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Abstract

In this extended abstract, we use the techniques of computation of the minimum apparent
distance of a hypermatrix given in [2] in order to develop a notion of BCH bound and BCH
code in the multivariate case. Then we extend the most classical results in BCH codes to the
multivariate case and we show how to construct abelian codes with maximum dimension with
respect to prefixed bounds for their minimum distance.
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1 Introduction, notation and preliminaries

The oldest lower bound for the minimum distance of a cyclic code is the BCH bound (see [4, p.
151]). Its study and its generalizations are classical topics, which include the study of the very
well-known family of BCH codes. In 1970, P. Camion [3] extended the study of the BCH bound
to the family of abelian codes by introducing the notion of apparent distance of an abelian code.
For cyclic codes, it coincides with the BCH bound (see[3, p. 22]).

In [2] we gave an algorithm to compute the minimum apparent distance of a hypermatrix, and
thereby to compute the apparent distance of an abelian code, based on hypermatrix manipulations
that extends other methods (see [6]). In this extended abstract we use those techniques in [2]
to develop a notion of BCH bound and BCH code in the multivariate case. We also extend the
most classical results in BCH codes to our case. Finally, we show two different applications. The
first one consists of constructing multivariate abelian codes from BCH cyclic codes, multiplying
their dimension and preserving their BCH bounds. The second one consists of designing maximum
dimensional abelian codes with respect to several bounds.

All throughout, Fq denotes the field with q elements where q is a power of a prime p. It will
be the ground field of the codes. An abelian code is an ideal of a group algebra FqG, where G
is an abelian group. It is well-known that a decomposition G ' Cr1 × · · · × Crs , with Crk the
cyclic group of order rk for k = 1, . . . , s, induces a canonical isomorphism of Fq-algebras from FqG
to Fq[x1, . . . , xs]/ 〈xr11 − 1, . . . , xrss − 1〉 . We denote this quotient algebra by Aq(r1, . . . , rs) and by
I the product Zr1 × · · · × Zrs . So, we identify the codewords with polynomials that we write as
f = f(x1, . . . , xs) =

∑
aiX

i, where i = (i1, . . . , is) ∈ I and X i = xi11 · · ·xiss .
We deal with abelian codes in the semisimple case; that is, we always assume that gcd(rk, q) = 1

for every k = 1, . . . , s. Let Uri denotes the set of all ri-th primitive roots of unity, for each i =
1, . . . , s. We define U = {(α1, . . . , αs) : αi ∈ Uri}. Every abelian code C in Aq(r1, . . . , rs) is totally
determined by its root set Z(C) = {α ∈ U : f(α) = 0 for all f ∈ C}. Fixed α = (α1, . . . , αs) ∈ U ,
C is determined by its defining set, Dα (C)={(a1, . . . , as) ∈ I : f(αa11 , . . . , α

as
s ) = 0 for all f ∈ C} .
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Given an element a = (a1, . . . , as) ∈ I, we define its qt-orbit modulo (r1, . . . , rs) as Qt(a) ={(
a1 · qi, . . . , as · qi

)
| i ∈ N

}
⊆ Zr1×· · ·×Zrs . In the case t = 1 we only write Q(a). The parameter

(r1, . . . , rs) will be omitted because it will always be clear from the context.
It is easy to see that, in the semisimple case, for every abelian code C in Aq(r1, . . . , rs), Dα (C)

is a disjoint union of q-orbits modulo (r1, . . . , rs). Conversely, every union of q-orbits modulo
(r1, . . . , rs) determines an abelian code (an ideal) in Aq(r1, . . . , rs) (see, for example, [1]).

