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Extended abstract

In this work we give and analyze a Johnson-type bound for group codes considering the G-norm.
Johnson bounds have been given for binary and q-ary codes [5, 7, 8] with respect to the Hamming
distance. We borrow the idea of the G-norm from [3] and define a new distance for codewords:
the G-semidistance. We extend the Johnson-type bounds for binary and q-ary codes to the G-
semidistance and give a relation between these bounds and our G-semidistance. By means of this,
we present an upper bound on the number of codewords inside a G-ball and an l1-ball, within a
certain given radius, for both group codes and lattices.

Johnson-type bounds provide an upper bound on the number of codewords in a Hamming ball
with a specified radius. The original proof is based on linear algebra [5, 8]; proofs with a geometric
view are presented in [1]. The extension of Johnson-type bounds for q-ary codes is given in [7]. In
all of these works the Johnson-type bounds use Hamming balls. Here we consider G-balls with an
arbitrary received vector as the G-ball’s center, given a specified radius; we find an upper bound for
the number of codewords in the G-ball. Roughly speaking, we investigate the number of codewords
such that their G-semidistances from the received word is less than the radius of the G-ball.

Recently the question of list decoding under the Hamming metric has become an important
trend in coding theory. In addition, list decoding for lattices are given in [6, 9]. Our Johnson-type
bound, when applied to some recent works [2, 3], may lead to list decoding of q-ary codes, group
codes and lattices via the G-norm.

Let x = (x1, . . . , xn) be in a group code G. The G-norm for x is defined as ‖x‖G = x1 + x2 +
· · ·+ xn where the operations are performed in R [3].

Definition 1 Let G = Zg1 × · · · × Zgn . For any vectors a, b ∈ G we define the G-semidistance of
a and b with respect to the G-norm, denoted by dG(a, b), as follows

dG(a, b) = min{‖a− b‖G, ‖b− a‖G}.

Our main contributions are twofolded:

• a Johnson-type bound for group codes, and

• a Johnson-type bound for lattices.

In order to obtain our first result we prove the following theorem.

Theorem 2 Let C be a block code in G = Zg1 × · · · × Zgn and α = dH/n where dH is the
minimum Hamming distance of the code, 0 < α < 1. Consider ω = ngβ where 0 < β < 1 and
g = max{g1, . . . , gn}. If g ≥ 3 and β <

√
α, then |BC(ω)| ≤ 2ng, where |BC(ω)| is the number of

codewords with G-semidistance from 0 less than ω.

Now, using the above theorem we present the following method to show that for a received word
a ∈ G and a specific radius ω, the upper bound for |BC(a, ω)| is at most 2ng.



Method. Let a be an arbitrary vector in G and ω a real number, 0 < ω < ng. Our goal is
to find |BC(a, ω)|, that is, the number of codewords in C with G-semidistance from a less than ω.
Accordingly, we consider the following two block codes

A1 = a− C = {a− c|c ∈ G} and A2 = C − a = {c− a|c ∈ G}.

Set α1 = d1/n and α2 = d2/n where d1, d2 are the minimun Hamming distances of A1 and A2,
respectively. Also assume that ω1 = ngβ1 and ω2 = ngβ2. To find |BC(a, ω)| we investigate the
maximum number of codewords in the block codes Ai with G-semidistance less than ωi, i = 1, 2.
Now, it is sufficient to choose ω = min{ω1, ω2}, equivalently to A1 or A2, the one with smaller
minimum Hamming distance. Hence, by Theorem 2, the upper bound for |BC(a, ω)| is at most 2ng
with the smaller value between α1 or α2, that implies the smaller value of ω1 or ω2.

In order to obtain our second result, we employ the Johnson-type bound for group codes in
Theorem 2 to derive a Johnson-type bound for cosets of a lattice Λ. It should be noted that
our group code Johnson-type bound with G-norm results in a lattice Johnson-type bound with
l1-norm.

The label code of a lattice Λ play a key role to provide a Johnson-type bound on the number
of cosets for Λ. Consider a decomposition of the lattice into two parts, a label code L and an
orthogonal sub-lattice Λ′ = ZnC(Λ) as follows

Λ = LP (Λ) + ZnC(Λ),

where L is a label code over G and P (Λ), C(Λ) are the projection and cross section of Λ, respectively
[4]. This decomposition of Λ entails that a vector v ∈ Rn belongs to Λ if it can be expressed as
v = kC(Λ) + cP (Λ), for some k ∈ Zn and c ∈ L.

Theorem 3 Let Λ be an arbitrary lattice in Rn with label code L over the alphabet sequence G.
Assume that r is a received word in Rn and a ∈ G is an associated codeword of the closest coset
of Λ′ to r in Rn. Consider the n components PΛi

, 1 ≤ i ≤ n, of the projection of Λ, and let p be
the maximum value of |PΛi |. Then g ≥ 3 and β <

√
α yields that the number of lattice cosets in

an l1-ball, with r as its center and radius pnβ, is at most 2ng.
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