
Some Optimal Codes as Tanner Codes with BCH

Component Codes

Tom Høholdt, Fernando Piñero
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Abstract

In this paper we study a class of graph codes with BCH component codes as affine
variety codes. We are able to find some optimal binary and ternary codes as Tanner
codes with BCH component codes. We choose a special subgraph of the point-line
incidence plane of P(2, q) as the Tanner graph, and we are able to describe the codes
using Gröbner basis.
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Introduction

In 1981 Tanner [4] introduced a construction of error-correcting codes based on bipartite
graphs. Since then results on their dimension, minimum distance and decoding have been
obtained. In this paper we consider some specific bipartite graphs based on finite geometries
and codes constructed from these graphs. We use techniques from algebra to compute the
dimension when this class of graph codes has BCH component codes. We find some optimal
binary and ternary codes in this class of codes.

In this paper q denotes a power of prime p, Fq the field with q elements, and [n, k, d]q a
code with length n, dimension k, and minimum distance d over Fq.

Tanner Codes and Graph Codes

In this section, we introduce two important codes based on graphs: Tanner Codes and
Graph Codes. We also discuss the relations between the two constructions.

Definition 1 ([4]). Let G be an (m,n)-regular bipartite graph with vertex set V = V1 ∪ V2.
Let N = |V1|. For v ∈ V2, we assume an ordering on the set N (v), the vertices in V1
adjacent to v, given by φv, where φv is a bijection from {1, 2, . . . , n} to N (v). Furthermore
we define (c)N (v) := (cφv(1), cφv(2), . . . , cφv(n)) ∈ Fnq .

Let C be a code of length n over Fq. We define the Tanner code

(G,C) := {(cv) ∈ FNq | ∀ v ∈ V2 : (c)N (v) ∈ C}.

The vertices of V1 are known as the variable nodes, as they contain the symbols of the
codewords. The vertices of V2 are known as the constrain nodes, as they represent the parity
check equations (G,C) must satisfy.



By using a highly structured graph, along with a highly structured code and well–chosen
edge labelings, we describe the Tanner code in a nice, algebraic way. The importance of the
labeling functions may not be clear from the definition, but the code parameters depend
on them. We now define another class of graph based codes. For these codes the labeling
functions φv play a fundamental role as well.

Definition 2 ([3]). Let G be an n-regular bipartite graph with vertex set V = V1 ∪ V2 and
edge set E of cardinality #E = N . For v ∈ V , we assume an ordering on the set E(v),
the edges incident with v, given by φv, where φv is a bijection from {1, 2, . . . , n} to E(v).
Furthermore we define (c)E(v) := (cφv(1), cφv(2), . . . , cφv(n)) ∈ Fnq .

Let C1 and C2 be codes of length n over Fq. We define the graph code

(G,C1 : C2) := {(ce) ∈ FNq | ∀ v ∈ V1 : (c)E(v) ∈ C1, ∀ v ∈ V2 : (c)E(v) ∈ C2}.

Observe that
(G,C1 : C2) = (G,C1 : Fnq ) ∩ (G,Fnq : C2). (1)

We define the vertex–edge incidence graph of G, which illustrates the close connection
between Tanner codes and Graph codes.

Definition 3. Let G = (V (G), E(G)) be a graph. We define the vertex-edge adjacency
graph of G as the bipartite graph Gve = (V (G) ∪ E(G), E). There is an edge of the graph
Gve between the vertex v of G and the edge e of G if and only if the vertex v is incident to
the edge e in the graph G. Gve has no other edges.

Now we state the close relation between Tanner Codes and Graph Codes.

Theorem 1. Let G be an n-regular bipartite graph. Let C be a code of length n, then

(G, [n, 1, n]q : C) is an n-fold repetition of the code (G,C) and (G,C : C) = (Gve, C).

as long as the labelings are consistent.

Proof. The equality (G,C : C) = (Gve, C) follows from the correspondence between the
edges of G and the vertices of Gve. The equivalence between (G, [n, 1, n] : C) and (G,C)
follows from the fact that since all edges incident to a vertex of V1 must have the same value,
we can assign this value to the vertex itself, which is the assignment for the code (G,C).

We finish this section with some theorems on the dimension of Graph codes.

Theorem 2. Let G be an n-regular bipartite graph with N edges. Let C1, C2 be codes of
length n over Fq of dimensions k1 and k2 respectively. Then

dim (G,C1 : C2) =
N

n
(k1 + k2 − n) + dim (G,C⊥1 : C⊥2 ).

Proof. Assume G has vertex set V = V1 ∪V2. For each vertex v ∈ V1 we get k1 independent
parity check equations for C⊥1 involving the edges in E(v) only. The resulting Nk1/n parity
check equations of a code of the form (G,C1 : Fnq ) are independent because the edge sets

E(v) and E(u) are disjoint for u 6= v. Therefore the dimension of the code (G,C⊥1 : Fnq ) is

N(n−k1)/n. Similarly, the code (G,Fnq : C⊥2 ) has dimension N(n−k2)/n. The parity check

equations which are not independent are those corresponding to (G,C⊥1 : Fnq )∩ (G,Fnq : C⊥2 )

which are the codewords of (G,C⊥1 : C⊥2 ).

