
Some remarks for codes and lattices over imaginary quadratic

fields

Tony Shaska
Oakland University, Rochester, MI, USA.

Caleb Shor
Western New England University, Springfield, MA, USA.

shaska@oakland.edu

Abstract

Let ` > 0 be a square-free integer, ` ≡ 3 mod 4, K = Q(
√
−`), and OK the ring of integers

of K. Codes C over rings R := OK/pOK determine lattices Λ`(C) over K. The theta series
θΛ`(C) of such lattice can be written in terms of the complete weight enumerator of C. For
any `′ > ` the first `+1

4
terms of their corresponding theta functions are the same with those

of Λ`(C). In [6] it was conjectured that for ` > p(n+1)(n+2)
2

there is a unique complete weight
enumerator corresponding to a given theta function. In this paper, we explore this conjecture
and some new computational results.
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1 Introduction

Let ` > 0 be a square-free integer congruent to 3 modulo 4, K = Q(
√
−`) be the imaginary

quadratic field, and OK its ring of integers. Codes, Hermitian lattices, and their theta-functions
over rings R := OK/pOK , for small primes p, have been studied by many authors, see [1], [4], [5],
among others. In [1], explicit descriptions of theta functions and MacWilliams identities are given
for p = 2, 3. In [7] we explored codes C defined over R for p > 2. For any ` one can construct
a lattice Λ`(C) via Construction A and define theta functions based on the structure of the ring
R. Such constructions suggested some relations between the complete weight enumerator of the
code and the theta function of the corresponding lattice. In this paper we further study the weight
enumerators of such codes in terms of the theta functions of the corresponding lattices.

For any prime p with p - `, let R := OK/pOK =
{
a+ bω : a, b ∈ Fp, ω2 + ω + d = 0

}
, where

d = (`+ 1)/4. We have the map

ρ`,p : OK → OK/pOk =: R

A linear code C of length n over R is an R-submodule of Rn. The dual is defined as C⊥ =
{u ∈ Rn : u · v̄ = 0 for all v ∈ C}. If C = C⊥ then C is self-dual. We define

Λ`(C) := {u = (u1, . . . , un) ∈ OnK : (ρ`,p(u1), . . . , ρ`,p(un)) ∈ C},

In other words, Λ`(C) consists of all vectors in OnK in the inverse image of C, taken componentwise
by ρ`,p. This method of lattice construction is known as Construction A.

Let τ ∈ H = {z ∈ C : Im(z) > 0}, the upper-half plane. And let q = eπiτ . For any lattice Λ in
Kn, we have an associated theta function θΛ(q), given by

θΛ(q) =
∑
z∈Λ

qz·z̄,

where “·” denotes the usual dot product and z̄ denotes component-wise conjugation. Thus, for
any linear code C, we have an associated lattice Λ`(C) and associated theta function θΛ`(C)(q).



For notation, let ra+pb+1 = a − bω, so R =
{
r1, . . . , rp2

}
. For a codeword u = (u1, . . . , un) ∈

Rn and ri ∈ R, we define the counting function ni(u) := #{j : uj = ri}. The complete weight
enumerator of the R code C is the polynomial

cweC(z1, z2, . . . , zp2) =
∑
u∈C

z
n1(u)
1 z

n2(u)
2 . . . z

np2 (u)

p2 . (1)

We can use the complete weight enumerator polynomial to find the theta function of the lattice
Λ`(C). For a proof of the following result see [7].

Lemma 1. Let C be a code defined over R and cweC its complete weight enumerator as above.
For integers a and b and a prime p, let Λa,b denote the lattice a− bω` + pOK . Then,

θΛ`(C)(q) = cweC(θΛ0,0
(q), θΛ1,0

(q), . . . , θΛp−1,p−1
(q)).

Note that the q2 arguments of this polynomial can be computed in terms of certain one-
dimensional theta series which are defined in Section 2.1 of [7].

In [2], for p = 2, the symmetric weight enumerator polynomial sweC of a code C over a ring or
field of cardinality 4 is defined to be

sweC(X,Y, Z) = cweC(X,Y, Z, Z).

For ΛΛ`(C)(q), the lattice obtained from C by Construction A, by Theorem 5.2 of [2], one can then
write

θΛ`(C)(q) = sweC(θΛ0,0
(q), θΛ1,0

(q), θΛ0,1
(q)).

These theta functions are referred to as Ad(q), Cd(q), and Gd(q) in [2] and [8].

Remark 1. The connection between complete weight enumerators of self-dual codes over Fp and
Siegel theta series of unimodular lattices is well known. Construction A associates to any length n
code C = C⊥ an n-dimensional unimodular lattice; see [3] for details.

For p > 2, however, there are (p+1)2

4 theta functions associated to the various lattices, so our
analog of the symmetric weight enumerator polynomial needs more than 3 variables.

Problem 1. Determine an explicit relation between theta functions and the symmetric weight
enumerator polynomial of a code defined over R for p > 3.

