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Abstract

On channels with memory, the noise is not independent from transmission to transmission.
As a consequence, transmission errors occur in clusters or bursts, and channels with mem-
ory are called burst-error channels. Examples of burst-error channels are mobile telephony
channels, where the error bursts are caused by signal fading owing to multipath transmission;
cable transmission, which is affected by impulsive switching noise and crosstalk; and magnetic
recording, which is subject to dropouts caused by surface defects and dust particles. Codes
designed to correct burst errors are called burst-error correcting codes [8][9].

Hence, burst-correcting codes are of interest for some applications in which errors tend
to occur in clusters. With higher transmission rates or higher storage densities this may
even be more so in the future. The problem of correcting bursts of errors is a difficult one.
In practice, Reed-Solomon codes, either interleaved or not, are used for correcting multiple
bursts. However, it is of interest to find efficient multiple burst-correcting codes that are
optimal in terms of redundancy.

In addition to the familiar Hamming distance, it is well known that there is also a burst
distance and a burst weight [11]. An intuitive way to visualize the burst weight b of a vector
v, is by finding the minimum number of bursts of weight b that cover (cyclically) the non-
zero coordinates of vector v. We denote the burst weight b of v as wb(v). For instance,
w2(100101101) = 3 and w4(100101101) = 2. The codes we consider are binary, thus, the burst
distance b between vectors u and v is given by db(u, v) =wb(u⊕v).

The minimum burst-distance b of a code is denoted db. Notice that w1 and d1 represent
the familiar Hamming weight and distance respectively. The codes considered in this talk are
all binary and linear. Codes meeting the Singleton bound with equality are called Maximum
Distance Separable (MDS). Other bounds can also be obtained using the burst distance [1][2],
like for instance, the Hamming bound. Another well known bound for burst-correcting codes
is the Gallager bound [3], which applies to both block and convolutional codes. In order to
state the Gallager bound we need to recall the concept of guard space, which is essential in
the study of bursts [3][8][9]. We used it extensively in [4] and will repeat this concept to make
this talk self-contained.
Definition Assume that an all-zero sequence is transmitted and let e0, e1, e2 . . . be the dif-
ference between the transmitted and the received sequences, i.e., 1s represent errors and 0s
absence of errors. Then, a vector of consecutive b bits (el, el+1, . . . , el+b−1) is called a burst of
length b with respect to a guard space of length g if:

1. el = el+b−1 = 1.

2. b ≤ g.

3. The g bits preceding el and the g bits following el+b−1 are all 0s (if l < g then all the
bits preceding l are 0). �



The Gallager bound states,

g

b
≥ 1 + R

1 −R
(1)

where R is the rate of the code (R = k/n for block codes).
The Gallager bound is more general than the Reiger bound, since it applies to both block

and convolutional codes, while the Reiger bound applies only to block codes. Even if we
restrict only to block codes, the Gallager bound seems to be more general than the Reiger
bound, since it connects the burst length with the guard space. However, the Reiger bound
contains implicitly the guard space, although this does not look very clear from the bound
itself. In fact, for block codes, both bounds are equivalent.

Shortened cyclic codes that are capable of correcting multiple bursts of errors are consid-
ered, together with tables of generator polynomials. Shortened cyclic codes that can correct
all-around bursts as well as codes that cannot do so are presented, and under which conditions
it is advantageous to use one or the other is studied. A bound that unifies both the Singleton
and the Reiger bounds [10] is provided. A search algorithm based on Gray codes that extends
a previous algorithm for searching one-burst correcting codes [5][6][7] is given.
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