Some results on finite fields

James Hufford Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435 U.S.A.

Abstract

In the study of perfect sequences, use of trace functions in finite fields has been a common technique, dating back to Singer's classical examples of m- sequences. Many variations of Singer's theme have been the topic of research by many mathematicians during the last few decades. In all these investigations, expressing the underlying function as a polynomial whose coefficients are from the prime subfield has been a main problem. Explicit answers require the use of Stickelberger's congruence of Gauss sums. Using elementary methods, we provide a simple result along these lines.

The following is well-known:

Let
$$f: F_{p^d}^{i} \to F_{p^d}$$
 be any function. Then $f(x) = \sum_{k=0}^{p^d-2} \alpha_k x^k \in F_{p^d}[x]$

We prove a finer version of the above result:

Let
$$p$$
 be an odd prime. Let $f(x) \in F_{p^d}[x]$. Let $\deg f(x) = r$.
Suppose $r < p^d - 1 \land f(\alpha) \in F_p$ for each $\alpha \in F_p^{\flat}$. Then $f(x) \in F_p[x]$.