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Abstract. The security of the most popular number-theory public key
crypto (PKC) systems will be devastatingly affected by the success of a
large quantum computer. Code-based cryptography is one of the promis-
ing alternatives that are believed to resist classical and quantum com-
puter attacks. Many families of codes have been proposed for these cryp-
tosystems, one of the main requirements is having an efficient t-bounded
decoding algorithm.
In [16, 17] it was shown that for the so called very strong algebraic ge-
ometry codes C which is a collection of codes C = CL(X ,P, E), where
X is an algebraic curve over Fq, P is an n-tuple of mutually distinct
Fq-rational points of X and E is a divisor of X with disjoint support
from P, an equivalent representation can be found. Moreover in [19] an
efficient computational approach is given to retrieve a triple that is iso-
morphic with the original representation, and, from this representation,
an efficient decoding algorithm is obtained.
In this talk, we will show how an efficient decoding algorithm can be re-
trieved from an algebraic geometry code C by means of error-correcting
pairs [20] and arrays directly, that is without the detour via the repre-
sentation (X ,P, E) of the code C = CL(X ,P, E).
As a consequence we will have that algebraic geometry codes with cer-
tain parameters are not secure for the code-based McEliece public key
cryptosystem.
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1 Introduction

The security of code-based cryptosystems is founded on the (supposedly) hard-
ness of decoding up to half the minimum distance. The minimum distance decod-
ing problem was shown by Berlekamp-McEliece-Van Tilborg [1, 3] to be NP-hard.
McEliece [21] proposed a PKC system using binary Goppa codes.

All known minimum distance decoding algorithms for general codes have
exponential complexity in the length of the code. The complexity exponent of



decoding general binary codes up to half the minimum distance has been lowered
in a series of papers from above 1/3 for brute force decoding to below 1/20 by [2].
However there are several classes of codes such as the generalized Reed-Solomon
(GRS), BCH, Goppa or algebraic geometry codes which have polynomial de-
coding algorithms that correct up to a certain bound which is at most half the
minimum distance.

In 1986 [23] Niederreiter presented a dual version of McEliece cryptosystem
which is equivalent in terms of security. This system differs from McEliece’s
system since it uses a parity check matrix instead of a generator matrix of the
code. Several classes of codes are proposed for code-base PKC systems such
as subcodes of GRS codes, alternant codes which contains the Goppa codes as
subclass, and algebraic geometry codes [12].

It was shown in [6, 14, 24, 26, 28] that the known efficient bounded distance
decoding algorithms of the before mentioned codes can be described by a basic
algorithm using an error-correcting pair. That means that the proposed McEliece
cryptosystem that use these classes of codes can be viewed as using the error-
correcting pair as a secret key. Hence the security of these PKC systems is not
only based on the inherent intractability of bounded distance decoding but also
on the assumption that it is difficult to retrieve an error-correcting pair.

2 Error-correcting pairs and arrays

From now on the dimension of a linear code C will be denoted by k(C) and its
minimum distance by d(C). Given two elements a and b in Fn

q , the star multipli-
cation is defined by coordinatewise multiplication, that is a∗b = (a1b1, . . . , anbn)
while the standard inner multiplication is defined by a·b =

∑n
i=1 aibi. In general,

for two subsets A and B of Fn
q the set A∗B is given by {a∗b | a ∈ A and b ∈ B}.

Furthermore A ⊥ B if and only if a · b = 0 for all a ∈ A and b ∈ B.
Let C be a linear code in Fn

q . The pair (A,B) of linear codes over Fqe of length
n is called a t-error-correcting pair (ECP) for C if the following properties hold:

E.1 (A ∗B) ⊥ C,
E.2 k(A) > t,
E.3 d(B⊥) > t,
E.4 d(A) + d(C) > n.

The notion of an error-correcting pair for a linear code was introduced in
1988 by Pellikaan [24, 26] and independently by Kötter in [14, 15] in 1992. It
is shown that a linear code in Fn

q with a t-error-correcting pair has a decoding

algorithm which corrects up to t errors with complexity O
(
(en)3

)
.

The existence of ECP’s for GRS and algebraic geometry codes was shown
in [24, 26]. For many cyclic codes Duursma and Kötter in [6, 14, 15] have found
ECP’s which correct beyond the designed BCH capacity.

An error-correcting array is defined in [13, 27] for a sequence of codes. From
it follows the Feng-Rao designed minimum distance of the codes and the major-
ity voting scheme of Feng-Rao [4, 5, 8] gives a decoding algorithm that decodes



these codes up to half the Feng-Rao designed minimum distance with complex-
ity O(n3). An equivalent formulation is given in terms of (weakly) well-behaving
sequences [9–11].

