The extended and generalized rank weight enumerator of a code

Relinde Jurrius Free University of Brussels

Ruud Pellikaan Eindhoven University of Technology

g.r.pellikaan@tue.nl

Abstract

This paper investigates the rank weight enumerator of a code over L, where L is a finite extension of a field K. This is a generalization of the case where $K = \mathbb{F}_q$ and $L = \mathbb{F}_{q^m}$ of Gabidulin codes to arbitrary characteristic. We use the notion of counting polynomials, to define the (extended) rank weight enumerator, since in this generality the set of codewords of a given rank weight is no longer finite. Also the extended and generalized rank weight enumerator are studied in analogy with previous work on codes with respect to the Hamming metric.

Keywords

Rank weight enumerator, r-the generalized rank weight

1 Introduction

In previous work [7, 8] the weight enumerator $W_C(X, Y)$ of a code C over a finite field \mathbb{F}_q with respect to the Hamming distance was generalized to the extended weight enumerator $W_C(X, Y, T)$ for arbitrary fields, such that $W_C(X, Y, q^m) = W_{C \otimes \mathbb{F}_{q^e}}(X, Y)$ for a code C over \mathbb{F}_q and its extension $C \otimes \mathbb{F}_{q^m}$ over \mathbb{F}_{q^e} . Also the *r*-th generalized weight enumerator $W_C^{(r)}(X, Y)$ was considered and it was shown that it is determined by the extended weight enumerator, and conversely that the collection of $W_C^{(r)}(X, Y)$ for $r = 1, \ldots, k$, where k is the dimension of C, determine $W_C(X, Y, T)$. Furthermore MacWilliams identities were proved both for $W_C(X, Y, T)$ and $W_C^{(r)}(X, Y)$.

This paper investigates the rank weight enumerator of a code over L, where L is a finite field extension of a field K. This is a generalization of the case where $K = \mathbb{F}_q$ and $L = \mathbb{F}_{q^m}$ of Gabidulin codes [4] to arbitrary characteristic as considered by Augot-Loidreau-Robert [2, 1].

The notion of counting polynomials [12, 13, 14] is used to define the (extended) rank weight enumerator $W_C^R(X, Y, T)$ for a \mathbb{F}_{q^m} -linear code C with respect to the rank distance, since in this generality the set of codewords of a given rank weight is no longer finite. Also, the *r*-th generalized rank weight enumerator $W_C^{R,r}(X,Y)$ is defined. It is shown that it is determined by the extended rank weight enumerator, and conversely that the collection of $W_C^{R,r}(X,Y)$ for $r = 1, \ldots, k$ determines $W_C^R(X,Y,T)$. Finally MacWilliams identities are proved both for $W_C^R(X,Y,T)$ and $W_C^{R,r}(X,Y)$ as a generalization of the work of Gadouleau-Yan [5] and Gluesing [6].

Let K be a field and let L be a finite Galois extension of K. Choose a basis $\alpha_1, \ldots, \alpha_m$ of L as a vector space over K. If C is an L-linear code of length n, that is an L-linear subspace of L^n , then with the element $\mathbf{c} = (c_1, \ldots, c_n)$ of C an $m \times n$ matrix $M(\mathbf{c})$ is associated where the j-the column of $M(\mathbf{c})$ consists of the coordinates of c_j with respect to the chosen basis: $c_j = \sum_{i=1}^m c_{ij}\alpha_i$. So $M(\mathbf{c})$ has entries c_{ij} . The rank weight $\operatorname{wt}_R(\mathbf{c}) = \operatorname{rk}(\mathbf{c})$ of \mathbf{c} is by definition the rank of the matrix $M(\mathbf{c})$. The rank distance is defined by $d_R(\mathbf{x}, \mathbf{y}) = \operatorname{rk}(\mathbf{x} - \mathbf{y})$. This defines a metric on the collection of all $m \times n$ matrices. The rank distance of the code is $d_R(C) = \min\{\operatorname{rk}(\mathbf{c}) : \mathbf{c} \in C, \mathbf{c} \neq 0\}$.

One can view the theory of rank metric codes as a q-analogue for a finite field \mathbb{F}_q , and more generally as the *T*-analogue where *T* is a variable for an arbitrary field *K*, of the theory of codes with the Hamming metric. The q-analogue in combinatorics is often a generalization of a concept or expression involving a new parameter q that returns to the original concept or expression as $q \to 1$. For instance the q-analogue of a finite set of n elements is the vector space \mathbb{F}_q^n .

