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Abstract

McEliece proposed the first public-key cryptosystem based on linear error-correcting codes.
A code with an efficient bounded distance decoding algorithm is chosen as secret key. It is
assumed that the chosen code looks like a random code. The known efficient bounded distance
decoding algorithms of the families of codes proposed for code-based cryptography, like Reed-
Solomon codes, Goppa codes, alternant codes or algebraic geometry codes, can be described
in terms of error-correcting pairs (ECP). That means that, the McEliece cryptosystem is not
only based on the intractability of bounded distance decoding but also on the problem of
retrieving an error-correcting pair from the public code. In this article we propose the class
of codes with a t-ECP whose error-correcting pair that is not easily reconstructed from of a
given generator matrix.
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1 Introduction

The notion of Public Key Cryptography was first introduced in 1976 by Diffie and Helman. The
problem of building Public Key Cryptosystems (PKC) is tied to the problem of making trapdoor
primitives. Roughly, a trapdoor function is easy to compute but hard to invert except if you possess
some “trapdoor” information. It is stated that

“At the heart of any public-key cryptosystem is a one-way function - a function y = f(x)
that is easy to evaluate but for which is computationally infeasible (one hopes) to find the inverse
x = f−1(y)”.

The most famous trapdoor one-way functions are:

• Integer factorization where x = (p, q) is a pair of prime numbers and y = pq is its product.
The best-known example of PKC is the Rivest-Shamir-Adleman (RSA) cryptosystem whose
security is based on the hardness of factoring prime numbers from composite number, i.e.
the intractability of inverting this one-way function.

• Discrete logarithm for which a group G (written multiplicatively) and an element a ∈ G
are required, then x is an integer and y = ax. The security of the ElGamal cryptosystem
or the Diffie-Hellman key exchange depends on the difficulty of finding discrete logarithms
modulo a large prime.

• Elliptic curve discrete logarithm which it is actually a particular case of the previous
function when G (written additively) is taken as an elliptic curve group. Then x = P is a



point on the curve and y = kP is another point on the curve obtained by the multiplication
of P with a scalar k. Elliptic Curve Cryptography (ECC) proposed independently by Koblitz
and Miller in 1985 is based on the difficulty of this function in the group of points on an
elliptic curve over a finite field.

Only two years after the introduction of PKC, McEliece proposed the first PKC based on
the theory of Error-correcting codes. Compared to RSA and discrete logarithm based schemes,
McEliece has the advantage to resist quantum attacks so far, this property makes this scheme
an interesting candidate for post-quantum cryptography. The security of this scheme relies on
the difficulty of decoding a random code. Another advantage consists of its fast encryption and
decryption schemes. However, its major drawback is the large size of the keys required to have a
good security level.

McEliece encryption scheme: Let F be any family of linear codes with an efficient decoding
algorithm. Every element of this family is represented by the triple (C,AC , t) where AC denotes
an efficient decoding algorithm for C ∈ F correcting all patterns of t errors. The McEliece scheme
can be summarized as follows:

Key generation: Consider any element (C,AC , t) ∈ F . Let G be a generator matrix of C.
Then the public key and the private key are given respectively by

Kpub = (G, t) and Ksecret = AC .

Encryption: y = mG + e where m is the message and e is a random error vector of weight
at most t.

Decryption: Using Ksecret, the receiver obtains m.

Let K be the collection of all generator matrices of a chosen class of codes that have an efficient
decoding algorithm that corrects all patterns of t errors. The security of McEliece cryptosystem is
based on two assumptions:

A.1 In the average it is difficult to decode t errors for all codes that have the same parameters as
the codes used as key.

A.2 It is difficult to distinguish arbitrary codes from those coming from K.

Concerning the first assumption it might be that the class of codes is too small or too rigid.
Recent progress is made with respect to the second assumption by [5, 2] where it is shown that
one can distinguish between high rate Goppa, alternant and random codes.

In its original algorithm McEliece proposed the use of binary Goppa codes. Many attempts
to replace Goppa codes by different families of codes have been proven to be insecure such as
Generalized Reed-Solomon codes proposed in [15], subcodes of them in [1], Binary Reed–Muller
codes in [18] or Algebraic Geometry codes in [7]; all of these schemes are subject to polynomial or
sub-exponential time attacks [18, 14, 20, 4].

