Ztsp , and we say that C, or equivalently C = Φ(C), is of type
(n; t1, . . . , ts). Note that |C| = pst1p(s−1)t2 · · · pts .

A generalized Hadamard (GH) matrixH(p, λ) = (hij) of order n = pλ over Zp is a pλ×pλ
matrix with entries from Zp with the property that for every i, j, 1 ≤ i < j ≤ pλ, each of the
multisets {his − hjs : 1 ≤ s ≤ pλ} contains every element of Zp exactly λ times [11].

An ordinary Hadamard matrix of order 4µ corresponds to a GH matrix H(2, λ) over Z2,
where λ = 2µ [1]. Two GH matrices of order n are said to be equivalent if one can be
obtained from the other by a permutation of the rows and columns and adding the same
element of Zp to all the coordinates in a row or in a column. We can always change the first
row and column of a GH matrix into zeros and we obtain an equivalent GH matrix which is
called normalized. From a normalized Hadamard matrix H , we denote by FH the code over
Zp consisting of the rows of H , and CH the one defined as CH =

⋃
α∈Fq

(FH + α1), where
FH + α1 = {h + α1 : h ∈ FH} and 1 denotes the all-one vector. The code CH over Zp is

∗This work has been partially supported by the Spanish MINECO under Grant PID2019-104664GB-I00 / AEI /
10.13039/501100011033.



called generalized Hadamard (GH) code [10]. Note that CH is generally nonlinear over Zp.
The Zps -additive codes that, under the Gray map Φ, give a GH code are called Zps -additive
GH codes and the corresponding Gray map images are called Zps -linear GH codes.

The linearity of Z4-linear Hadamard codes of length 2t was proved in [8, 9]. Later, in [4], an
iterative construction for Z2s -linear Hadamard codes was described, and the linearity of these
codes was established. In this paper, we generalize these results for Zps -linear GH codes.
Specifically, first, we show some results related to the Carlet’s generalized Gray map. Then,
we describe an iterative construction to obtain Zps -additive GH codes of type (n; t1, . . . , ts).
Finally, we show for which types the corresponding Zps -linear codes are nonlinear codes
over Zp when p 6= 2.
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A software program for equivalence of linear
codes over finite fields†
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The equivalence test is a main part in any classification problem. In this talk, we present
the algorithm for equivalence of linear codes over finite fields implemented in the program
LCEQUIVALENCE which is a module of the software package QEXTNEWEDITION [1]. The
program is designed to obtain the inequivalent codes in a set of linear codes over a finite field
Fq with q ≤ 64 elements. Moreover, the program calculates the orders of the automorphism
groups and orbits of the coordinates. The use does not require special programming language
skills. Although there are many classification results, software for equivalence of linear codes
is presented only in the works of J. Leon [6], Thomas Feulner [4] and Iliya Bouyukliev [2]
(up to our knowledge). The main advantages of the program LCEQUIVALENCE are: (1) it
works for codes over fields with q ≤ 64 elements; (2) it can be used to find the inequivalent
among a huge number of linear codes; (3) there is no restrictions on the length and dimension
of the considered codes (this depends only on the used hardware and the computational time).

The main idea in the algorithm is not new - we associate with each code a {0, 1} matrix such
that two codes are equivalent if and only if the corresponding binary matrices are isomorphic.
A similar idea was used in [2] - the code equivalence problem was reduced to an isomorphism
test of binary matrices. The problem in [2] is that not every automorphism of the binary
matrix used is an automorphism of the code and therefore additional verification is needed.
The authors of [3] proposed to use a different binary matrix as an image of a given q-ary
code to avoid the disadvantage of [2]. A new improvement is implemented in the program
LCEQUIVALENCE.

Let Fnq be the n-dimensional vector space over the finite field Fq . The Hamming distance
between two vectors of Fnq is defined as the number of coordinates in which they differ. A
q-ary linear [n, k, d]q code is a k-dimensional linear subspace of Fnq with minimum distance
d. A generator matrix G of a linear code [n, k] code C is any matrix of rank k (over Fq) with
rows from C. The most important definitions in our work are the following.

Definition 1: We say that two linear [n, k]q codes C1 and C2 are equivalent, if the code-
words of C2 can be obtained from the codewords of C1 via a finite sequence of transfor-
mations of the following types: (1) permutation of coordinate positions; (2) multiplication
of the elements in a given position by a non-zero element of Fq; (3) application of a field
automorphism to the elements in all coordinate positions.