The basis of q-analogues is the q-analogue of a number, defined by $[n]_q = \frac{q^n - 1}{q - 1}$, or more generally $[n]_T = \frac{T^n - 1}{T - 1}$. The T-analogue of a finite set is a finite vector space. We list the T-analogues of some operations on subsets:

subsets of $\{1, \ldots, n\}$	subspaces of K^n
Ø	$\{0\}$
intersection	intersection
union	sum
complement	orthoplement
size	dimension

Furthermore, the Newton binomial $\binom{n}{k}$ counts the number of subsets of $\{1, \ldots, n\}$ of size t. So the q-analogue is given by the Gaussian binomial, or q-binomial $\binom{n}{k}_q$ which counts the number of subspaces of \mathbb{F}_q^n of dimension k. More generally the T-analogue is the T-binomial

$$\begin{bmatrix} n \\ k \end{bmatrix}_T = \frac{(T^n - 1) \cdots (T^{n-k+1} - 1)}{(T - 1) \cdots (T^k - 1)}$$

which is a polynomial in T and can be considered as the counting polynomial [12, 13, 14] of the Grassmann variety of k-dimensional subspaces of an n dimensional vector space.

The translation is not always unambiguous. Since for subsets x and y the condition $x \cap y = \emptyset$ would translate in this way into $x \cap y = \{0\}$ for subspaces x and y. But the condition $x \cap y = \emptyset$ for subsets x and y, is equivalent to $x \subseteq y^c$, the complement of y and this would translate into $x \subseteq y^{\perp}$, the orthoplement for subspaces x and y. Here the orthoplement or dual x^{\perp} of a subspace x of K^n is defined by $x^{\perp} = \{\mathbf{b} \in K^n : \mathbf{a} \cdot \mathbf{b} = 0 \text{ for all } \mathbf{a} \in x\}$ with respect the standard inner product $\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i$ for vectors $\mathbf{a}, \mathbf{b} \in K$.

The interpretation of the extended and generalized rank weight enumerator in terms of the Tutte polynomial needs the generalization of the notion of a q-matroid and more generally of a K-matroid and their corresponding q-Tutte and K-Tutte polynomials, respectively. This will be pursued in a subsequent paper.

2 Some codes related to C

The previous mentioned translation gives for instance the following. The support of a vector $\mathbf{c} \in K^n$ is defined by $\operatorname{supp}(\mathbf{c}) = \{j : c_j \neq 0\}$ and the Hamming weight of this vector is $\operatorname{wt}_H(\mathbf{c}) = |\operatorname{supp}(\mathbf{c})|$. Let C be a K-linear code of length n. Then the minimum Hamming distance $d_H(C)$ is given by the minimum of $\operatorname{wt}_H(\mathbf{c})$ for all nonzero $\mathbf{c} \in C$. Let J be a subset of $\{1, \ldots, n\}$ with complement J^c . Then the subcode C(J) is defined in [9] and [8, Definition 5.1] by

$$C(J) = \{ \mathbf{c} \in C : \operatorname{supp}(\mathbf{c}) \subseteq J^c \}.$$

Analogously the following definitions are given.

Definition 1. Let C be an L-linear code of length n. Let $\mathbf{c} \in C$. Let J be a K-linear subspace of K^n . Then $\operatorname{Rsupp}(\mathbf{c})$, the rank support of \mathbf{c} is by definition the row space of $M(\mathbf{c})$. The rank weight of \mathbf{c} is $\operatorname{wt}_R(\mathbf{c}) = \operatorname{dim}(\operatorname{Rsupp}(\mathbf{c}))$.

Definition 2. For a K-linear subspace J of K^n we define:

$$C(J) = {\mathbf{c} \in C : \operatorname{Rsupp}(\mathbf{c}) \subseteq J^{\perp}}$$

From this definition it is clear that C(J) is a K-linear subspace of C, but in fact it is also an L-linear subspace.

Lemma 3. Let C be an L-linear code of length n and let J be a K-linear subspace of K^n . Then $\mathbf{c} \in C(J)$ if and only if $\mathbf{c} \cdot \mathbf{y}$ for all $\mathbf{y} \in J$. Furthermore C(J) is an L-linear subspace of C.

Definition 4. Let C be an L-linear code of length n. Let J be a K-linear subspace of K^n of dimension t with generator matrix Y. Define the map $\pi_J : L^n \to L^t$ by $\pi_J(\mathbf{x}) = \mathbf{x}Y^T$, and $C_J = \pi_J(C)$.

Lemma 5. Let C be an L-linear code of length n. Let J be a K-linear subspace of K^n of dimension t with generator matrix Y. Then π_J is an L-linear map and C_J is an L-linear code of length t and its dimension does not depend on the chosen generator matrix. Furthermore we have an exact sequence of vector spaces:

$$0 \longrightarrow C(J) \longrightarrow C \longrightarrow C_J \longrightarrow 0.$$

Definition 6. Let C be an L-linear code of length n. Let J be a K-linear subspace of K^n of dimension t. Define $l(J) = \dim_L C(J)$ and $r(J) = \dim_L C_J$.

