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Jaume Pujol, Mercè Villanueva, and Fanxuan Zeng
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Abstract

Let Z2 be the ring of integers modulo 2 and let Zn
2 be the set of all binary vectors of length

n. The Hamming distance d(u, v) between two vectors u, v ∈ Zn
2 is the number of coordinates

in which u and v differ. The Hamming weight wt(u) of u ∈ Zn
2 is wt(u) = d(u,0), where 0 is

the all-zero vector of length n. A (n,M, d) binary code C is a subset of Zn
2 with M codewords

and minimum Hamming distance d. The minimum Hamming distance, denoted by d(C), is
the minimum value of d(u, v) for all u, v ∈ C and u 6= v.

Two binary codes C1 and C2 of length n are said to be equivalent if there exists a vector
a ∈ Zn

2 and a coordinate permutation π such that C2 = {a + π(c) : c ∈ C1}. Note that two
equivalent codes have the same minimum distance. If C is linear, then 0 ∈ C; but if C is
nonlinear, then 0 does not need to belong to C. In this case, we can always consider a new
binary code C′ = C + c for any c ∈ C, which is equivalent to C, such that 0 ∈ C′. Therefore,
from now on, we assume that 0 ∈ C.

Given a binary code C, the problem of storing C in memory is a well known problem.
If C is linear, that is, it is a subgroup of Zn

2 , then it can be compactly represented using a
binary generator matrix. On the other hand, if C is nonlinear, then a solution would be to
know whether it has another structure or not. For example, there are binary codes which have
a Z4-linear or Z2Z4-linear structure and, therefore, they can also be compactly represented
using a quaternary generator matrix. In general, binary codes without any of these structures
can be represented as the union of cosets of a binary linear subcode of C. This allows us to
represent them as a set of representative codewords instead of as a set with all codewords.

The kernel of a binary code C is defined as K(C) = {x ∈ Zn
2 : x+C = C}. Since 0 ∈ C,

K(C) is a binary linear subcode of C. We denote by k the dimension of K(C). In general, C
can be written as the union of cosets of K(C), and K(C) is the largest such linear code for
which this is true [1]. Therefore,

C =

t⋃
i=0

(
K(C) + ci

)
, (1)

where c0 = 0, t+ 1 = M/2k and M = |C|. Note that we can represent C as the kernel K(C)
plus the coset leaders L = {c1, . . . , ct}. It is important to emphasize that the codewords in
L are not necessarily the ones having minimum weight in the coset. Since K(C) is linear,
it can be compactly represented by its binary generator matrix G of size k × n. Therefore,
considering L as the matrix where in the t rows there are the coset leaders, the binary code C
can be also represented by the matrix

(
G
L

)
. Since the kernel takes up a memory space of order

O(nk), the kernel plus the t coset leaders take up a memory space of order O(n(k + t)).
For example, applying this representation to the set of all completely classified binary

perfect codes of length 15 and extended perfect codes of length 16, we obtain very significant
compression rates. It is known that there are exactly 5983 binary perfect codes of length 15
and 2165 binary extended perfect codes of length 16, each one having 2048 codewords [2]. In
the first case, instead of taking up 5983 ·2048 ·4 = 49012736 hexadecimal numbers by encoding
each codeword in hexadecimal notation, it only takes 3677928 hexadecimal numbers by storing
the codewords of a generator matrix of the kernel and the set of coset leaders for each binary
code. This gives a compression rate of 92.5%. Similarly, in the second case, the extended
perfect codes of length 16 can be compressed from 2165 · 2048 · 4 = 17735680 hexadecimal
numbers to 1439336, which gives a compression rate of 91.9%.

In order to compute the kernel and coset leaders of a binary code C of length n, according
to the definition of K(C), it is necessary to classify the M codewords of C. Since M = 2k(t+1),
the algorithm must be at least exponential on k, the dimension of K(C). A straightforward
algorithm to compute the kernel from the definition of K(C) requires M2 logM operations,



if C is sorted. However, this algorithm can be improved using the following two properties:
(1) if K′ ⊆ K(C), then v ∈ K(C) if and only if K′ + v ⊆ K(C); (2) if K′ ⊆ K(C), v ∈ C
and (C\K′) + v ⊆ C, then v ∈ K(C). Therefore, depending on k, the complexity can be
reduced. If k = 0 we still need M2 logM operations, but if k > 0 we obtain a complexity of
order O(kM logM). Note that, for large M , kM �M2.

Although the exponential behaviour of the kernel computation, using the representation
given above, we can manipulate and construct new binary nonlinear codes from old ones in
a more efficient way. Specifically, we show how to establish the equality and inclusion of two
given nonlinear codes from their kernels and coset leaders, and how to compute the kernel and
coset leaders of related new codes (union, intersection, extended, punctured, shorten, direct
sum, Plotkin sum) from given ones, which are represented in this structure. All these results
will be written to be implemented easily as algorithms.

Given a binary code C, the problem of computing its minimum distance is also important,
and necessary in order to establish its error-correcting capability. This problem is computa-
tionally difficult, and has been proven to be NP-hard. If C is linear, the minimum distance
coincides with the minimum weight, denoted by wt(C), and the Brouwer-Zimmerman min-
imum weight algorithm for linear codes over finite fields [3] can be used. We propose new
algorithms to compute the minimum weight and minimum distance of a binary nonlinear code
C, based on the coset structure and the known algorithms for linear codes. Given a binary
code C and a vector v ∈ Zn

2 , let Kv = K(C) ∪ (K(C) + v). Since K(C) is linear, then Kv is
also linear.

Proposition 1 Let C =
⋃t

i=0(K(C) + ci) with t ≥ 2. Then, the minimum weight of C can
be computed as min({wt(Kci) : i = 1, . . . , t}), and the minimum distance as min({wt(Kci) :
i = 1, . . . , t} ∪ {wt(Kci+cj ) : i, j = 1, . . . , t and i < j}).

Using Proposition 1 and applying the known Brouwer-Zimmermann algorithms, we can
compute the minimum weight and distance of a binary nonlinear code. Note that the com-
plexity of these two algorithms depends strongly on the number of coset leaders t. For the
minimum weight, we compute t times the minimum weight of a linear code Kv, and for the
minimum distance,

(
t+1
2

)
times. An estimate of the total work an algorithm performs is referred

to as work factor [4]. We study the work factors for these algorithms to compare them with
brute force. An improvement is given to the proposition by avoiding repeated computations
in each coset.

Finally, the previous algorithm can also be used to decode a binary linear code C. For a
received vector u ∈ Zn

2 , in order to decode it as a codeword from C, we look for a vector e of
minimum weight such that u− e ∈ C. This is equivalent to find a vector e of minimum weight
in the coset containing u, which is C + u.

Proposition 2 Let C be a binary linear code with minimum distance d. For a received vector
u = c+ e 6∈ C, where c ∈ C, let Cu = C ∪ (C+u). If wt(e) < d, then the received vector u can
be decoded as c′ = u−e′ ∈ C, where e′ is a vector of minimum weight in Cu, so wt(e) = wt(e′).
Note that if wt(e) ≤ b d−1

2
c, then e′ = e and c′ = c.

In this way, we can decode a received vector as long as less than d errors have been added to
the transmitted codeword. When d or more than d errors occurs during the transmission, the
minimum vector of Cu could come from C, and an error vector e can not be found. Therefore,
the method provides a complete decoding but only up to d−1 errors. Note that if the covering
radius of C, denoted by ρ, satisfies ρ ≤ d− 1, that is when C is a maximal code, we actually
obtain a complete decoding.
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