This definition is well motivated as the transformations (1)–(3) preserve the Hamming dis-
tance and the linearity (for more details see [5, Chapter 7.3]). An automorphism of a linear
code C is a finite sequence of transformations of type (1)–(3), which maps each codeword of

†This work is supported in part by the Bulgarian National Science Fund under Contracts KP-06- Rus-
sia/33/17.12.2020 and KP-06-N32/2-2019.



C onto a codeword of C. The set of automorphisms of C forms a group which is called the
automorphism group of the code and denoted by Aut(C). Clearly, Aut(C) is the semidirect
product of a group of monomial matrices by a subgroup of the Galois group of the considered
finite field.

Definition 2: Two binary matrices of the same size are isomorphic if the rows of the second
one can be obtained from the rows of the first one by a permutation of the columns.

Any permutation of the columns of a binary matrix A which maps the rows of A into the
rows of the same matrix, is called an automorphism of A. The set of all automorphisms of A
is a subgroup of the symmetric group Sn and we denote it by Aut(A).

Let C be a linear code over the field Fq with q = pm elements, where p is a prime, and let α
be a primitive element of Fq . To any element of Fq we juxtapose a circulant binary matrix of
order q − 1 in the following way:

0 7→ circ(00 . . . 0), αi 7→ circ(0 . . . 0 1︸︷︷︸
i

0 . . . 0) for i = 0, 1, . . . , q − 2.

Instead of a generator matrix, we use a generating set DC for the code C. This is a set
of codewords that is stable under the action of the group Aut(C) and generates the code
as a linear space over Fq . Obviously, if v ∈ DC then αiv ∈ DC for i = 0, . . . , q − 2.
Therefore we take a subset D′C ⊂ DC such that any two vectors in D′C are nonproportional
and any vector from DC is proportional to a vector in D′C . We substitute any vector v =
(v1, v2, . . . , vn) ∈ D′C with a binary (q − 1)× 2n(q − 1) matrix in the following way: first,
we extend v to v′ = (0, v1, 0, v2, . . . , 0, vn) ∈ F2n

q and then we replace each coordinate of
v′ by its corresponding circulant matrix. In this way we correspond to the set D′C a binary
t(q − 1)× 2n(q − 1) matrix A′C , where t = |D′C |. We then add a few more rows in order to
restrict the automorphisms of the binary matrix to those permutations that correspond to the
automorphisms of the linear code.

The basic features of the program LCEQUIVALENCE are presented on the website [1]. A
more detailed description will be given in the talk.
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In this work, three recent conjectures on the equivalence of linear cyclic codes over finite
fields will be answered. These conjectures were recently proposed by Aydin et al. (2019)
based on their computational results on the parameters of linear cyclic codes. In particular,
we prove the following statements.

1. If g1(x) and g2(x) are the generator polynomials of two monomially equivalent lin-
ear cyclic codes of length n over Fq , then g1(x) and g2(x) generate two monomially
equivalent linear cyclic codes of length nm, provided that gcd(mn, q) = 1.

2. LetA1 andA2 be the defining sets of two linear cyclic codes of length n over Fq . If the
shift map φ(x) = (x + b) mod n is a bijection from A1 to A2, then the linear cyclic
codes with the defining setsA1 andA2 are monomially equivalent and n | |A1|(q−1)b.

3. We show that there are monomially equivalent linear cyclic codes that are not equiva-
lent by an affine map.

Most of our results were motivated by computer algebra experiments. As an application,
several infinite families of monomially equivalent linear cyclic codes are provided.
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Hulls of additive conju-cyclic codes over F4 with
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Conjucyclic codes are closed under the conjugate cyclic shift operations. Additive Conju-
cyclic codes are useful in quantum error-correction, for which this class of codes are new
topic of interest in algebraic coding theory. In this talk, we discuss additive conjucyclic codes
over F4 with respect to the trace dual and obtain conditions for an additive conjucyclic code to
be self-orthogonal and self-dual. Later we find the trace hull of an additive conjucyclic code
and its dimension. A necessary and sufficient condition for a conjucyclic code to have an
additive complementary dual (ACD) is obtained. Finally, a condition on additive conjucyclic
complementary pair of codes over F4 is found using trace dual. We end the talk by presenting
some good quantum codes constructing using the conjucyclic codes.