3 Algebraic geometry codes

Let X be an algebraic curve defined over Fq with genus g. Let P be an n-tuple of
Fq-rational points on X and let E be a divisor of X with disjoint support from
P of degree m. Then the algebraic geometry code CL(X ,P, E) is the image of
the Riemann-Roch space L(E) of rational functions with prescribed behavior of
zeros and poles at E under the evaluation map evP . If m < n, then the dimension
of the code CL(X ,P, E) is at least m+1−g and its minimum distance is at least
n−m. If m > 2g−2, then its dimension is m+1−g. The dual code CL(X ,P, E)⊥

is again AG. If m > 2g − 2, then the dimension of the code CL(X ,P, E)⊥ is
at least n −m − 1 + g and its minimum distance is at least d∗ = m − 2g + 2,
which is called the designed minimum distance. If m < n, then its dimension is
n−m− 1 + g.

Algebraic geometry codes were proposed by Niederreiter [23] and Janwa-
Moreno [12] for code-based PKC systems. This system was broken for genus
zero [29], one and two [7, 22] and for arbitrary genus for so called VSAP codes
[16–19].

Let r = l(E)− 1 and {f0, . . . , fr} be a basis of L(E). Consider the following
map:

ϕE : X −→ Pr(Fq)

defined by ϕE(P ) = (f0(P ) : . . . : fr(P )). If m > 2g, then r = m − g. So
ϕE defines an embedding of the curve X of degree m in Pr. More precisely, let
Y = ϕE(X ), Qj = ϕE(Pj) and Q = (Q1, . . . , Qn). Then Y is a curve in Pm−g

of degree m and ϕE is an isomorphism from X to Y. Now ϕE(E) ≡ Y · H
for every hyperplane H of Pm−g(Fq). If moreover E is effective, then ϕE(E) =
Y ·H for some hyperplane H of Pm−g(Fq). Let F = ϕE(E), then (Y,Q, F ) is a
representation of C that is strict isomorphic with (X ,P, E).

If m ≥ 2g + 2, then I(Y) is generated by I2(Y). If moreover n > 2m, then
I2(Q) = I2(Y). Now CL(X ,P, E) is called a very strong algebraic geometry
(VSAG) code if

2g + 2 ≤ m <
1

2
n or

1

2
n + 2g − 2 < m ≤ n− 4.

It was shown that the representation by the triple (X ,P, E) of a VSAG code
CL(X ,P, E) is unique up to isomorphisms [16–18] and that such a triple can be
retrieved efficiently [19].

4 Error-correcting pairs and arrays from VSAG codes

Let C = CL(X ,P, E)⊥ be an AG code on a curve of genus g with designed
minimum distance d∗ and m = deg(E) > 2g − 2. Let A = CL(X ,P, E − F ),



B = CL(X ,P, F ) and C = CL(X ,P, E)⊥. Then 〈A ∗ B〉 ⊆ C⊥. If moreover
t = b(d∗ − 1− g)/2c and deg(F ) = m− t− g, then (A,B) is a t-ECP over Fq by
[25, Theorem 1] and [26, Theorem 3.3]. So there are abundant ways to construct
error-correcting pairs of an AG code.

This approach needs the efficient computation of the Riemann-Roch spaces
L(F ) and L(E − F ) and such algorithms are available. If e is sufficiently large
and m > 4g−3, then there exists a b(d∗−1)/2c-ECP over Fqe by [28, Proposition
4.2], but no efficient way to obtain the pair is known.

In the following we construct ECP’s directly using subspaces of Fn
q and cir-

cumventing the use of the Riemann–Roch spaces. If we take F = (m− t− g)P1

where P1 is the first rational point of P, then L(E − F ) is a subspace of L(E),
and A = CL(X ,P, E − F ) is a subspace of C⊥ = CL(X ,P, E).

In fact A is the space of those codewords in C⊥ that are zero at the first
position of multiplicity m−t−g and this multiplicity can be controlled, since we
have computed I2(Q) efficiently. Define B0 = 〈A∗C〉⊥, then B⊥0 = 〈A∗C〉 ⊆ B⊥.
So d(B⊥0 ) ≥ d(B⊥) > t. Hence (A,B0) is a t-ECP for C. There is one technical
detail, note that P1 is in the support of E −F and F , but there is a generalized
way to define algebraic geometry codes, using a local parameter as explained
in [19], where it is no longer necessary to assume that P is disjoint from the
support of the divisor E in the definition of the code CL(X ,P, E).

Similarly we can decode up to b(d∗−1)/2c errors using arrays or well-behaving
sequences and majority voting [4, 5, 9–11].
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