Binomial Ideal Associated to a Lattice and Its Label Code

Malihe Aliasgari
Amirkabir University of Technology (Iran)

Daniel Panario
Carleton University (Canada)

Mohammad-Reza Sadeghi
Amirkabir University of Technology (Iran)
ariyadokht@aut.ac.ir

Extended abstract

In coding theory the study of the binomial ideal derived from an arbitrary code is currently of great interest; see for example [5]. This is mainly because of a known relation between binomial ideals and lattices or codes. Also, studying the relation between binomial ideals associated to a lattice and its label code helps to solve the closest vector problem in lattices as well as decoding binary and non-binary codes [1, 3] and finding a label code of a lattice, as we do in this work.

Every lattice Λ can be described in terms of a label code L and an orthogonal sublattice Λ' such that $\Lambda/\Lambda' \cong L$ [2]. We assign binomial ideals I_{Λ} and I_{L} to an integer lattice Λ and its label code L, respectively. In this work, we identify the binomial ideal associated to an integer lattice and then establish the relation $I_{\Lambda} = I_{\Lambda'} + I_{L}$ between the ideal of the lattice and its label code.

In this work, we define a binomial ideal for an integer lattice and its label code slightly different from [1, 3, 4, 7].

Let $K[X] = K[x_1, \ldots, x_n]$ denote the polynomial ring, where K is an arbitrary field. Consider \prec as a fixed total degree compatible term order with $x_1 \succ x_2 \succ \cdots \succ x_n$. The monomials in $K[X]$ are denoted by $X_{\alpha} = x_{\alpha_1}^{\alpha_1} \cdots x_{\alpha_n}^{\alpha_n}$ where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is an element of \mathbb{N}_0^n and \mathbb{N}_0 is the set of non-negative integers.

We use the notation

$$X^\alpha = X^{\alpha^+} - X^{\alpha^-} := \prod_{i:a_i > 0} x_i^{\alpha_i} - \prod_{j:a_j < 0} x_j^{-a_j},$$

where $(\alpha^+) = \max \{a_i, 0\}$ and $\alpha^- = (-\alpha)^+ \geq 0$. Also an associated binomial ideal I_{Λ} to Λ is defined as

$$I_{\Lambda} := (X^{\alpha^+} - X^{\alpha^-} : \alpha \in \Lambda).$$

Let y be a new variable. We identify $x_1x_2 \ldots x_ny$ with 1 by means of the equation, $x_1x_2 \ldots x_ny - 1 = 0$. In fact, we translate the relation between binomials into a quotient ring

$$S = K[x_1, \ldots, x_n, y]/(x_1 \ldots x_ny - 1).$$

The equivalence class of $x_1 \ldots x_{k-1}x_{k+1} \ldots x_ny$ is denoted by x_k^{-1}.

Sturmfels et al. [7] give the ideal of an integer lattice based on its generating set whose elements have only positive summation. This is summarized in the following theorem.

Theorem 1 Let $B = \{b_1, \ldots, b_n\} \subseteq \mathbb{Z}^n$ be a generating set for the lattice Λ. If all coordinates in the sum of the vectors in $B \cap \mathbb{N}_0^n$ are positive, then the ideal I_{Λ} coincides with

$$I_B := (X^{b_i^+} - X^{b_i^-} : i = 1, \ldots, n).$$
In this work, by extending the polynomial ring $K[x_1, \ldots, x_n]$ to S, we generalize Sturmfels’ result to any arbitrary generating set of the lattice. Theorem 1 deals with vectors of $B \cap \mathbb{N}_0^n$ with positive summation only. Without any additional condition on the basis vectors, we show that a binomial ideal associated to any generating set of Λ is equal to its binomial ideal in the quotient ring S.

Theorem 2 Let $B = \{b_1, \ldots, b_n\} \subseteq \mathbb{Z}^n$ be a generating set of an integer lattice Λ. Then the binomial ideal

$$I_B = (X^{b_i} - X^{b_i^\prime} : i = 1, \ldots, n)$$

associated with B is equal to I_Λ in the polynomial ring S.

Then, we establish a relation between I_Λ and I_L for a Generalized Construction A lattices and derive the same relation for every arbitrary integer lattice.

Theorem 3 Let Λ be an integer lattice in Generalized Construction A form which has the representation

$$\Lambda = \mathbb{Z}^n \text{diag}(g_1, \ldots, g_n) + L,$$

where L is a subgroup of a group code $G = \mathbb{Z}_{g_1} \times \cdots \times \mathbb{Z}_{g_n}$ and $\text{diag}(\cdot)$ is a diagonal matrix. Then we have in S that

$$I_\Lambda = I_\Lambda' + I_L,$$

where I_L and I_Λ' are binomial ideals associated to a group code L an and orthogonal sublattice $\Lambda' = \mathbb{Z}^n \text{diag}(g_1, \ldots, g_n)$, respectively. Also for an integer lattice with decomposition $\Lambda = \mathbb{Z}^n C(\Lambda) + L_P(\Lambda)$ we have

$$I_\Lambda = I_\Lambda' + I_L',$$

where I_L' is a binomial ideal associated to the group $L' = L_P(\Lambda)$.

As an application of our work, using Theorem 3 and the result in Saleemi and Zimmerman [6], we give a method to obtain a linear label code of the lattice using its Gröbner basis.

Keywords

Lattice, label code, binomial ideal, Gröbner basis

References