Quantum Error-Correcting Codes over small
fields from AG curves
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17 University Ave. Ste 1701 San Juan PR, 00925-2537

In this article we use hyperbolic codes from algebraic curves over high degree extensions
of F2 to construct self–orthogonal code pairs for Quatum Error Correcting codes. We also
present bounds on the parameters of the resulting subfield codes over F2 or F4 from Hermitian
curves, Norm–Trace curves, quasi–Hermitian curves, and others. Several of these results are
novel and provide a pathway to make progress towards making quantum computers feasible
and practical during the next decade.
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Skew constacyclic codes over a non-chain ring
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A subspace of the vector space Fnq with dimension k is called a linear code of length n and
dimension k over Fq . The elements of a linear code are termed as codewords. The minimum
Hamming distance d of a linear code C is the minimum Hamming weight wH (C) of C, where
wH (C) = min {wH(c) : 0 6= c ∈ C} and wH (c) = |{i : ci 6= 0, i ∈ {0, 1, . . . , n− 1}}| .
A linear code C over Fq of length n, dimension k and minimum distance d is denoted by
the triple [n, k, d]q and this code corrects up to

⌊
d−1
2

⌋
errors. An [n, k, d]q linear code is

called maximum distance separable (MDS) if k = n − d + 1. A linear code C over Fq
is called a linear complementary dual (LCD) code if Hull (C) = C ∩ C⊥ = {0}, where

C⊥ =

{
y ∈ Fnq :

n−1∑
i=0

xiyi = 0, ∀x ∈ C
}
.

For a given automorphism θ of Fq, the set

Fq[x; θ] = {a0 + a1x+ . . .+ a1x
n|ai ∈ Fq and n ∈ N}

of formal polynomials forms a ring under the usual addition of polynomials and the polyno-
mial multiplication with the restriction xb = θ(b)x. The multiplication is extended to all the
elements of Fq[x; θ] via distributivity and associativity. This ring is called the skew polyno-
mial ring over Fq.



For a given element λ ∈ Fq − {0} and an automorphism θ of Fq a skew λ-constacyclic code
over the finite field Fq of length n is a linear code C satisfying that

(λθ (cn−1) , θ (c0) , . . . , θ (cn−2)) ∈ C

for each codeword c = (c0, . . . , cn−1) ∈ C.

In the last few decades, codes over finite commutative chain rings were studied extensively
(see Refs. [1, 2, 3, 4, 5, 6]). In recent years, some special non-chain rings have been used
as an alphabet for codes (see Refs. [7, 8, 9, 10]). One important class of linear codes is
the class of constacyclic codes since their algebraic structure and their applications to other
disciplines including classical and quantum communication systems. Over the conventional
polynomial rings, the algebraic structure of λ-constacyclic codes of length n is determined
by the factors of the cyclotomic polynomial xn − λ. In [11], Boucher, Solé and Ulmer used
skew polynomials to describe the structure of constacyclic codes under a skew constacyclic
shift. Later, in the [12, 13, 14], Boucher and Ulmer investigated more properties and good
examples of these codes.

In this study, we examine the algebraic structure of the semi-local ringRq = Fq[v]/〈v2 + 1〉,
where q = pk is a prime power and for positive integers a and b, p = a2 + b2, and determine
the automorphisms of this ring to study the algebraic structure of the skew constacyclic codes
and their dual over this ring. We provide the necessary and sufficient conditions for the
existence of the self-dual and self orthogonal skew constacyclic codes. In addition, we give
the conditions for the existence of the linear complementary dual skew cyclic codes and skew
negacyclic codes.
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Let p be a prime and Fq be a finite field of order q = pm. In this paper, we study skew
cyclic codes over FqR whereR := Fq +uFq with u2 = u. To characterize FqR-skew cyclic
codes, first we establish the algebraic structure and then by considering an inner product the
self-orthogonality of these codes are discussed. Further, we construct a Gray map over FqR
and discuss the Gray images of FqR-skew cyclic codes over Fq . Finally, we provide vari-
ous examples of skew cyclic codes over FqR and their respective Gray images for different
lengths.
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The Advanced Encryption Standard uses the inverse function, which is a differential 4-
uniform function. Finding differential 4-uniform permutations with high nonlinearity on even
degree field extensions is a current big challenge. In [1], Bracken and Leander listed that as
an open problem (only a few results are know). It is known that if f is an permutation on
F2n , then deg(f) ≤ n − 1. If f attains the equality Zha [2] calls it optimal algebraic degree
function. To know more about a class of sporadic binomials permutations with low differen-
tial uniformity (δ = 4, 6), see the work of Charpin and Kyureghyan (2017) in [3]. Yu and
Wang built differential 6 and 4-uniform permutations from the inverse function [5]. Then Qu
et al. [4] gives us a survey of differentially 4-uniform permutation families, even without the
requirement of high nonlinearity (see Carlet [6], and Zha [2]).