It was shown in [16] that the known efficient bounded distance decoding algorithms of Reed-
Solomon, BCH, Goppa and algebraic geometry codes can be described by a basic algorithm using
an error correcting pair. That means that for such classes of codes the security of the McEliece
cryptosystem is not only based on the inherent intractability of bounded distance decoding but
also on the one-way function

x = (A,B) 7→ y = A ∗B,

where (A,B) is a t-error-correcting pair.
The aim of this paper is to study the subclass of linear codes formed by those linear codes

C whose error correcting pair is not easily reconstructed from C. In [3, 4] an attack is presented
against algebraic geometry codes and subcodes of them, this attack consists of the computation
of an ECP in order to decode the public code. Take notice that this attack is neither a generic
decoding attack like Information Set Decoding, nor a structural attack as the structure of the
code is not retrieved. It corresponds, rather, to a cryptanalysis of the new trapdoor function of
code-based cryptography as presented above.



2 Error-correcting pairs

From now on the dimension of a linear code C will be denoted by k(C) and its minimum distance
by d(C). Given two elements a and b in Fn

q , the Schur product is defined by coordinatewise
multiplication, that is a ∗ b = (a1b1, . . . , anbn). While the standard inner product is defined by
a · b =

∑n
i=1 aibi. In general, for two subsets A and B of Fn

q the set A ∗B is given by

A ∗B := 〈a ∗ b | a ∈ A and b ∈ B〉

For B = A, then A ∗ A is denoted as A(2). A new, we define A(t) by induction: A(1) = A and
A(t+1) = A ∗ A(t) for any positive integer t. Furthermore, we denote by A ⊥ B if a · b = 0 for all
a ∈ A and b ∈ B.

Definition 1. Let C be a linear code in Fn
q . A pair (A,B) of Fqm-linear codes of length n is called

a t-error correcting pair (ECP) for C if the following conditions hold:

E.1 (A ∗B) ⊥ C, E.2 k(A) > t, E.3 d(B⊥) > t, E.4 d(A) + d(C) > n.

The notion of an error-correcting pair for a linear code was introduced by Pellikaan [16] and
independently by Kötter [8]. It is shown that a linear code in Fn

q with a t-error correcting pair has

a decoding algorithm which corrects up to t errors with complexity O
(
mn)3

)
.

2.1 Examples of existence of ECP for many known codes

Example 1 (Generalized Reed-Solomon codes). Let a be an n-tuple of mutually distinct elements
of Fq and b be an n-tuple of nonzero elements of Fq. Then the generalized Reed-Solomon code
GRSk(a,b) is defined by

GRSk(a,b) = {(f(a1)b1, . . . , f(an)bn) | f(X) ∈ Fq[X] and deg(f(X)) < k} .

Define by induction a1 = a and ai+1 = a∗ai. Then GRSk(a,b) is generated by the elements b∗ai

with i = 0, . . . , k − 1. If k ≤ n ≤ q, then GRSk(a,b) is an [n, k, n− k + 1] code. Furthermore the
dual of a GRS code is again a GRS code, in particular GRSk(a,b)⊥ = GRSn−k(a, c) for some c
that is explicitly known.

GRS codes are the prime examples of codes that have a t-ECP. Indeed, let

A = GRSt+1(a,b), B = GRSt(a, c) and C = GRS2t(a,b ∗ c)⊥.

Then (A,B) is a t-ECP for C. Conversely let C = GRSk(a,b), then A = GRSt+1(a, c) and
B = GRSt(a,1) is a t-ECP for C where t =

⌊
n−k
2

⌋
and c ∈ Fn

q is a nonzero vector such that

GRSk(a,b)⊥ = GRSn−k(a, c).
Moreover if C is an [n, n− 2t, 2t+ 1] code which has a t-error-correcting pair, then C is a GRS

code. This is trivial if t = 1, proved for t = 2 in [17, Theorem 6.5] and for arbitrary t in [12].

The family of GRS codes was mentioned by Niederreiter [15] for the McEliece cryptosystem as
an attempt to shorten the key size (since GRS are MDS codes) while keeping the same security
level in comparison to the classical binary Goppa codes. However GRS codes have been proven to
be insecure by Sidelnikov-Shestakov [18].

Example 2 (Algebraic geometry codes). Let X be a smooth projective geometrically connected
curve over a finite field Fq of genus g, P = (P1, . . . , Pn) be an n-tuple of mutually distinct Fq-
rational points of X and E be a divisor of X of degree m with disjoint support from P.