To define and compute the apparent distance of an abelian code, we will associate to its defining
set, with respect to α ∈ U , certain hypermatrix that we will call q-orbits hypermatrix. Let r1, . . . , rs
be positive integers, and set I =

∏s
k=1 Zrk . For any i ∈ I we write its k-th coordinate as i(k). A

hypermatrix, with entries in a set R, indexed by I (or an I-hypermatrix over R) is an s-dimensional
I-array, that we denote by M = (ai)i∈I , with ai ∈ R [7]. The set of indices, the dimension and the
ground field will be omitted if they are clear by the context. As usual, in case s = 2 we will say that
M is a matrix, and for s = 1 we will call M a vector. We write M = 0 when all of its entries are
0; otherwise we may write M 6= 0. A hypercolumn is defined as HM (k, b) = {ai ∈M : i(k) = b},
with 1 ≤ k ≤ s and 0 ≤ b < rk, where the expression ai ∈ M means that ai is an entry of M .
Usually, a hypercolumn will be seen as an (s − 1)-dimensional hypermatrix. The hypermatrix
afforded by D is defined as M = (ai)i∈I , where ai = 1 if i 6∈ D and ai = 0 otherwise. When
D is an union of qt-orbits we will say that M is the hypermatrix of qt-orbits afforded by D, and
it will be denoted by M = M(D). For any I-hypermatrix M with entries in a ring, we define
the support of M as the set supp(M) = {i ∈ I : ai 6= 0}; whose complement will be denoted by
D(M). Note that, if D is a union of qt-orbits, then the qt-orbits hypermatrix afforded by D verifies
that D(M(D)) = D.

Let Qt be the set of all qt-orbits in I, for some t ∈ N. We define a partial ordering over the set
of qt-orbit hypermatrices {M(D) : D = Q for some subset Q ⊆ Qt} as follows:

M(D) ≤M(D′)⇔ supp (M(D)) ⊆ supp (M(D′)) . (1)

Clearly, this condition is equivalent to D′ ⊆ D.
Let Fqv/Fq be an extension field such that U ⊂ Fqv . The (discrete) Fourier transform of a

polynomial f ∈ Aq(r1, . . . , rs) (also called Mattson-Solomon polynomial [6]), with respect to α ∈ U ,
that we denote by ϕα,f , is ϕα,f (X) =

∑
j∈I f(αj)Xj. Clearly, ϕα,f ∈ Aqv (r1, . . . , rs); moreover, the

function Fourier transform may be viewed as an isomorphism of algebras ϕα : Aqv (r1, . . . , rs) −→
(F

∏s
i=1 ri

qv , ?), where the multiplication “?” in F
∏s

i=1 ri
qv is defined coordinatewise. So, we may see

ϕα,f as a vector in F
∏s

i=1 ri
qv or as a polynomial in Aqv (r1, . . . , rs). See [3, Section 2.2] for details.

1.1 Apparent distance of an abelian code

The apparent distance of hypermatrices is a tool used to compute a lower bound for the minimum
distance of an abelian code. The notion of apparent distance was originally given for polynomials
by P. Camion in [3, p. 21]. In [6, Section 2.3], Sabin computes the apparent distance of polynomials
by using matrix methods in the case of two variables. As a generalization of those techniques, we
introduce the notion of apparent distance of a hypermatrix (see [2]). For a positive integer r, we
say that a list of canonical representatives b0, . . . , bl in Zr is a list of consecutive integers module
r, if for each 0 ≤ k < l we have that bk+1 ≡ bk + 1 mod r. If b = bk (resp. b = bk+1) we denote
b+ = bk+1 (resp. b− = bk).

Definition 1. Let s, q, r1, . . . , rs and I be as above. Let M be a hypermatrix, k ∈ {1, . . . , s}, b ∈
Zrk and HM (k, b) a nonzero hypercolumn. The set of zero hypercolumns adjacents to HM (k, b) is the
set of hypercolumns CHM (k, b) = {HM (k, b0), HM (k, b1), . . . ,HM (k, bl)} such that HM (k, bj) = 0
for all j ∈ {0, . . . , l}, b0, . . . , bl is a list of consecutive integers modulo rk, b+ = b0 and HM (k, b+l ) 6=
0. In the case s = 1 we replace hypercolumns by entries.