We construct new families of δ-uniform permutations in even degree field extensions (also for
odd degree extensions), where δ can be 4, 6, 8. It is important to underline that the functions
given by almost all authors are defined implicitly, or are given as a piecewise function. While
our functions are given via an explicit formula in polynomial representation, which is the
more desired representation. In this process, we obtain a new general and practical theorem
that can be widely applied in any finite field, e.g., to new S-Boxes.

References

[1] Carl Bracken; Gregor Leander, A highly nonlinear differentially 4 uniform power map-
ping that permutes fields of even degree, Finite Fields Appl., 16(4):231–242, 2010.

[2] Zhengbang Zha; Lei Hu; Siwei Sun, Constructing new differentially 4-uniform permu-
tations from the inverse function, Finite Fields Appl., 25:64–78, 2014.

[3] Pascale Charpin; Gohar M. Kyureghyan, On sets determining the differential spectrum
of mappings, Int. J. Inf. Coding Theory, 4(2-3):170–184, 2017.

‡The research of Roberto Carlos Reyes Carranza was partially supported by the NSF. The research of Heeralal
Janwa was supported by NASA. Some of the computations were carried out at the High Performance Computing
Center of UPR.



[4] Longjiang Qu; Yin Tan; Chik How Tan; Chao Li, Constructing differentially 4-
uniform permutations over F22k via the switching method, IEEE Trans. Inform. Theory,
59(7):4675–4686, 2013.

[5] Yuyin Yu; Mingsheng Wang; Yongqiang Li, Constructing differentially 4 uniform per-
mutations from known ones, Chinese Journal of Electronics, 22(3):495–499, 2013.

[6] Claude Carlet, On known and new differentially uniform functions, Australasian Con-
ference on Information Security and Privacy, pages 1–15. Springer, 2011.

Enumeration and Construction of New Boolean
Bent/Near-bent Functions of the Gold and

Kasami-Welch Type§

Jose W. Velazquez, Heeralal Janwa [{jose.velazquez16,heeralal.janwa}@upr.edu]

Department of Mathematics
University of Puerto Rico at Rio Piedras
17 University Ave. Ste 1701 San Juan PR, 00925-2537

A vectorial (m,k) Boolean function is defined as f : F2m → F2k , 1 ≤ k ≤ m. Boolean
functions ( k = 1) have their nonlinearity bounded above by 2m−1 − 2

m
2 −1. Bent Boolean

functions have maximum nonlinearity; a measure of their distance to the set of affine func-
tions (i.e., the first-order Reed-Muller codes). Janwa and Wilson gave construction of error-
correcting-codes [4] from non-linear function. Janwa, McGuire and Wilson [3] conjectured
that such codes are 2-error-correcting if and only if the exponents are the Gold or Kasami-
Welch type (d = 2l + 1, 22l − 2l + 1, (l,m) = 1) (i.e., the functions are APN). One can can
construct Boolean functions as trace functions on F2m . Well known Boolean functions are
the Gold and Kasami-Welch near-bent functions of the form Tr(xd) [1]. Corresponding to
these exponents, Dillon and Dobbertin [2] proposed a construction of bent functions of the
type Tr(λxd) with λ ∈ F ∗2m a non-cube. In this work, we generalize the results of Dillon
and Dobbertin. We also give results on the classification and enumeration of the Gold and
Kasami-Welch near-bent functions via cyclotomic coset equivalence analysis. Consequently,
we prove theorems and obtain bounds on the number of equivalence classes of such near-bent
functions. We also prove some such results for the bent functions of Dillon and Dobbertin
and of our generalization.
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Let Fq be the finite field with q elements, where q = pm for some prime p and m > 0. In
this article, we provide three constructions of linear codes over Fq in terms of their generator
matrices and characterise LCD codes from them. Here, we consider Galois inner product in-
stead of Euclidean or Hermitian inner products. For these constructions, we use the matrices
A for which A[σm−l(A)]t = I, 0 ≤ l ≤ m− 1, where σ is the frobenius map.