The algebraic geometry (AG) code CL(X , P, E) of length n over Fq is the image of the Riemann-
Roch space L(E) of rational functions with prescribed behavior of zeros and poles at E under the
evaluation map evP : L(E) −→ Fn

q defined by evP (f) = (f(P1), . . . , f(Pn)).
If A = CL(X , P, E) and B = CL(X , P, F ), then A∗B ⊆ CL(X , P, E + F ), so there are abundant

ways of constructing error-correcting pairs of an AG code. Indeed, the codes (A,B) defined by A =
CL(X , P, F ) and B = CL(X , P, E − F ) with deg(E) > deg(F ) ≥ t+g is a t-ECP for CL(X , P, E)⊥,
where g is the genus of the curve X , see [16, Theorem 3.3]. Such a pair (A,B) for CL(X , P, E)⊥

always exists whenever deg(E) > 2g − 2. Moreover, if e is sufficiently large, then there exists a
t-ECP over Fqe with t = b(d∗ − 1)/2c by [17, Proposition 4.2].



AG codes have efficient decoding algorithms that correct up to half the designed minimum dis-
tance which makes them particularly appealing for code-based cryptography. Janwa and Moreno
[7] proposed to use the collection of AG codes and their subfield subcodes for the McEliece cryp-
tosystem. The proposal of using AG code is broken; firstly by Faure and Minder [6] for codes on
curves of genus g ≤ 2 and recently, for arbitrary genus in [10, 11] and [4] where the authors propose
a polynomial time attack on the code length.

Example 3 ((Subfield) subcodes). Let C be an Fq-linear code that is a (subfield)subcode of an
Fqm-linear code D that has (A,B) as t-ECP. Then condition (E.1) holds for (A,B) with respect
to D, i.e. a ∗ b · d = 0 for all d in D. Hence a ∗ b · c = 0 for all c in C, since C ⊆ D. Moreover,
conditions (E.2), (E.3) and (E.4) hold. So (A,B) is also a t-ECP for C.

Although the PKC with GRS codes is completely broken, subsequent variants [1, 19] were
proposed in a bid to hide the strong algebraic structure of these codes but without success. The
main idea is to use subcodes of the original GRS codes rather than the GRS code itself. See
[20, 9, 2] for several cryptanalysis of these schemes. Recall that GRS codes is the subclass of AG
codes on the projective line, that is the algebraic curve of genus zero. For the general case, the
proposal of using subcodes of AG codes is also not secure [3].

Example 4 (Alternant codes). Let C be a subfield subcode of a code D that has (A,B) as a t-ECP,
then (A,B) is also a t-ECP for C.

Let a be an n-tuple of mutually distinct elements of Fqm and b be an n-tuple of nonzero elements
of Fqm . The alternant code Altr(a,b) is the Fq-linear restriction: Altr(a,b) = Fn

q ∩GRSr(a,b)⊥.
Therefore, let us define the codes A = GRSt+1(a,1) and B = GRSt(a,b) over Fqm , then (A,B)

is a t-ECP over Fqm for Alt2t(a,b).

Example 5 (Goppa codes). A Goppa code associated to a Goppa polynomial of degree r can be
viewed as an alternant code.Therefore this family of codes has an

⌊
r
2

⌋
-error correcting pair. In the

binary case with an associated square free polynomial the Goppa code has an r-ECP.

The McEliece cryptosystem with Goppa codes is still unbroken for suitable parameters choices.

3 Distinguishing a code with an ECP

Let K be a collection of generator matrices of codes that have a t-ECP. In this section we address
assumption A.2 whether we can distinguish arbitrary codes from those coming from K.

Theorem 1. Let C be an [n, k] code with n >
(
k+1
2

)
chosen at random. Then the dimension of

the square code C(2) is equal to
(
k+1
2

)
with high probability.

Proof. See [13, Proposition 2].

This theorem could be used for detecting the family of codes that have an ECP since this family
have a different behavior from the one that one would expect from a random code.

Remark 1. Let (A,B) be a pair of codes with parameters [n, t + 1, n − 1] and [n, t, n − t + 1],
respectively; and define the code C = (A ∗ B)⊥, then (A,B) is a t-ECP for C by [17, Corollary
3.4].

If t(t+ 1) < n, then the dimension of A ∗B is at most t(t+ 1). Moreover, in [13, Appendix A]
we have shown that the dimension of C is equal to n− t(t + 1) for random choices of A and B.

Let D = C⊥, then

dim(D(2)) ≤
(
t + 2

2

)(
t + 1

2

)
which is about half the expected

(
t(t+1)

2

)
in case

(
t(t+1)

2

)
< n by Theorem 1.
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