We expect that the answer to the above problem is that the theta function is given as the
symmetric weight enumerator sweC of C, evaluated on the theta functions defined on cosets of
OK/pOK .

2 Theta functions and the corresponding complete weight
enumerator polynomials

For a fixed prime p, let C be a linear code over R = Fp2 or Fp × Fp of length n and dimension
k. An admissible level ` is an integer ` such that OK/pOK is isomorphic to R. For an admissible
`, let Λ`(C) be the corresponding lattice as in the previous section. Then, the level ` theta
function θΛ`(C)(q) of the lattice Λ`(C) is determined by the complete weight enumerator cweC
of C, evaluated on the theta functions defined on cosets of OK/pOK . We consider the following
questions. How do the theta functions θΛ`(C)(q) of the same code C differ for different levels `?
Can non-equivalent codes give the same theta functions for all levels `?

We give a satisfactory answer to the first question (cf. Theorem 1, Lemma 2) and for the second
question we conjecture that:

Conjecture 1. Let C be a code of size n defined over R and θΛ`(C) be its corresponding theta
function for level `. Then, for large enough `, there is a unique complete weight enumerator
polynomial which corresponds to θΛ`(C).

Let C be a code defined over R for a fixed p > 2. Let the complete weight enumerator of C be
the degree n polynomial cweC = f(x1, . . . , xr), for r = p2. Then from Lemma 1 we have that

θΛ`(C)(q) = f(θΛ0,0
(q), . . . , θΛp−1,p−1

(q))

for a given `. First we want to address how θΛ`(C)(q) and θΛ`′ (C)(q) differ for different ` and `′.



Theorem 1. Let C be a code defined over R. For all admissible `, `′ with ` < `′ the following
holds

θΛ`(C)(q) = θΛ`′ (C)(q) +O(q
`+1
4 ).

Proof. See [6] for details.
We have the following lemma; see [6].

Lemma 2. Let C be a fixed code of size n defined over R and θ(q) =
∑
λiq

i be its theta function
for level `. Then, there exists a bound B`,p,n such that θ(q) is uniquely determined by its first B`,p,n
coefficients.

For notation, when p and n are fixed, we will let B` = B`,p,n. To extend the theory for p = 2
to p > 2 we have to find a relation between the theta function θΛ`(C) and the number of complete
weight enumerator polynomials corresponding to it.

Fix an odd prime p and let C be a given code of length n over R. Choose an admissible value of

` such that there are (p+1)2

4 independent theta functions. Then, the complete weight enumerator

of C has degree n and r = (p+1)2

4 variables x1, . . . , xr. We call a generic complete weight
enumerator polynomial a homogenous polynomial P ∈ Q[x1, . . . , xr].

Denote by P (x1, . . . , xr) a generic r-nary, degree n, homogeneous polynomial. Assume that
there is a length n code C defined over R such that P (x1, . . . , xr) is the symmetric weight enu-
merator polynomial. In other words,

sweC(x1, . . . , xr) = P (x1, . . . , xr)

Fix the level `. Then, by replacing

x1 = θΛ0,0
(q), . . . . . . , xr = θΛp−1,p−1

(q),

we compute the left side of the above equation as a series
∑∞
i=0 λiq

i. By equating both sides of∑∞
i=0 λiq

i = P (x1, . . . , xr), we can get a linear system of equations. Since the first λ0, . . . , λB`−1

determine all the coefficients of the theta series then we have to pick B` equations (these equations
are not necessarily independent).

Consider the coefficients of the polynomial P (x1, . . . , xr) as parameters c1, . . . cs. Then, the
linear map

L` : Cs → CB`−1

(c1, . . . cs) 7→ (λ0, . . . , λB`−1)

has an associated matrix M`. For a fixed value of (λ0, . . . , λB`−1), determining the rank of the
matrix M` would determine the number of polynomials giving the same theta series. There is a
unique complete weight enumerator corresponding to a given theta function when

null (M`) = s− rank (M`) = 0

Conjecture 2. For ` ≥ p(n+1)(n+2)
n − 1 we have null M` = 0, or in other words

rank (M`) =

(
n− 1 + (p+1)2

4

)
!

n! ·
(

(p+1)2

4 − 1
)

!

The choice of ` is taken from experimental results for primes p = 2 and 3. More details are
given in the next section.

It is obvious that Conjecture 2 implies Conjecture 1. If Conjecture 1 is true then for large
enough ` there would be a one to one correspondence between the complete weight enumerator
polynomials and the corresponding theta functions. Perhaps, more interesting is to find ` and p
for which there is not a one to one such correspondence. Consider the map

Φ(`, p) = (λ0(`, p), . . . , λB`−1(`, p)) ,

where λ0, . . . , λB`−1 are now functions in ` and p. Let V be the variety given by the Jacobian of
the map Φ. Finding integer points `, p on this variety such that ` and p satisfy our assumptions
would give us values for `, p when the above correspondence is not one to one. However, it seems
quite hard to get explicit description of the map Φ. Next, we will try to shed some light over the
above conjectures for fixed small primes p.



