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Abstract

This paper investigates the rank weight enumerator of a code over L, where L is a finite
extension of a field K. This is a generalization of the case where K = Fq and L = Fqm of
Gabidulin codes to arbitrary characteristic. We use the notion of counting polynomials, to
define the (extended) rank weight enumerator, since in this generality the set of codewords
of a given rank weight is no longer finite. Also the extended and generalized rank weight
enumerator are studied in analogy with previous work on codes with respect to the Hamming
metric.
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1 Introduction

In previous work [7, 8] the weight enumerator WC(X,Y ) of a code C over a finite field Fq with
respect to the Hamming distance was generalized to the extended weight enumerator WC(X,Y, T )
for arbitrary fields, such that WC(X,Y, qm) = WC⊗Fqe

(X,Y ) for a code C over Fq and its extension

C ⊗ Fqm over Fqe . Also the r-th generalized weight enumerator W
(r)
C (X,Y ) was considered and

it was shown that it is determined by the extended weight enumerator, and conversely that the

collection of W
(r)
C (X,Y ) for r = 1, . . . , k, where k is the dimension of C, determine WC(X,Y, T ).

Furthermore MacWilliams identities were proved both for WC(X,Y, T ) and W
(r)
C (X,Y ).

This paper investigates the rank weight enumerator of a code over L, where L is a finite field
extension of a field K. This is a generalization of the case where K = Fq and L = Fqm of Gabidulin
codes [4] to arbitrary characteristic as considered by Augot-Loidreau-Robert [2, 1].

The notion of counting polynomials [12, 13, 14] is used to define the (extended) rank weight
enumerator WR

C (X,Y, T ) for a Fqm-linear code C with respect to the rank distance, since in this
generality the set of codewords of a given rank weight is no longer finite. Also, the r-th generalized
rank weight enumerator WR,r

C (X,Y ) is defined. It is shown that it is determined by the ex-

tended rank weight enumerator, and conversely that the collection of WR,r
C (X,Y ) for r = 1, . . . , k

determines WR
C (X,Y, T ). Finally MacWilliams identities are proved both for WR

C (X,Y, T ) and

WR,r
C (X,Y ) as a generalization of the work of Gadouleau-Yan [5] and Gluesing [6].

Let K be a field and let L be a finite Galois extension of K. Choose a basis α1, . . . , αm of L
as a vector space over K. If C is an L-linear code of length n, that is an L-linear subspace of Ln,
then with the element c = (c1, . . . , cn) of C an m × n matrix M(c) is associated where the j-the
column of M(c) consists of the coordinates of cj with respect to the chosen basis: cj =

∑m
i=1 cijαi.

So M(c) has entries cij . The rank weight wtR(c) = rk(c) of c is by definition the rank of the
matrix M(c). The rank distance is defined by dR(x,y) = rk(x− y). This defines a metric on the
collection of all m×n matrices. The rank distance of the code is dR(C) = min{rk(c) : c ∈ C, c 6= 0}.



One can view the theory of rank metric codes as a q-analogue for a finite field Fq, and more
generally as the T -analogue where T is a variable for an arbitrary field K, of the theory of codes
with the Hamming metric. The q-analogue in combinatorics is often a generalization of a concept
or expression involving a new parameter q that returns to the original concept or expression as
q → 1. For instance the q-analogue of a finite set of n elements is the vector space Fn

q .

The basis of q-analogues is the q-analogue of a number, defined by [n]q = qn−1
q−1 , or more generally

[n]T = Tn−1
T−1 . The T -analogue of a finite set is a finite vector space. We list the T -analogues of

some operations on subsets:

subsets of {1, . . . , n} subspaces of Kn

∅ {0}
intersection intersection

union sum
complement orthoplement

size dimension

Furthermore, the Newton binomial
(
n
k

)
counts the number of subsets of {1, . . . , n} of size t. So

the q-analogue is given by the Gaussian binomial, or q-binomial
[
n
k

]
q

which counts the number of

subspaces of Fn
q of dimension k. More generally the T -analogue is the T -binomial[

n

k

]
T

=
(Tn − 1) · · · (Tn−k+1 − 1)

(T − 1) · · · (T k − 1)

which is a polynomial in T and can be considered as the counting polynomial [12, 13, 14] of the
Grassmann variety of k-dimensional subspaces of an n dimensional vector space.