Notation 2. We denote by ωM (k, b) the value |CHM (k, b)|; in the case s = 1 we write ωM (b) =
ωM (1, b). Note that for some values k and b it may happen that ωM (k, b) = 0.

Definition 3. Let s, q, r1, . . . , rs and I be as above. Let M be a hypermatrix over Fq and k ∈
{1, . . . , s}.

1. If M is the zero hypermatrix, its apparent distance is d∗0 = 0.

2. In case s = 1, the apparent distance of a vector M is d∗M = maxb∈Zr1
{ωM (b) + 1}.



3. For s ≥ 2, we give the definition in two steps:
(3.1) The apparent distance of M with respect to the k-th face is

d∗kM = max
b∈Zrk

{(ωM (k, b) + 1) · d∗HM (k, b)} .

Then

(3.2) the apparent distance of M is d∗M = max1≤k≤s{d∗kM}.

Theorem 4. [2, Theorem 7] Let s, q, r1, . . . , rs, I and Aqv (r1, . . . , rs) be as above. For a polynomial
f ∈ Aqv (r1, . . . , rs) with coefficient hypermatrix M(f), the equality d∗f = d∗M(f) holds.

Now, we give an alternative definition of apparent distance of a code, to that given by Camion
in [3].

Definition 5. Let C be a code in Aq(r1, . . . , rs). The apparent distance of C, with respect to
α ∈ U , is d∗αC = min

{
d∗M(ϕα,e) : 0 6= e2 = e ∈ C

}
, where ϕα,e denotes the image of e under

the discrete Fourier transform, with respect to α, as we denoted in the previous section. The

apparent distance of C is d∗C = max
{
d∗βC : β ∈ U

}
. We also define the set of optimized roots

of C as R(C) = {β ∈ U : d∗C = d∗M(ϕβ,e)}.

Note that, if e ∈ Aq(r1, . . . , rs) is an idempotent and E is the ideal generated by e then for any
α ∈ U we have that M(ϕα,e) = M(Dα(E)). Now let C be an abelian code and M = M(Dα(C)).
For any q-orbits hypermatrix P ≤ M [see (1)] there exists an idempotent e′ ∈ C such that
P = M(ϕe′). So we may conclude that min{d∗P : P ≤M} = min{d∗M(ϕα,e) : 0 6= e2 = e ∈ C}.
This fact drives us to give the following definition.

Definition 6. In the setting described above, for a q-orbits hypermatrix M , its minimum apparent
distance is mad(M) = min{d∗P : 0 6= P ≤M}.

The apparent distance is a lower bound for the minimum distance of any abelian code (see [3,
Theorem 4.1]). In the next theorem we set the relationship between the apparent distance of an
abelian code and the minimum apparent distances of the coefficient hypermatrices of the Fourier
transforms of its generating idempotent. It is one of our main results.

Theorem 7. Let C be an abelian code in Aq(r1, . . . , rs) and let e be its generating idempotent.
Then d∗αC = mad (M(ϕα,e)) (α ∈ U). Therefore, d∗C = max{mad (M(ϕα,e)) : α ∈ U}.

In [2, Theorem 9] we present a technique to compute the minimum apparent distance of a
hypermatrix and thereby to compute the apparent distance of an abelian code.

Remark 8. Let us note that the maximum that defines d∗C does not have to be computed over all
the elements of U. Indeed, let Q(a1), Q(a2), . . . , Q(ah) be all different q-orbits modulo (r1, . . . , rs)
and fix the representatives a1, . . . , ah. Chose α ∈ U to get a defining set Dα(C). Let β ∈ U . One
may see that if Dβ(C) 6= Dα(C) then βai = α for some ai = (ai1, . . . , ais) such that gcd(aij , rj) = 1
with j = 1, . . . , s. In this case, it is clear that Dβ(C) = ai · Dα(C), where the multiplication has
the obvious meaning.