The following corollary is the analogon of [8, Lemma 5.1].

Corollary 7. Let C be an L-linear code of length n and dimension k. Let J be a K-linear subspace of K^n . Then l(J) + r(J) = k.

The following lemma is the analogon of [8, Lemma 5.2].

Lemma 8. Let C be an L-linear code of length n. Let d_R and d_R^{\perp} be the minimum rank distance of C and C^{\perp} , respectively. Let J be a K-linear subspace of K^n of dimension t. Let $l(J) = \dim_L C(J)$. Then

$$l(J) = \begin{cases} k-t & \text{for all } t < d_R^{\perp} \\ 0 & \text{for all } t > n-d_R \end{cases}$$

3 Extended rank weight enumerator

Let K be a field and L a finite field extension of degree m. Let ν be the counting polynomial in the variable T with respect to the field K.

Definition 9. Let C be an L-linear code of length n. Let $\mathcal{A}_w^R = \{\mathbf{c} \in C : wt_R(\mathbf{c}) = w\}$ and $\mathcal{A}_w^R(T) = \nu(\mathcal{A}_w^R)$. The *(extended) rank weight enumerator* is given by

$$W_C^R(X,Y) = \sum_{w=0}^n A_w^R(T) X^{n-w} Y^w,$$

Definition 10. Let C be an L-linear code of length n. Let $\mathcal{B}_J^R = C(J)$ for a subspace J of K^n . Let

$$\begin{aligned} \mathcal{B}_t^R &= \{(J,\mathbf{c}): J \subseteq K^n \text{ subspace of dimension } t, \mathbf{c} \in C(J) \} \\ \mathcal{B}_{t,l}^R &= \{J: J \subseteq K^n \text{ subspace of dimension } t, l(J) = l \}. \end{aligned}$$

Let $B_J^R(T)$, $B_t^R(T)$ and $B_{t,l}^R(T)$ be the counting polynomials of \mathcal{B}_J^R , \mathcal{B}_t^R and $\mathcal{B}_{t,l}^R$, respectively.

Remark 11. The dimension of C(J) over L is l(J) by definition, so it has dimension $m \cdot l(J)$ over K. If C has dimension k over L and the subspace J of K^n has dimension t, then $k - t \leq l(J) \leq k$, since $k - l(J) = r(J) \leq \dim(J)$ by Corollary 7. Hence \mathcal{B}_t^R is the disjoint union of the $\mathcal{B}_{t,l}^R$ for $l \leq k - t$. Therefore

$$\begin{array}{lcl} B^R_J(T) &=& T^{m\cdot l(J)} \\ B^R_t(T) &=& \sum_{l=k-t}^k B^R_{t,l}(T) T^{ml} \end{array}$$

The following proposition is the analogon of [8, Proposition 5.21].

Proposition 12. Let C be an L-linear code of length n. Let d_R and d_R^{\perp} be the minimum rank distance of C and C^{\perp} , respectively. Then

$$B_t^R(T) = \begin{cases} \begin{bmatrix} n \\ t \end{bmatrix}_T \cdot T^{m(k-t)} & \text{for all } t < d^{\perp} \\ \begin{bmatrix} n \\ t \end{bmatrix}_T & \text{for all } t > n - d \end{cases}$$

Proof. If $t < d^{\perp}$ or t > n - d, then l(J) is constant and equal to k - t and 0, respectively for all subspaces J of dimension t by Lemma 8. The Grassmannian of all subspaces of K^n of dimension t has counting polynomial $\begin{bmatrix} n \\ t \end{bmatrix}_T$. So the Proposition follows now from Remark 11.

The relation between $B_t^R(T)$ and $A_w^R(T)$ becomes clear in the next proposition. **Proposition 13.** The following formula holds:

$$B_t^R(T) = \sum_{w=0}^n \begin{bmatrix} n-w \\ t \end{bmatrix}_T A_w^R(T).$$

Proposition 14. The following formula holds:

$$A_{w}^{R}(T) = \sum_{t=n-w}^{n} (-1)^{t-n+w} T^{\binom{t-n+w}{2}} {t \brack n-w}_{T} B_{t}^{R}(T)$$

Theorem 15. The following formula holds:

$$W_C^R(X, Y, T) = \sum_{t=0}^n \left(B_t^R(T) \prod_{j=0}^{t-1} (X - T^j Y) \right) Y^{n-t}$$

The following proposition is the analogon of [8, Proposition 5.24].

