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Abstract

The purpose of this paper is to present a new version of the McEliece cryptosystem based
on punctured convolutional codes and the pseudo-random generators. We use the modified
self-shrinking generator to fill the punctured pattern. More precisely we propose to fill out the
pattern punctured by the bits generated using a pseudo random generator LFSR.
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1 Introduction

In 1978 Robert J. McEliece invented the first cryptosystem based on algebraic coding theory
[10]. Since then different variants have been proposed [5].
Different attacks were made against these schemes. Among them, we mention the attack on
the original McEliece system by Canteaut and Sendrier [6] and the attack on the cryptosystem
based on convolutional codes by Landais and Tillich [7].
The purpose of this paper is to present a new version of the McEliece cryptosystem based
on punctured convolutional codes and the pseudo-random generators. Instead of using time-
varying convolutional codes as it was given in [8] and broken by [7], we use the modified
self-shrinking generator to fill the punctured pattern. More precisely we propose to fill out the
pattern punctured by the bits generated using a pseudo random generator LFSR.

2 Our New Variant

In this section we will give the description of our new variant McEliece Cryptosystem. To hide
the structure of the convolutional code, we follow the method of puncturing described in [9].
Starting from a convolutional code of parameters (n, k,K), we construct an equivalent code
of parameters (Mn,Mk,Kp), called grouped code. With the puncturing pattern T , whose
the number of its coefficient corresponds to the number of columns of the grouped matrix, we
obtain the generator matrix of punctured code with parameters (N

′
,Mk,Kp).

Since we use the modified self-shrinking generator to fill the punctured pattern, in the next
paragraph we describe the modified self shrinking generator given by Kanso [6].

2.1 The Modified Self Shrinking Generator :

In [6] Kanso modified the method of Meier and Staffelbach [11] by using one LFSR of length
s which operates as follows:
Let A be an LFSR that generates the sequence at = a0, a1, a2, . . .
At time i, we consider the triplet (a3i, a3i+1, a3i+2). If the bit a3i

⊕
a3i+1 = 1, the output of

the LFSR is a3i+2. Else no output is produced.
The puncturing pattern is of size n ×M . So we proceed so that the modified self-shrinking
generator product an output sequences of period greater or equal than n×M .



2.2 Description of our Cryptosystem

Algorithm 1: Key Generation

1. Choose a generator matrix G for a convolutional code of parameters: its length n and
its dimension k.

2. Write the polyphase decomposition of elements of G and then forming the polycyclic
pseudocirculant matrix.

3. Replace the polynomials gi,j(D) of G by their Mth PCPC matrix and interlacing the
lines and columns at depth M .

4. Generate a random sequence of bits in a modified self-shrinking generator, and fill the
matrix T by the n×M output elements.

5. Apply the function φ to the matrix G[M ](D) to get the secret matrix Gp .

6. Choose randomly tow matrix: P the permutation matrix and S an invertible matrix.

7. Compute the public matrix G
′

= SGpP .

Algorithm 2: Encryption
For sending a message x to someone, we calculate: c = xG

′
+ e

Algorithm 3: Decryption
To decrypt the message, you must:

1. Compute z = cP−1

2. Determining z
′

by correcting errors of u.

3. Compute x = z
′
S−1

To correct errors of z, the Viterbi decoding algorithm is used, because an algorithm which
decodes the parent code, it also decodes the punctured code.

3 Security of our Scheme:

There are several ways to attack the McEliece encryption system. Among them we find
algebraic methods and probabilistic methods.
In this section we give a proof that our scheme is secure against the structural and decoding
attacks.

3.1 Structural Attacks:

The objective of a structural attack is to find an equivalent code to the public code whose
a polynomial decoding algorithm is known. For this, we used a puncturing pattern to hide
the structure of the code, whose the attacker cannot imagine. Moreover, the equivalence of
punctured codes is an NP-complete problem [12]. This makes impossible the cryptanalysis of
the system. Our system is resistant to the structural attack cited in [7] because the shape of
our generator matrix is different from that used in the attacked cryptosystem [8].

3.1.1 Exhaustive Search Attack:

In our scheme, the private key (Gp, S, P, T ) is obtained randomly. In this Section we will show
that our scheme is secure against the exhaustive search attack. This is equivalent to show
that it is a difficult task to find the private key. For that we start by showing that the choice
of the matrices S and P is very large. Namely, since the number of invertible matrices in Fq

is
∏k

i=1(qk − qi−1) and the number of permutation matrices of size n is equal to n!. Then in

order to find the two selected matrices we have to try n!
∏k

i=1(qk − qi−1) matrices.
Now, we will show that the complexity of finding the matrix Gp is very large. For that, let A
be an r-sequence generated by a primitive LFSR of length s and let L be the set of positions of
the columns removed during the puncturing step from the matrix G. To find a subset L

′
⊆ L,

it is necessary to know a part of the sequence generated by the LFSR. For constructing r bit-
triples i.e.; s = 3r, we get a total of 20.862s possible states for the LFSR. Further our method
to select the matrix T has a complexity of the order 280 for s=93 [6]. This makes impossible
to find the private key by exhaustive research.
For example, if we puncture a (400,300)-convolutional code C, the grouped code associated to
C will be of parameters (800,600) and the puncturing pattern T will be of size 400× 2. Then



the Modified Self Shrinking Generator must generate at least 800 output bits. Therefore the
initial state of the LFSR must be at least of length 2400. The complexity of the cryptanalysis
of this LFSR by an exhaustive search attack is O(22069).

3.2 Information Set Decoding:

For security level around 280 measured by Canteaut-Chabaud’s algorithm [4], we propose the
following set of parameters.
Let C be an (400, 343)-convolutional code. After a puncturing of depth 7 in 56 positions, we
obtain a punctured code of length 2744 and dimension 2401.
For a code of rate R = 3/4, we propose a puncturing of depth 3 for an (570, 421)- convolutional
code in 26 positions. Thereafter we will have an (1684, 1263)-punctured code.

In the Table 1 we give examples of different (n, k) - convolutional code and their (N
′
, k

′
)-

punctured code associated with different security level.

Security level n k M Number of deleted coulumns k
′

= kM N
′

Rate

80

305 150 4 20 600 1200 1/2
284 71 5 30 355 1420 1/4
570 421 3 26 1263 1684 3/4
125 1050 2 100 250 2000 1/8

100

316 154 5 40 770 1540 1/2
625 155 3 15 465 1860 1/4
730 540 3 30 1620 2160 3/4
68 550 5 30 340 2720 1/8

Table 1: Suggested parameters of our cryptosystem for different security levels

3.3 Message-Resent Attack:

Suppose now that, through some accident, or as a result of action in the part of the crypt-
analyst, both c1 = mSGP + e1 and c2 = mSGP + e2 with e1 6= e2 are sent. We call this a
message-resent condition.

Using an (1684, 1263)-punctured code with a free distance dfree = 131. We compare the
effect of this attack on our system and the McEliece cryptosystem, we get the following graph:

Figure 1: Probability of guessing k ungarbled columns from those indexed by L0 depending on
the number of errors



These results are better than the result obtained by attacking Mceliece crptosystem.
We remark that whenever we increase the number of errors, the probability of avoiding this
attack increases.
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