A Johnson-Type Bound for Group Codes and Lattices

Malihe Aliasgari, Mohammad-Reza Sadeghi
Amirkabir University of Technology (Iran)

Daniel Panario
Carleton University (Canada)

ariyadokht@aut.ac.ir

Extended abstract

In this work we give and analyze a Johnson-type bound for group codes considering the G-norm. Johnson bounds have been given for binary and q-ary codes $[5,7,8]$ with respect to the Hamming distance. We borrow the idea of the G-norm from [3] and define a new distance for codewords: the G-semidistance. We extend the Johnson-type bounds for binary and q-ary codes to the G semidistance and give a relation between these bounds and our G-semidistance. By means of this, we present an upper bound on the number of codewords inside a G-ball and an l_{1}-ball, within a certain given radius, for both group codes and lattices.

Johnson-type bounds provide an upper bound on the number of codewords in a Hamming ball with a specified radius. The original proof is based on linear algebra [5, 8]; proofs with a geometric view are presented in [1]. The extension of Johnson-type bounds for q-ary codes is given in [7]. In all of these works the Johnson-type bounds use Hamming balls. Here we consider G-balls with an arbitrary received vector as the G-ball's center, given a specified radius; we find an upper bound for the number of codewords in the G-ball. Roughly speaking, we investigate the number of codewords such that their G-semidistances from the received word is less than the radius of the G-ball.

Recently the question of list decoding under the Hamming metric has become an important trend in coding theory. In addition, list decoding for lattices are given in [6, 9]. Our Johnson-type bound, when applied to some recent works $[2,3]$, may lead to list decoding of q-ary codes, group codes and lattices via the G-norm.

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be in a group code G. The G-norm for \mathbf{x} is defined as $\|\mathbf{x}\|_{G}=x_{1}+x_{2}+$ $\cdots+x_{n}$ where the operations are performed in $\mathbb{R}[3]$.

Definition 1 Let $G=\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$. For any vectors $\boldsymbol{a}, \boldsymbol{b} \in G$ we define the G-semidistance of \boldsymbol{a} and \boldsymbol{b} with respect to the G-norm, denoted by $d_{G}(\boldsymbol{a}, \boldsymbol{b})$, as follows

$$
d_{G}(\boldsymbol{a}, \boldsymbol{b})=\min \left\{\|\boldsymbol{a}-\boldsymbol{b}\|_{G},\|\boldsymbol{b}-\boldsymbol{a}\|_{G}\right\} .
$$

Our main contributions are twofolded:

- a Johnson-type bound for group codes, and
- a Johnson-type bound for lattices.

In order to obtain our first result we prove the following theorem.
Theorem 2 Let \mathcal{C} be a block code in $G=\mathbb{Z}_{g_{1}} \times \cdots \times \mathbb{Z}_{g_{n}}$ and $\alpha=d_{H} / n$ where d_{H} is the minimum Hamming distance of the code, $0<\alpha<1$. Consider $\omega=n g \beta$ where $0<\beta<1$ and $g=\max \left\{g_{1}, \ldots, g_{n}\right\}$. If $g \geq 3$ and $\beta<\sqrt{\alpha}$, then $\left|\mathcal{B}_{\mathcal{C}}(\omega)\right| \leq 2 n g$, where $\left|\mathcal{B}_{\mathcal{C}}(\omega)\right|$ is the number of codewords with G-semidistance from 0 less than ω.

Now, using the above theorem we present the following method to show that for a received word $\mathbf{a} \in G$ and a specific radius ω, the upper bound for $\left|\mathcal{B}_{\mathcal{C}}(\mathbf{a}, \omega)\right|$ is at most $2 n g$.

Method. Let a be an arbitrary vector in G and ω a real number, $0<\omega<n g$. Our goal is to find $\left|\mathcal{B}_{\mathcal{C}}(\mathbf{a}, \omega)\right|$, that is, the number of codewords in \mathcal{C} with G-semidistance from a less than ω. Accordingly, we consider the following two block codes

$$
\mathcal{A}_{1}=\mathbf{a}-\mathcal{C}=\{\mathbf{a}-\mathbf{c} \mid \mathbf{c} \in G\} \quad \text { and } \quad \mathcal{A}_{2}=\mathcal{C}-\mathbf{a}=\{\mathbf{c}-\mathbf{a} \mid \mathbf{c} \in G\} .
$$