Then, we denote by K(r1, . . . rs) = {ai = (ai1, . . . , ais) : gcd(aij , rj) = 1, j = 1, . . . , s, i =
1, . . . , h} and fixed α ∈ U we define Rα = {β ∈ U : βai = α, ai ∈ K(r1, . . . , rs)}. So, in practice,

fixed α ∈ U , d∗C = max
{
d∗βC : β ∈ Rα

}
.

2 Multivariate BCH bounds and BCH codes

Theorem 9. (Multivariate BCH bound) Let s, q, r1, . . . , rs be positive integers, with q a
power of a prime number p, such that p - ri, for i = 1, . . . s and α ∈ U . We set I =

∏s
j=1 Zrj .

Let C be a nonzero abelian code in Aq(r1, . . . , rs) with defining set Dα(C) and M the q-orbits
hypermatrix afforded by Dα(C). Suppose that there exist a subset γ ⊆ {1, . . . , s} and a list of
integers {δk ≥ 2 : k ∈ γ} satisfying the following property: for each k ∈ γ, the hypermatrix M has
distinct zero hypercolumns HM (k, j(k,0)), . . . ,HM (k, j(k,δk−2)), where {j(k,0), . . . , j(k,δk−2)} is a list
of consecutive integers modulo rk (see Section 1.1). Then d∗αC ≥

∏
k∈γ δk. Hence, d∗C ≥

∏
k∈γ δk.



Example 10. Set q = 2, r1 = 5, r2 = 7, D = Q(0, 0)∪Q(0, 1)∪Q(0, 3)∪Q(1, 1) and M = M(D).
Then HM (1, 0) = 0 and HM (2, 1) = HM (2, 2) = HM (2, 4) = 0. So we take γ = {1, 2}, δ1 = 2,
δ2 = 3, j(1,0) = 0, j(2,0) = 1 and j(2,1) = 2. Then if C is the abelian code with defining set D, with
respect to some α ∈ U , we can check that d∗C ≥ 6. In this case we have that d∗C achieves this
bound.

Let us reformulate last theorem in a more traditional way. We recall that for any two integers
b, r ∈ Z with r > 0, we denote by b the canonical representative of b in Zr.

Corollary 11. Let γ ⊆ {1, . . . , s} be a set, and let δ = {δk ≥ 2 : k ∈ γ} and b = {bk ≥ 0 :
k ∈ γ} be lists of integers. For each k ∈ γ consider the list of consecutive integers modulo rk,
Jk = {bk, . . . , bk + δk − 2} and set Ak = {i ∈ I : i(k) ∈ Jk}. If C is a nonzero abelian code
satisfying ∪sk=1Ak ⊆ Dα(C), for some α ∈ U , then d∗C ≥

∏
k∈γ δk.

Example 12. Set q = 2, r1 = 3, r2 = r3 = 5, D = Q(0, 0, 0) ∪Q(0, 0, 1) ∪Q(0, 1, 0) ∪Q(1, 0, 0) ∪
Q(1, 0, 1)∪Q(1, 0, 2)∪Q(1, 1, 0)∪Q(1, 2, 0), M = M(D) and let C be the abelian code with defining
set D, with respect to some β ∈ U . One may check that HM (2, 0) = HM (3, 0) = 0; so that, we
may take γ = {1, 2}, δ = {2, 2}, b = {0, 0} and then d∗C ≥ 4.

Now we present a new notion of multivariate BCH code. We set I(k, l) = {i ∈ I : i(k) = l}.

Definition 13. (Multivariate BCH code) Let s, q, r1, . . . , rs, I be as above. Let γ ⊆ {1, . . . , s}
and δ = {δk ≥ 2 : k ∈ γ}. An abelian code C in Aq(r1, . . . , rs) is a multivariate BCH code
of designed distance δ if there exists a list of positive integers b = {bk : k ∈ γ} such that

Dα(C) =
⋃
k∈γ

⋃δk−2
l=0

⋃
i∈I(k,bk+l)Q(i) for some α ∈ U , where {bk, . . . , bk + δk − 2} is a list of

consecutive integers modulo rk. We denote C = Bq(α, γ, δ, b), as usual.

