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Abstract

In the study of perfect sequences, use of trace functions in finite fields has been a common 
technique, dating back to Singer’s classical examples of m- sequences. Many variations of 
Singer’s theme have been the topic of research by many mathematicians during the last few 
decades. In all these investigations, expressing the underlying function as a polynomial whose 
coefficients are from the prime subfield has been a main problem. Explicit answers require the 
use of Stickelberger’s congruence of Gauss sums. Using elementary methods, we provide a 
simple result along these lines.

The following is well-known:

Let f : F pd

¿ → F pd be any function. Then f ( x )=∑
k=0

pd
−2

α k xk∈ Fp d[x ]

We prove a finer version of the above result:

Let p  be an odd prime. Let f ( x )∈ Fp d [ x ] . Let deg f (x )=r .

Suppose r< pd
−1∧f (α )∈F p  for each α∈F p

¿

. Then f ( x )∈ Fp [ x ] .


