Binomial Ideal Associated to a Lattice and Its Label Code

Malihe Aliasgari
Amirkabir University of Technology (Iran)
Daniel Panario
Carleton University (Canada)
Mohammad-Reza Sadeghi
Amirkabir University of Technology (Iran)
ariyadokht@aut.ac.ir

Extended abstract

In coding theory the study of the binomial ideal derived from an arbitrary code is currently of great interest; see for example [5]. This is mainly because of a known relation between binomial ideals and lattices or codes. Also, studying the relation between binomial ideals associated to a lattice and its label code helps to solve the closest vector problem in lattices as well as decoding binary and non-binary codes $[1,3]$ and finding a label code of a lattice, as we do in this work.

Every lattice Λ can be described in terms of a label code L and an orthogonal sublattice Λ^{\prime} such that $\Lambda / \Lambda^{\prime} \cong L[2]$. We assign binomial ideals I_{Λ} and I_{L} to an integer lattice Λ and its label code L, respectively. In this work, we identify the binomial ideal associated to an integer lattice and then establish the relation $I_{\Lambda}=I_{\Lambda^{\prime}}+I_{L}$ between the ideal of the lattice and its label code.

In this work, we define a binomial ideal for an integer lattice and its label code slightly different from $[1,3,4,7]$.

Let $K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring, where K is an arbitrary field. Consider \prec as a fixed total degree compatible term order with $x_{1} \succ x_{2} \succ \cdots \succ x_{n}$. The monomials in $K[X]$ are denoted by $X^{\mathbf{b}}=x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$ where $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ is an element of \mathbb{N}_{0}^{n} and \mathbb{N}_{0} is the set of non-negative integers.

We use the notation

$$
X^{\mathbf{a}}=X^{\mathbf{a}^{+}}-X^{\mathbf{a}^{-}}:=\prod_{i: a_{i}>0} x_{i}^{a_{i}}-\prod_{j: a_{j}<0} x_{j}^{-a_{j}},
$$

where $\left(\mathbf{a}^{+}\right)_{i}=\max \left\{a_{i}, 0\right\}$ and $\mathbf{a}^{-}=(-\mathbf{a})^{+} \geq 0$. Also an associated binomial ideal I_{Λ} to Λ is defined as

$$
I_{\Lambda}:=\left(X^{\alpha^{+}}-X^{\alpha^{-}}: \alpha \in \Lambda\right)
$$

Let y be a new variable. We identify $x_{1} x_{2} \ldots x_{n} y$ with 1 by means of the equation, $x_{1} x_{2} \ldots x_{n} y-$ $1=0$. In fact, we translate the relation between binomials into a quotient ring

$$
S=K\left[x_{1}, \ldots, x_{n}, y\right] /\left(x_{1} \ldots x_{n} y-1\right)
$$

The equivalence class of $x_{1} \ldots x_{k-1} x_{k+1} \ldots x_{n} y$ is denoted by x_{k}^{-1}.
Sturmfels et al. [7] give the ideal of an integer lattice based on its generating set whose elements have only positive summation. This is summarized in the following theorem.

Theorem 1 Let $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\} \subseteq \mathbb{Z}^{n}$ be a generating set for the lattice Λ. If all coordinates in the sum of the vectors in $\mathcal{B} \cap \mathbb{N}_{0}^{n}$ are positive, then the ideal I_{Λ} coincides with

$$
I_{\mathcal{B}}:=\left(X^{b_{i}^{+}}-X^{b_{i}^{-}}: i=1, \ldots, n\right) .
$$

In this work, by extending the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ to S, we generalize Sturmfels' result to any arbitrary generating set of the lattice. Theorem 1 deals with vectors of $\mathcal{B} \cap \mathbb{N}_{0}^{n}$ with positive summation only. Without any additional condition on the basis vectors, we show that a binomial ideal associated to any generating set of Λ is equal to its binomial ideal in the quotient ring S.

Theorem 2 Let $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\} \subseteq \mathbb{Z}^{n}$ be a generating set of an integer lattice Λ. Then the binomial ideal

$$
I_{\mathcal{B}}=\left(X^{\boldsymbol{b}_{i}^{+}}-X^{\boldsymbol{b}_{i}^{-}}: i=1, \ldots, n\right)
$$

associated with \mathcal{B} is equal to I_{Λ} in the polynomial ring S.
Then, we establish a relation between I_{Λ} and I_{L} for a Generalized Construction A lattices and derive the same relation for every arbitrary integer lattice.

Theorem 3 Let Λ be an integer lattice in Generalized Construction A form which has the representation

$$
\Lambda=\mathbb{Z}^{n} \operatorname{diag}\left(g_{1}, \ldots, g_{n}\right)+L
$$

where L is a subgroup of a group code $G=\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ and diag (\cdot) is a diagonal matrix. Then we have in S that

$$
I_{\Lambda}=I_{\Lambda^{\prime}}+I_{L}
$$

where I_{L} and $I_{\Lambda^{\prime}}$ are binomial ideals associated to a group code L an and orthogonal sublattice $\Lambda^{\prime}=\mathbb{Z}^{n} \operatorname{diag}\left(g_{1}, \ldots, g_{n}\right)$, respectively. Also for an integer lattice with decomposition $\Lambda=\mathbb{Z}^{n} C(\Lambda)+$ $L P(\Lambda)$ we have

$$
I_{\Lambda}=I_{\Lambda^{\prime}}+I_{L^{\prime}}
$$

where $I_{L^{\prime}}$ is a binomial ideal associated to the group $L^{\prime}=L P(\Lambda)$.
As an application of our work, using Theorem 3 and the result in Saleemi and Zimmerman [6], we give a method to obtain a linear label code of the lattice using its Gröbner basis.

Keywords

Lattice, label code, binomial ideal, Gröbner basis

References

[1] M. Aliasgari, M.-R. Sadeghi and D. Panario, "Gröbner bases for lattices and an algebraic decoding algorithm", IEEE Trans. Commun., vol. 61, pp. 1222-1230, 2013.
[2] A. H. Banihashemi and F. R. Kschischang, "Tanner graphs for block codes and lattices: construction and complexity", IEEE Trans. Inf. Theory, vol. 47, pp. 822-834, 2001.
[3] M. Borges-Quintana, M.A.Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro: "Gröbner bases and combinatorics for binary codes", $A A E C C$, vol. 19, pp. 393-411, 2008.
[4] I. Márquez-Corbella and E. Martínez-Moro, "Algebraic structure of the minimal support codewords set of some linear codes", Advances in Mathematics of Communications, vol. 5, pp. 233-244, 2011.
[5] I. Márquez-Corbella and E. Martínez-Moro, "On the ideal associated to a linear code", arXiv: math/1206.5124, Jun. 2012.
[6] M. Saleemi and K-H. Zimmermann, "Groebner bases for linear codes over GF(4)", International Journal of Pure and Applied Mathematics, vol 73, pp. 435-442, 2011.
[7] B. Sturmfels, R. Weismantel, and G. Ziegler, "Gröbner bases of lattices, corner polyhedra and integer programming," Contributions to Algebra and Geometry, 1994.

