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Abstract
In this short paper, a link between Gröbner bases and linear codes over prime fields will

be established by associating to each linear code the so-called code ideal which is a binomial
ideal given as the sum of toric ideal and a non-prime ideal.

An algorithm using Gröbner basis techniques will be presented that computes a basis for
a subspace of a finite-dimensional vector space over a finite prime field given as a matrix
kernel which is an adaptation of the Gröbner basis based method used to calculate the Hilbert
basis of a numerical submonoid. Furthermore, results concerning the universal Gröbner basis
of the code ideals will be given. In particular, it will be shown that for binary codes the
universal Gröbner basis consists of all binomials associated to codewords whose Hamming
weight satisfies the Singleton bound and a particular rank condition. This will give rise to a
new class of binary linear codes called Singleton codes.
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1 Introduction

Digital data are exposed to errors when transmitted through a noisy channel. But as receiving
correct data is indispensable in many applications, error-correcting codes are employed to tackle
this problem. By adding redundancy to the messages, errors can be detected and corrected. Since
the late 1940’s the study of such codes is an ongoing and important task.

Gröbner bases, on the other hand, are a powerful tool that has originated from commutative
algebra providing a uniform approach to grasp a wide range of problems such as solving algebraic
systems of equations, ideal membership, and effective computation in residue class rings modulo
polynomial ideals [1, 2]. Additionally, Gröbner basis techniques also provide means of solving
problems in integer programming and invariant theory.

Both disciplines can be linked by associating a linear code over a prime field with a binomial
ideal given as the sum of a toric ideal and a non-prime ideal called code ideal. In this way, several
concepts from the rich theory of toric ideals can be translated into the setting of code ideals. This
idea stems from [4] and has already proven its value in the binary case as it allows for determining
the error-corrrecting capabilities of a binary linear code.

In this short paper, some connections between Gröbner bases and linear codes over prime fields
will be established. As a first application we will give an algorithm using Gröbner basis techniques
which computes a basis for a subspace of a finite-dimensional vector space over a finite prime field
given as a matrix kernel [5]. In fact, this algorithm is an adaptation of the Gröbner basis based
method used to calculate the Hilbert basis of a numerical submonoid [10]. This is of particular
interest in the context of linear codes over prime fields. Using this method a generator matrix for
such a code can be computed that is described by its parity check matrix.

The second part is devoted to the universal Gröbner basis of the code ideal. Gröbner bases are
an essential tool for utilizing ideals in computer algebra systems. But as Gröbner bases vary with
the monomial order and distinct applications require different monomial orders, it is advantageous
to know the universal Gröbner basis, i.e., a finite generating set of the ideal which is a Gröbner
basis for all monomial orders. For toric ideals this problem has been solved and an algorithm for
computing the universal Gröbner basis has been provided [9]. For the code ideal, however, this
problem remains unsolved. To this end several concepts used in connection with toric ideals will
be adapted. In particular, it will be shown that for binary linear codes the universal Gröbner basis
can be completely described by a linear algebraic rank condition.



2 Computing Matrix Kernel oder so

Let A be an m × n matrix with entries in Z and denote by Λ(A) its Lawrence lifting. For any
u ∈ Z write u+ = max{u, 0} and u− = max{−u, 0} and for any vector v ∈ Zn define v+ and v−

componentwise. Clearly, v = v+ − v−, where v+, v− ∈ Nn0 have disjoint support.
It is well-known that the toric ideal I(A) associated to the matrix A is generated by pure

binomials xv
+ − xv

−
, where v+ − v− belongs to kerZ(A), and that there is a bijection between

pure binomials in I(A) and I(Λ(A)) by mapping xu − xv to xuyv − xvyu. It follows that if u ∈
kerZ(A)∩N0, then the binomial xu−yu belongs to I(Λ(A)) [3, 8, 9]. This gives the foundation for
an algorithm computing the Hilbert basis of the submonoid kerZ(A)∩N0 using Gröbner bases [10].