The translation is not always unambiguous. Since for subsets x and y the condition x ∩ y = ∅
would translate in this way into x ∩ y = {0} for subspaces x and y. But the condition x ∩ y = ∅
for subsets x and y, is equivalent to x ⊆ yc, the complement of y and this would translate into
x ⊆ y⊥, the orthoplement for subspaces x and y. Here the orthoplement or dual x⊥ of a subspace
x of Kn is defined by x⊥ = {b ∈ Kn : a · b = 0 for all a ∈ x} with respect the standard inner
product a · b =

∑n
i=1 aibi for vectors a,b ∈ K.

The interpretation of the extended and generalized rank weight enumerator in terms of the
Tutte polynomial needs the generalization of the notion of a q-matroid and more generally of a
K-matroid and their corresponding q-Tutte and K-Tutte polynomials, respectively. This will be
pursued in a subsequent paper.

2 Some codes related to C

The previous mentioned translation gives for instance the following. The support of a vector c ∈ Kn

is defined by supp(c) = {j : cj 6= 0} and the Hamming weight of this vector is wtH(c) = |supp(c)|.
Let C be a K-linear code of length n. Then the minimum Hamming distance dH(C) is given by
the minimum of wtH(c) for all nonzero c ∈ C. Let J be a subset of {1, . . . , n} with complement
Jc. Then the subcode C(J) is defined in [9] and [8, Definition 5.1] by

C(J) = {c ∈ C : supp(c) ⊆ Jc}.

Analogously the following definitions are given.

Definition 1. Let C be an L-linear code of length n. Let c ∈ C. Let J be a K-linear subspace
of Kn. Then Rsupp(c), the rank support of c is by definition the row space of M(c). The rank
weight of c is wtR(c) = dim(Rsupp(c)).

Definition 2. For a K-linear subspace J of Kn we define:

C(J) = {c ∈ C : Rsupp(c) ⊆ J⊥}

From this definition it is clear that C(J) is a K-linear subspace of C, but in fact it is also an
L-linear subspace.



Lemma 3. Let C be an L-linear code of length n and let J be a K-linear subspace of Kn. Then
c ∈ C(J) if and only if c · y for all y ∈ J . Furthermore C(J) is an L-linear subspace of C.

Definition 4. Let C be an L-linear code of length n. Let J be a K-linear subspace of Kn of
dimension t with generator matrix Y . Define the map πJ : Ln → Lt by πJ(x) = xY T , and
CJ = πJ(C).

Lemma 5. Let C be an L-linear code of length n. Let J be a K-linear subspace of Kn of dimension
t with generator matrix Y . Then πJ is an L-linear map and CJ is an L-linear code of length t
and its dimension does not depend on the chosen generator matrix. Furthermore we have an exact
sequence of vector spaces:

0 −→ C(J) −→ C −→ CJ −→ 0.

Definition 6. Let C be an L-linear code of length n. Let J be a K-linear subspace of Kn of
dimension t. Define l(J) = dimL C(J) and r(J) = dimL CJ .

The following corollary is the analogon of [8, Lemma 5.1].

Corollary 7. Let C be an L-linear code of length n and dimension k. Let J be a K-linear subspace
of Kn. Then l(J) + r(J) = k.

The following lemma is the analogon of [8, Lemma 5.2].

Lemma 8. Let C be an L-linear code of length n. Let dR and d⊥R be the minimum rank distance of
C and C⊥, respectively. Let J be a K-linear subspace of Kn of dimension t. Let l(J) = dimL C(J).
Then

l(J) =

{
k − t for all t < d⊥R

0 for all t > n− dR

3 Extended rank weight enumerator

Let K be a field and L a finite field extension of degree m. Let ν be the counting polynomial in
the variable T with respect to the field K.