Example 14. In Example 10 we obtained the multivariate BCH code B2 (α, {1, 2}, {2, 3}, {0, 1})
and the BCH multivariate code in Example 12 is B2 (β, {2, 3}, {2, 2}, {0, 0}).

As a direct consequence of Theroem 9 we have that d∗Bq(α, γ, δ, b) ≥
∏
k∈γ δk. From now on,

we shall extend the basic properties of BCH codes to the multivariate case. The following property
is immediate.

Corollary 15. Let Bq(α, γ, δ, b) be a multivariate BCH code. For each k ∈ γ, set Jk =
{
bk, . . . ,

bk + δk − 2
}

and Ak = {i ∈ I : i(k) ∈ Jk}. If C is an abelian code in Aq(r1, . . . , rs) such that
∪sk=1Ak ⊆ Dα(C) then dimC ≤ dimBq(α, γ, δ, b).

To see the next property we need additional notation. Let a and b be positive coprime integers.
The multiplicative order of a modulo b is the first positive integer m, such that b divides am − 1.
We shall denote it by Ob(a). It is known (see [5, Theorem 10, p. 203]) that any (univariate) BCH
code B = Bq(α, δ, b) in Frq verifies that d(B) ≥ δ and dim(B) ≥ r −m(δ − 1), where m = Or(q).
In the multivariate case we have the following result.

Theorem 16. Let s, q, r1, . . . , rs and I be as above and let Bq(α, γ, δ, b) be a multivariate BCH
code with δ = {δk ≥ 2 : k ∈ γ} and b = {bk ≥ 0 : k ∈ γ}. Then dimFq

Bq(α, γ, δ, b) ≥∏s
j=1 rj −m

(∑
k∈γ

(
(δk − 1)

∏s
j=1
j 6=k

rj

))
, where m = lcm{Ork(q)}k∈γ .

3 Applications

Application 1. Multiplying dimension in abelian codes. We shall construct abelian codes
starting from cyclic codes with apparent distance δ ∈ N.

Theorem 17. Let n and r be positive integers such that gcd(q, nr) = 1 and α = (α1, α2) ∈
Un × Ur. Let C be a cyclic code in Aq(r) with d∗C = d∗α2

(C) = δ > 1. Then, the abelian code
Cn in Aq(n, r) with defining set Dα(Cn) = Zn × Dα2(C) verifies that d∗Cn = d∗α(Cn) = δ and
dimFq

(Cn) = ndimFq
(C).

Example 18. Set q = 2, r = 55, n = 3. Consider α2 ∈ U35 and the code C such that Dα2
(C) =

Q(1)∪Q(5). So C is a BCH code with designed distance δ = 7, i.e. d∗α2
C = δ = 7, and dimension 25.

By applying the theorem above we construct the abelian code C3 with D(α1,α2)(C3) = Z3×Dα2
(C),

for any α1 ∈ U3. Note that D(α1,α2)(C3) = D(β,α2)(C3) for all β ∈ U3. Then d∗(α1,α2)
C3 = 7,

dimF2
(C3) = 75 and lenght 165. In fact C3 = B2((α1, α2), {2}, {7}, {13}).



Proposition 19. Let s, q, r1, . . . , rs and I be as above and let Bq(α, γ, δ, b) be a multivariate
BCH code with γ = {k}, for some k ∈ {1, . . . , s}. If rk = q − 1 then d∗αBq(α, γ, δ, b) = δk and
dimFq (Bq(α, γ, δ, b)) = (rk − δk + 1)

∏s
j=1
j 6=k

rj.