In the following, let Fp denote a finite field with p elements, where p is a prime. We will provide
an adaptation of the above mentionend Hilbert basis algorithm for finding a basis of the subspace

ker(H) := ker(Hp) ⊂ Fnp , (1)

where H is an m× n integer matrix and Hp = H ⊗Z Fp.
In order to account for p = 0 in Fp, the following ideal will be used

Ip(x) = 〈xpi − 1 | 1 ≤ i ≤ n〉 .

In this way, the exponents of the monomials can be treated as vectors in Fnp .
Let H = (hij) be an m× n-matrix with entries in Fp and define the ideals

JH =

〈
vj − wj

m∏
i=1

x
hij

i | 1 ≤ j ≤ n

〉
(2)

and

IH = JH + Ip(x) + Ip(v) + Ip(w). (3)

Furthermore, define the mapping ψ : K[v1, . . . , vn, w1, . . . , wn]→ K[x1, . . . , xm, w1, . . . , wn] on the
variables first

ψ(vj) = wj

m∏
i=1

x
hij

i and ψ(wj) = wj , 1 ≤ j ≤ n, (4)

and then extend it such that it becomes a ring homomorphism. Obviously, ker(ψ) = JH ∩K[v,w].
This homomorphism can be used to detect elements in the kernel of H.

Lemma 2.1. If α, α′, β, β′ ∈ Fnp with α′−α = β−β′ in Fnp , then α′−α ∈ ker(H) if and only if

ψ(vα
′
wβ′ − vαwβ) = 0 mod (Ip(x) + Ip(v) + Ip(w)) . (5)

Indeed, this result also holds when the field Fp is replaced by Zm = Z/mZ, where m is an
arbitrary positive integer [6].

Note that each nonzero vector α ∈ Fnp can be written as α = (0, . . . , 0, αi, ᾱ), where αi ∈ Fp\{0}
and ᾱ ∈ Fn−ip . Put α′ = αiei − α = (0, . . . , 0, 0,−ᾱ), where ei is the ith unit vector.

Theorem 2.2. Let G be a Gröbner basis for IH w.r.t. the lexicographical order with x1 �
. . . � xm � v1 � . . . � vn � w1 � . . . � wn. Then a basis for ker(H) in Fnp is given by

H =
{

(0, . . . , 0, αi, ᾱ) ∈ Fnp | v
αi
i − vα

′
wα ∈ G, α′ = αiei − α, αi 6= 0, 1 ≤ i ≤ n

}
. (6)

This result provides an algorithm for computing a basis of the matrix kernel over a finite prime
field. Moreover, if this algorithm is applied to Zm where m is not prime, it yields a module basis
when ker(H) is a free Zm-module and a generating set in row reduced echelon form when it is not
free.

There are several differences between this adaptation and the original method. First, Hilbert
bases for submonoids are unique as opposed to bases for vector spaces. Thus in the first case,
the unique Hilbert basis is computed. In the second case, however, a specific vector space basis
is calculated, namely the one which is in reduced row echelon form with respect to the first m



columns. Indeed, changing the lexicographic order x1 � . . . � xm to xi1 � . . . � xim yields a basis
in reduced row echelon form with respect to the columns i1, i2, . . . , im.

Second, in the algorithm for computing the Hilbert basis the set H is constructed by selecting
binomials of the form vα − wα from the Gröbner basis which is justified by the fact that every
pure binomial in the ideal I(Λ(A)) has the shape vαwβ − vβwα. However, adding the ideals
Ip(x), Ip(v) and Ip(w) produces an ideal which also contains pure binomials vαwβ − vα

′
wβ′ with

α− α′ = β′ − β but possibly α 6= β′ and α′ 6= β in Fnp .
Finally, the proposed method is rather unefficient when compared to other known methods

from linear algebra since computation of Gröbner bases can be rather costly. Nevertheless it is
of interest from the theoretical point of view because it demonstrates the extension to the finite
module case.

3 Universal Gröbner Basis for the Code Ideal

For an [n, k] code C over a prime field Fp define the associated code ideal to be

IC =
〈
xc − xc

′
| c− c′ ∈ C

〉
+ Ip(x) ⊂ K[x1, . . . , xn], (7)

where K is an arbitrary field. As in the previous section Ip(x) allows to view the exponents of the
monomials as vectors in Fnp . This ideal can be based on a toric ideal as follows,

IC = IA + Ip(x), (8)

where A in an integral n − k × n matrix such that H = A ⊗Z Fp is a parity check matrix for C.
This shows that IC is given as the sum of a toric ideal and a non-prime ideal.