Proposition 16. The following formula holds:

$$W_C^R(X, Y, T) = \sum_{t=0}^n \left(\sum_{l=k-t}^k B_{t,l}^R(T) T^{ml} \prod_{j=0}^{t-1} (X - T^j Y) \right) Y^{n-t}$$

Proof. Follows directly form Theorem 15 and the definition of $B_t^R(T)$.

4 Generalized rank weight enumerator

From now on we assume that K is a finite field. So L/K is a cyclic Galois extension. The first proposal of a definition of the r-th generalized rank weight was given by Oggier-Sboui [11]. An alternative was given by Kurihara-Matsumoto-Uyematsu [10]. Ducoat [3] proved that a refinement of the first definition is equivalent to the second definition. We will prove that the refinement can be dropped: the definitions in [10] and [11] are equivalent. They are furthermore equivalent to the following definition, that also holds for general fields K and L:

Definition 17. Let *C* be an *L*-linear code. Let *D* be an *L*-linear subcode of *C*. Then Rsupp(D), the rank support of *D* is by definition the *K*-linear space generated by the $\text{Rsupp}(\mathbf{d})$ with $\mathbf{d} \in D$. Then $\text{wt}_R(D)$, the rank support weight of *D* is by definition the dimension of Rsupp(D).

Proposition 18. Let C be an L-linear code and D a subcode. Then $\operatorname{Rsupp}(D) = \operatorname{Tr}(D)$.

Definition 19. Let C be an L-linear code. Then $d_{R,r}(C)$, the r-th generalized rank weight of the code C is the minimal rank support weight of a subcode D of C of dimension r.

Similar definitions and results will be given for the (extended) generalized rank weight enumerator as given in the previous section for the rank weight enumerator.

5 MacWilliam's identities

The MacWilliams identities for the rank weight enumerator was obtained by Gadouleau-Yan [5] and Gluesing [6]. This will be given for the extended (generalized) rank weight enumerator.

6 Acknowledgement

The first author is supported by VUB-grant GOA62 and the second author thanks Daniel Augot and the Project Grace of INRIA Saclay–Île-de-France et Laboratoire d'Informatique de l'École Polytechnique (LIX) at Palaisceau for their hospitality, the valuable discussions and the opportunity to work on this paper.

References

- D. Augot. Generalization of Gabidulin codes over rational function fields. In MTNS-2014, 21st International Syposium on Mathematical Theory of Networks and Systems, 2014.
- [2] D. Augot, P. Loidreau, and G. Robert. Rank metric and Gabidulin codes in characteristic zero. In *IEEE ISIT-2013*, International Syposium on Information Theory, pages 509–513, 2013.
- [3] J. Ducoat. Generalized rank weights : duality and Griesmer bound. CoRR, arXiv:1306.3899v2, 2013.
- [4] É. M. Gabidulin. Theory of codes with maximum rank distance. Problemy Peredachi Informatsii, 21(1):3–16, 1985.
- [5] M. Gadouleau and Z. Yan. MacWilliams identity for codes with the rank metric. EURASIP Journ. Wireless Communications and Networking, 2008.
- [6] H. Gluesing-Luerssen. Fourier-reflexive partitions and MacWilliams identities for additive codes. CoRR, arXiv:1304.1207v1, 2013.
- [7] R.P.M.J. Jurrius. *Codes, arrangements, matroids and their polynomial links*. PhD thesis, Technical University Eindhoven, 2012.
- [8] R.P.M.J. Jurrius and R. Pellikaan. Codes, arrangements and matroids. In E. Martínez-Moro, editor, Algebraic Geometry Modeling in Information Theory, volume 8 of Series on Coding Theory and Cryptology, pages 219–325. World Scientific, New Jersey, 2013.
- G.L. Katsman and M.A. Tsfasman. Spectra of algebraic-geometric codes. Problemy Peredachi Informatsii, 23:19–34, 1987.
- [10] J. Kurihara, R. Matsumoto, and T. Uyematsu. Relative generalized rank weight of linear codes and its applications to network coding. *CoRR*, arXiv:1301.5482v1, 2013.
- [11] F. Oggier and A. Sboui. On the existence of generalized rank weights. In ISIT-2012 Proceedings, pages 4066–410, 2012.
- [12] W. Plesken. Counting solutions of polynomial systems via iterated fibrations. Arch. Math., 92(1):44–56, 2009.
- W. Plesken. Gauss-Bruhat decomposition as an example of Thomas decomposition. Arch. Math., 92(2):111–118, 2009.
- [14] W. Plesken and T. Bächler. Counting polynomials for linear codes, hyperplane arrangements, and matroids. *Documenta Mathematica*, 19:285–312, 2014.