3 Bounds for small primes

In [8] we determine explicit bounds for the above theorems for prime p = 2. In this section we give
some computation evidence for the generalization of the result for p = 3 . We recall the theorem
for p = 2.

Theorem 2 ([8], Thm. 2). Let p = 2 and C be a code of size n defined over R and θΛ`
(C) be its

corresponding theta function for level `. Then the following hold:

i) For ` < 2(n+1)(n+2)
n − 1 there is a δ-dimensional family of symmetrized weight enumerator

polynomials corresponding to θΛ`
(C), where

δ ≥ (n+1)(n+2)
2 − n(`+1)

4 − 1.

ii) For ` ≥ 2(n+1)(n+2)
n − 1 and n < `+1

4 there is a unique symmetrized weight enumerator polyno-
mial which corresponds to θΛ`

(C).

These results were obtained by using the explicit expression of theta in terms of the symmetric
weight enumerator valuated on the theta functions of the cosets.

Next we want to find explicit bounds for p = 3 as in the case of p = 2. In the case of
p = 3 it is enough to consider four theta functions, θΛ0,0(q), θΛ1,0(q), θΛ0,1(q), and θΛ1,1(q) since
θΛ2,0(q) = θΛ1,0(q) , θΛ2,2(q) = θΛ1,1(q) and θΛ0,2(q) = θΛ1,2(q) = θΛ2,1(q) = θΛ0,1(q). If we are
given a code C and its weight enumerator polynomial then we can find the theta function of the
lattice constructed from C using Construction A. Let θ(q) =

∑∞
i=0 λiq

i be the theta series for level
` and

p(x, y, z, w) =
∑

i+j+k+m=n

ci,j,kx
iyjzkwm

be a degree n generic 4-nary homogeneous polynomial. We would like to find out how many
polynomials p(x, y, z, w) correspond to θ(q) for a fixed `. For a given ` find θΛ0,0

(q), θΛ1,0
(q),

θΛ0,1
(q) and θΛ1,1

(q) and substitute them in the p(x, y, z, w). Hence, p(x, y, z, w) is now written as
a series in q. We get infinitely many equations by equating the corresponding coefficients of the
two sides of the equation

p(θΛ0,0
(q), θΛ1,0

(q), θΛ0,1
(q), θΛ1,1

(q)) =

∞∑
i=0

λiq
i.

Since the first λ0, . . . , λB`−1 determine all the coefficients of the theta series then it is enough to
pick the first B` equations. The linear map

L` : (c1, . . . c20) 7→ (λ0, . . . , λB`−1)

has an associated matrix M`. If the nullity of M` is zero then we have a unique polynomial that
corresponds to the given theta series. We have calculated the nullity of the matrix and B` for
small n and `.

Example 1 (The case p = 3, n = 3). The generic homogenous polynomial is given by

P (x, y, z) = c1x
3 + c2x

2y + c3x
2z + c4x

2w + c5xy
2 + c6xz

2 + c7xw
2 + c8xyz

+ c9xyw + c10xzw + c11y
3 + c12y

2z + c13y
2w + c14yz

2 + c15yw
2

+ c16yzw + c17z
3 + c18z

2w + c19zw
2 + c20w

3.

(2)

The system of equations can be written by the form of

A~c = ~λ

where ~c =
(
c1 c2 · · · c20

)t
, ~λ =

(
λ0 λ1 · · · λ15

)t
. In the case of ` = 7 the matrix M7 has

null (M7) = 4. We have a positive dimension family of solution set. The case of ` = 11 the matrix
M11 has null (M11) = 1. For any case where ` ≥ 19 the nullity of the matrix is 0. Hence, for
every given theta series, there is a unique symmetric weight enumerator polynomial. .

We summarize the results in the following table:



` n = 3 n = 4 n = 5
B` null M` B` null M` B` null M`

7 16 4 26 9 33 24
11 19 1 30 5 42 14
19 22 0 38 0 60 0
23 25 0 37 0 58 0
31 31 0 41 0 60 0
35 34 0 48 0 61 0
43 40 0 55 0 69 0
47 43 0 60 0 74 0
55 49 0 70 0 86 0
59 52 0 75 0 92 0

Recall that ` ≡ 3 mod 4 and p - `. It seems from the table that the same bound of B` =
2(n+1)(n+2)

n as for p = 2 holds also for p = 3, n = 3.
We have the following conjecture for general p, n and `.

Conjecture 3. For a given theta function θΛ`(C) of a code C for level ` there is a unique complete

weight enumerator polynomial corresponding to θΛ`(C) if ` ≥ p(n+1)(n+2)
n .

It is interesting to consider such question for such lattices independently of the connection to
coding theory. What is the meaning of the bound B` for the ring OK/pOK? Do the theta functions
defined here correspond to any modular forms? Is there any difference between the cases when the
ring is Fp × Fp or Fp2?
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