Definition 9. Let C be an L-linear code of length n. Let AR
w = {c ∈ C : wtR(c) = w} and

AR
w(T ) = ν(AR

w). The (extended) rank weight enumerator is given by

WR
C (X,Y ) =

n∑
w=0

AR
w(T )Xn−wY w,

Definition 10. Let C be an L-linear code of length n. Let BRJ = C(J) for a subspace J of Kn.
Let

BRt = {(J, c) : J ⊆ Kn subspace of dimension t, c ∈ C(J)},
BRt,l = {J : J ⊆ Kn subspace of dimension t, l(J) = l}.

Let BR
J (T ), BR

t (T ) and BR
t,l(T ) be the counting polynomials of BRJ , BRt and BRt,l, respectively.

Remark 11. The dimension of C(J) over L is l(J) by definition, so it has dimension m · l(J) over
K. If C has dimension k over L and the subspace J of Kn has dimension t, then k− t ≤ l(J) ≤ k,
since k − l(J) = r(J) ≤ dim(J) by Corollary 7. Hence BRt is the disjoint union of the BRt,l for
l ≤ k − t. Therefore

BR
J (T ) = Tm·l(J)

BR
t (T ) =

∑k
l=k−tB

R
t,l(T )Tml

The following proposition is the analogon of [8, Proposition 5.21].

Proposition 12. Let C be an L-linear code of length n. Let dR and d⊥R be the minimum rank
distance of C and C⊥, respectively. Then

BR
t (T ) =

{ [
n
t

]
T
· Tm(k−t) for all t < d⊥[
n
t

]
T

for all t > n− d

Proof. If t < d⊥ or t > n − d, then l(J) is constant and equal to k − t and 0, respectively for all
subspaces J of dimension t by Lemma 8. The Grassmannian of all subspaces of Kn of dimension
t has counting polynomial

[
n
t

]
T

. So the Proposition follows now from Remark 11.



The relation between BR
t (T ) and AR

w(T ) becomes clear in the next proposition.

Proposition 13. The following formula holds:

BR
t (T ) =

n∑
w=0

[
n− w
t

]
T

AR
w(T ).

Proposition 14. The following formula holds:

AR
w(T ) =

n∑
t=n−w

(−1)t−n+wT (t−n+w
2 )

[
t

n− w

]
T

BR
t (T )

Theorem 15. The following formula holds:

WR
C (X,Y, T ) =

n∑
t=0

BR
t (T )

t−1∏
j=0

(X − T jY )

Y n−t

The following proposition is the analogon of [8, Proposition 5.24].

Proposition 16. The following formula holds:

WR
C (X,Y, T ) =

n∑
t=0

 k∑
l=k−t

BR
t,l(T )Tml

t−1∏
j=0

(X − T jY )

Y n−t

Proof. Follows directly form Theorem 15 and the definition of BR
t (T ).

4 Generalized rank weight enumerator

From now on we assume that K is a finite field. So L/K is a cyclic Galois extension. The first
proposal of a definition of the r-th generalized rank weight was given by Oggier-Sboui [11]. An
alternative was given by Kurihara-Matsumoto-Uyematsu [10]. Ducoat [3] proved that a refinement
of the first definition is equivalent to the second definition. We will prove that the refinement can
be dropped: the definitions in [10] and [11] are equivalent. They are furthermore equivalent to the
following definition, that also holds for general fields K and L:

Definition 17. Let C be an L-linear code. Let D be an L-linear subcode of C. Then Rsupp(D),
the rank support of D is by definition the K-linear space generated by the Rsupp(d) with d ∈ D.
Then wtR(D), the rank support weight of D is by definition the dimension of Rsupp(D).

Proposition 18. Let C be an L-linear code and D a subcode. Then Rsupp(D) = Tr(D).

Definition 19. Let C be an L-linear code. Then dR,r(C), the r-th generalized rank weight of the
code C is the minimal rank support weight of a subcode D of C of dimension r.

Similar definitions and results will be given for the (extended) generalized rank weight enumer-
ator as given in the previous section for the rank weight enumerator.

5 MacWilliam’s identities

The MacWilliams identities for the rank weight enumerator was obtained by Gadouleau-Yan [5]
and Gluesing [6]. This will be given for the extended (generalized) rank weight enumerator.
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