Application 2. Designing maximum dimensional abelian codes (MD codes) for
prescribed apparent distance. We are going to design maximum dimensional abelian codes
(MD codes, for short) for prescribed apparent distances in the case q = 2 and lenght 45. To do
this, we shall apply some of the ideas developed in this extended abstract that allows us to see
abelian codes as ideals in univariate, bivariate or multivariate polynomial quotient rings. As the
reader will see, our ideas are based in the consideration of the distribution of the q-orbits on the
indexes of hypermatrices. We point out that some computations were done with GAP4r7 and with
the cooperation of Alexander Konovalov. The authors are indebt to him.

In the case of univariate codes, to be a MD cyclic code implies that it is a BCH code for which
its designed distance coincide with its apparent distance (the maximum of its BCH bounds) and
with its Bose distance (which is, in fact its apparent distance). One may check that taking α
the 45-th primitive root of unity with minimal polynomial mα = x12 + x3 + 1 then B(α, 4, 15),
B(α, 5, 15) and B(α, 7, 15) are MD cyclic codes to dimensions 31, 27 and 21, respectively.

Now we consider two variables r1 = 5 and r2 = 9. Following the notation in paragraph bellow
Remark 8, we set a1 = (0, 0), a2 = (1, 0), a3 = (0, 1), a4 = (1, 1), a5 = (1, 2), a6 = (0, 3),
a7 = (1, 3) and a8 = (1, 6) and we fix α = (α1, α2), where α1 is the r1-th primitive root of
unity with minimal polynomial m1 = Φ5 and α2 is the r2-th primitive root of unity with minimal
polynomial m2 = x6 + x3 + 1. Then K(5, 9) = {a4, a5}.

Taking into account the distribution of 2-orbits in a 5 × 9 matrix we begin by considering
apparent distance at least 4; d∗ ≥ 4, for short. Let C1 be the abelian code with Dα(C1) =
Q(a2) ∪ Q(a3) = D1. One may check that mad(M(D1)) = 4, a5D1 = D1 and dimF2(C1) = 35.
A simple inspection shows that C1 is a MD bivariate code with d∗C1 = 4. Now we consider
d∗ ≥ 5. The abelian code C2 with Dα(C2) = Q(a2) ∪ Q(a4) ∪ Q(a6) = D2 verifies that, a5D2 =
Q(a2) ∪ Q(a5) ∪ Q(a6), and one may check that mad(M(D2)) = mad(M(a5D2)) = 5, and that
dimF2

(C2) = 27. So we have that C2 is a MD bivariate code with d∗C2 = 5. Finally, for d∗ ≥ 6,
we consider the code C3 with Dα(C3) = Q(a1) ∪ D2. One may check that C3 is a MD bivariate
code with dimension 26 and apparent distance 6. Observe that, if we consider r1 = 3, r2 = 15 and
we fix α ∈ U then we may choose representatives such that K(3, 15) = {(1, 7)}. So we can obtain
the code C4 with Dα(C4) = Q(0, 0) ∪Q(1, 0) ∪Q(0, 7), d∗(C4) = 4 and dimension 38.

By considering the distribution of 2-orbits in a 3 × 3 × 5 hypermatrix, and fixed α ∈ U , we
may find the code C5 with defining set Dα(C5) = Q(0, 0, 1) ∪Q(1, 0, 1) ∪Q(0, 1, 0), d∗C5 = 4 and
dimension 37. We also find C6 withDα(C6) = Q(0, 0, 0)∪Q(0, 0, 1)∪Q(1, 0, 1)∪Q(0, 1, 0)∪Q(1, 2, 2),
d∗C6 = 6 and dimension 28. Finally, the code C7 with Dα(C7) = Q(0, 0, 0)∪Q(0, 0, 1)∪Q(1, 0, 1)∪
Q(0, 1, 0)∪Q(1, 2, 1)∪Q(1, 0, 2)∪Q(1, 2, 0) has d∗C7 = 8 and dimension 24. This is the code with
the largest dimension (even than cyclic codes).
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