Clearly, the ideal IC is generated by pure binomials xc − xc
′

with c − c′ ∈ C. Thus, in what
follows binomials will always be considered to be pure. A binomial xc − xc

′
in IC is said to be

associated to the codeword c − c′, but unlike for a toric ideal, there is more than one binomial
associated to a codeword since the decomposition c = c+ − c− is not unique. This is one of the
main reasons why results concering toric ideals cannot be translated one-to-one to this setting.

In [9] the author has introduced several concepts in the context of toric ideals which will be
utilized in the following. Because of the mentionend subtleties, however, several of these concepts
need to be adapted.

A binomial xc − xc
′

in IC is called primitive if there is no other binomial xu − xu
′

in IC such
that xu divides xc and xu

′
divides xc

′
. If C is a binary code then we additionally require c′ 6= 0.

The Graver basis for C consists of all primitive binomials lying in the corresponding code ideal and
is denoted by GrC .

A binomal xc−cc′ in IC is called a circuit if it is a primitive binomial and its support is minimal
with respect to inclusion. Denote by CC the set of all circuits of the ideal IC . Finally, denote the
universal Gröbner basis by UC .

The binary and non-binary case differ substantially. In the binary case, being a circuit is a
property which only depends on the codeword associated to the binomial. To be more precise, the
binomial xc − xc

′
is a circuit if and only if the associated codeword c − c′ has minimal support

w.r.t. inclusion. In other words, if one expansion c = c+− c− yields a circuit, then every expansion
of c is a circuit and the same is true for being primitive. In the non-binary situation, however, this
is not true as is illustrated next.

Example 1. Consider the linear code C over F7 generated by G =

(
1 0 4
0 1 1

)
and the

corresponding code ideal IC in Q[a, b, c]. The codeword (2, 6, 0) has minimal support. Expanding
(2, 6, 0) = (2, 0, 0)− (0, 1, 0) gives the circuit a2 − b. However, writing (2, 6, 0) = (0, 6, 0)− (5, 0, 0)
yields the binomial b6 − a5 which is not even primitive because b2 − a4 also belongs to IC .

Proposition 3.1. For a linear code C over Fp, CC ⊆ UC ⊆ GrC .

Note that the same inclusions are obtained for toric ideals [9]. For non-binary linear codes,
these inclusions can be strict. For binary linear codes, however, all three sets coincide.

Theorem 3.2. For a binary linear code C the set of circuits CC equals the Graver basis GrC .



For a binary [n, k] code C one can even further describe all primitive binomials in the code ideal
IC . If xc−xc

′
is primitive, then wt(c− c′) ≤ n− k+ 1 and for any generator matrix G of the code

C the submatrix Gn\supp(c−c′) has rank k− 1. And the converse is also true, i.e., if c is a codeword
of Hamming weight less than or equal to n− k + 1 and such that Gn\supp(c) has rank k − 1, then
any binomial associated to c is primitive.

Theorem 3.3. Let C be a binary [n, k] code. The universal Gröbner basis for the correspond-
ing code ideal IC is given by the set

UC =
{
xc − xc

′
| c− c′ ∈ C,wt(c− c′) ≤ n− k + 1, rk

(
Gn\supp(c−c′)

)
= k − 1

}
∪
{
x2i − 1 | 1 ≤ i ≤ n

}
.

In other words, the universal Gröbner basis for the code ideal consists of all binomials which
correspond to codewords that satisfy the Singleton bound and a particular rank condition.

This result gives rise to a new class of binary linear codes whose codewords which fulfill the
Singleton bound also satisfy the rank condition. A binary linear code C is called a Singleton code if
each non-zero codeword c with Hamming weight ≤ n− k+ 1 has the property that the submatrix
Gn\supp(c) has rank k − 1 for any generator matrix G for C.

Singleton codes are the parity check codes, the MDS codes, the binary Golay code and its
parity check extension, the Simplex codes, and the first order Reed-Muller codes and their duals.
On the other hand, not all Hamming codes are Singleton.
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