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Abstract

Solving systems of boolean polynomial equations is a kernel problem in algebraic compu-
tations and Gröbner basis is one of the most important tools to solve such systems.

In 2009, Sun and Wang proposed an algorithm for computing a branch Gröbner system
[8, 9] based on the matrix version of the F5 algorithm [4]. For a set of boolean polynomials,
their algorithm uses the F5 algorithm to compute a Gröbner basis, and creates branches
before constructing huge matrices, such that the computing complexity for each branch can
be controlled in a relative low level. Their algorithm uses zero-suppressed binary decision
diagrams (ZDD) to store Boolean polynomials and has a good performance for a class of
stream cypher generated by linear feedback shift registers. The ZDD data structure is also
used in PolyBoRi [1] and Chai et al.’s characteristic set algorithm [3, 5].

In this talk, a new algorithm for computing branch Gröbner systems is presented. Some
new techniques for manipulating boolean polynomials are used to build Gröbner bases for all
branches. ZDD is again used as the basic data structure to store boolean polynomials. The
implementation of this new algorithm in C performs very well for many examples. The ideas
used in this new algorithm can also be extended to compute branch Gröbner systems in a
more general form, which will be studied in our future work.

Let B := F2[x1, . . . , xn]/〈x21 − x1, . . . , x
2
n − xn〉 be a boolean polynomial ring over the

binary field F2 = {0, 1} with n variables {x1, . . . , xn}. Let F be a set of boolean polynomials
in B, an ideal generated by F over B is defined as 〈F 〉 = {p1f1 + · · · + pmfm | p1, . . . , pm ∈
B, f1, . . . , fm ∈ F}.

Let ≺ be an order on B deduced from a monomial order in F2[x1, . . . , xn], and F be a set
of boolean polynomials in B. A set G ⊂ 〈F 〉 is called a Gröbner basis of 〈F 〉, if for any
f ∈ 〈F 〉, there exists g ∈ G such that lm(g) divides lm(f).

In this talk, we will consider a variant of Gröbner bases.

Definition 1 (Branch Gröbner system) Let ≺ be an order on B deduced from a mono-
mial order in F2[x1, . . . , xn], and F be a set of boolean polynomials in B. A finite set
G = {G1, · · · , Gl} is called a branch Gröbner system of the ideal 〈F 〉, if

1. Gi is a Gröbner basis for the ideal 〈Gi〉 ⊂ B, and

2. V (F ) = V (G1) ∪ · · · ∪ V (Gl),

where V (F ) = {α ∈ Fn
2 | f(α) = 0,∀f ∈ F )} and similarly for V (Gi). Particularly, each Gi

is called a branch of this branch Gröbner system G.

Please note that a general Gröbner basis of 〈F 〉 directly constructs a branch Gröbner
system. A branch Gröbner system will be easier to be computed than a general Gröbner
basis, because in each branch the corresponding system is simpler. In current talk, instead of
computing a branch Gröbner system in its general form, we present an efficient algorithm for
computing a special branch Gröbner system defined below.

Definition 2 (Linear branch Gröbner system) A branch Gröbner system G = {G1, · · · , Gl}
is called a linear branch Gröbner system of the ideal 〈F 〉, if for any g ∈ Gi, we have
lm(g) ∈ {x1, . . . , xn} where i = 1, . . . , l, i.e. each polynomial appearing in this branch Gröbner
system has a linear leading monomial.



Linear branch Gröbner systems are similar to the characteristic sets discussed in [3, 5].
But the algorithm presented in this paper can be extended to compute other branch Gröbner
systems with a small adaption.

Clearly, a linear branch Gröbner system is sufficient to find all points in V (F ) directly.
The new algorithm has been implemented in C based on the CUDD package [7]. Our

implementation is tested by the famous Bivium stream cipher after guessing several bits.
Examples are from [6], and the input of examples all include 176 variables and 160 polynomials.
The timing below is obtained from a PC (Core i7-2600, 4GB memory) running Windows 7
(64 bit).

Table 1: Timings (sec.)
Bits guessed Average Time Max Time Min Time

37 0.186 0.359 0.078
36 0.401 0.609 0.265
35 0.655 0.874 0.453
34 3.584 9.391 1.342

In the above table, the first column shows how many bits/variables are guessed in the
Bivium system. Average Time is obtained from 10 times of arbitrary guesses. Max Time and
Min Time give the largest and smallest time during these tests. The data in this table shows
this new algorithm is efficient and guessing 35 variables leads to the best attack of Bivium
system which is consistent with existing results.
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