Set $\alpha_{1}=d_{1} / n$ and $\alpha_{2}=d_{2} / n$ where d_{1}, d_{2} are the minimun Hamming distances of \mathcal{A}_{1} and \mathcal{A}_{2}, respectively. Also assume that $\omega_{1}=n g \beta_{1}$ and $\omega_{2}=n g \beta_{2}$. To find $\left|\mathcal{B}_{\mathcal{C}}(\mathbf{a}, \omega)\right|$ we investigate the maximum number of codewords in the block codes \mathcal{A}_{i} with G-semidistance less than $\omega_{i}, i=1,2$. Now, it is sufficient to choose $\omega=\min \left\{\omega_{1}, \omega_{2}\right\}$, equivalently to \mathcal{A}_{1} or \mathcal{A}_{2}, the one with smaller minimum Hamming distance. Hence, by Theorem 2, the upper bound for $\left|\mathcal{B}_{\mathcal{C}}(\mathbf{a}, \omega)\right|$ is at most $2 n g$ with the smaller value between α_{1} or α_{2}, that implies the smaller value of ω_{1} or ω_{2}.

In order to obtain our second result, we employ the Johnson-type bound for group codes in Theorem 2 to derive a Johnson-type bound for cosets of a lattice Λ. It should be noted that our group code Johnson-type bound with G-norm results in a lattice Johnson-type bound with l_{1}-norm.

The label code of a lattice Λ play a key role to provide a Johnson-type bound on the number of cosets for Λ. Consider a decomposition of the lattice into two parts, a label code L and an orthogonal sub-lattice $\Lambda^{\prime}=\mathbb{Z}^{n} C(\Lambda)$ as follows

$$
\Lambda=L P(\Lambda)+\mathbb{Z}^{n} C(\Lambda)
$$

where L is a label code over G and $P(\Lambda), C(\Lambda)$ are the projection and cross section of Λ, respectively [4]. This decomposition of Λ entails that a vector $\mathbf{v} \in \mathbb{R}^{n}$ belongs to Λ if it can be expressed as $\mathbf{v}=\mathbf{k} C(\Lambda)+\mathbf{c} P(\Lambda)$, for some $\mathbf{k} \in \mathbb{Z}^{n}$ and $\mathbf{c} \in L$.

Theorem 3 Let Λ be an arbitrary lattice in \mathbb{R}^{n} with label code L over the alphabet sequence G. Assume that \boldsymbol{r} is a received word in \mathbb{R}^{n} and $\boldsymbol{a} \in G$ is an associated codeword of the closest coset of Λ^{\prime} to r in \mathbb{R}^{n}. Consider the n components $P_{\Lambda_{i}}, 1 \leq i \leq n$, of the projection of Λ, and let p be the maximum value of $\left|P_{\Lambda_{i}}\right|$. Then $g \geq 3$ and $\beta<\sqrt{\alpha}$ yields that the number of lattice cosets in an l_{1}-ball, with \boldsymbol{r} as its center and radius pn β, is at most $2 n g$.

Keywords

Johnson bound, group codes, lattices, G-norm

References

[1] E. Agrell, A. Vardy and K. Zeger, "Upper bounds for constant-weight codes", IEEE Trans. Inform. Theory, vol. 46, pp. 2373-395, 2000.
[2] M. Aliasgari and M.-R. Sadeghi, "An algebraic method for decoding q-ary codes via submodules of $\mathbb{Z}^{n} "$, IEEE Commun. Letters, to appear, 2014.
[3] M. Aliasgari, M.-R. Sadeghi and D. Panario, "Gröbner bases for lattices and an algebraic decoding algorithm", IEEE Trans. Commun., vol. 61, pp. 1222-1230, 2013.
[4] A. H. Banihashemi and F. R. Kschischang, "Tanner graphs for block codes and lattices: construction and complexity", IEEE Trans. Inf. Theory, vol. 47, pp. 822-834, 2001.
[5] P. Elias, "Error-correcting codes for list decoding", IEEE Trans. Inform. Theory, vol. 37, pp. 5-12, 1991.
[6] E. Grigorescu and C. Peikert, "List decoding Barnes-Wall lattices", in Proc. 2012 IEEE Conference on Computational Complexity, pp. 316-325, 2012.
[7] V. Guruswami and M. Sudan, "Extensions of the Johnson bound", Available from http://people.csail.mit.edu/madhu/papers, 2001.
[8] S. M. Johnson, "A new upper bounds for codes and designs", IEEE Trans. Inform. Theory, vol. 9, pp. 198-205, 1963.
[9] Y. Song and N. Devroye, "Lattice codes for the Gaussian relay channel: decode-and-forward and compress-and-forward", IEEE Trans. Inf. Theory, vol. 59, pp. 4927-4948, 2013.