The graph based codes in this paper are defined with the following graph.



Definition 4. We define the bipartite graph Γ := (V1 ∪ V2, E) by:

V1 := {(x, y) | x ∈ F∗q , y ∈ Fq}, V2 := {(a, b) | a ∈ F∗q , b ∈ Fq}

and E := {((x, y), (a, b)) ∈ V1 × V2 | ax+ b− y = 0}.

Note that Γ is a subgraph of the point line incidence graph of the projective plane over
Fq. Furthermore Γ is q − 1-regular and it has a nice algebraic description.

Affine Variety Codes We start this section with a review of material in [2] and [1]. Let
Fq[X1, . . . , Xm] be the polynomial ring in m variables over Fq and P = {P1, P2, . . . , PN} ⊂
Fmq be a set of N points in Fmq . Denote by I(P) the ideal in Fq[X1, . . . , Xm] consisting of
the polynomials which vanish at all points of P. We define R := Fq[X1, . . . , Xm]/I(P) and
the evaluation map,

EvP : R → FNq ; f 7→ (f(P1), f(P2), . . . , f(PN )).

The map EvP is an isomorphism of vector spaces. Note that in this paper, we often denote
an element f̄ = f + I(P) ∈ R by f for simplicity.

Definition 5. Let L be an Fq-linear subspace of R. We define the affine variety code
C(I(P), L) := EvP(L).

Since L is an Fq-linear subspace of R and EvP is an isomorphism, we have that

dimC(I(P), L) = dimL. (2)

Lemma 1. Let P ⊂ Fmq , R = Fq[X1, X2, . . . , Xm]/I(P) as before. Suppose that L and M
are two Fq-linear subspaces of R. Then C(I(P), L) ∩ C(I(P),M) = C(I(P), L ∩M).

Proof. If c ∈ C(I(P), L) ∩ C(I(P),M), then f ∈ L and g ∈ M exist such that EvP(f) =
c = EvP(g). Since EvP is injective, then f = g and therefore that f ∈ L ∩M . Therefore
c ∈ C(I(P), L∩M). The inclusion C(I(P), L)∩C(I(P),M) ⊇ C(I(P), L∩M) is clear.

Since the quotient ring R plays a fundamental role on Affine Variety codes, the following
theorem on an ideal I(P) and its quotient ring R will help our computations with R.

Theorem 3 ([1]). Let I(P) be an ideal of Fq[X1, . . . , Xm] and R = Fq[X1, . . . , Xm]/I(P)
be the quotient ring of R. Let δ be a monomial ordering, and suppose {g1, g2, . . . , gm′} is a
Gröbner basis for I(P) under δ and let ∆δ be the set of monomials which are not divisible
by the leading terms of the gi under δ. Then the following are true:

• ∆δ, also known as the footprint of I(P) under δ, is a Fq-linear basis for R.

• The representation of f ∈ R over ∆δ is f mod {g1, g2, . . . , gm′} .

BCH codes are an example of affine variety codes withm = 1 and P = {α1, α2, . . . , αq−1} =

F∗q . Then I(P) = 〈Xq−1
1 − 1〉. BCH codes have several definitions; we use the follow-

ing. Let q be a power of p. Let J ⊆ Zq−1, such that J is closed under multiplication

by p modulo q − 1. We define M(J) := 〈{Xj
1 | j ∈ J}〉Fq of R = Fq[X1]/I(P). The

BCH code is the affine variety code C(I(P),M(J)). The i-th coordinate of EvP(f) is
f(αi). Furthermore if we define J̄ = {q − 1 − j mod (q − 1) | j ∈ J} for J ⊂ Zq−1, then
C(I(P),M(J))⊥ = C(I(P),M(Zq−1 \ J̄)). The theory of subfield subcodes ensures that this
definition is equivalent to the standard definitions of BCH codes.

Now we describe Graph codes over Γ as Affine Variety codes. Since a Graph code over
G assigns a symbol from Fq to each edge in E(G), we must associate a polynomial ideal
I(Γ) to the edge set E = E(Γ). To do this, let δ1 denote the lexicographical order with
B > A > X > Y and δ2 denote the lexicographical order with Y > X > A > B, we have
the following theorem for the ideal I(Γ) := 〈AX+B−Y,Xq−1−1, Y q−Y,Aq−1−1, Bq−B〉.



Theorem 4. The set {AX+B−Y,Xq−1−1, Y q−Y,Aq−1−1, Bq−B} is a Gröbner basis
for I(Γ) under δ1 and δ2.

Proof. The polynomial Bq − B is a combination of the other four polynomials, AX + B −
Y,Xq−1 − 1, Y q − Y,Aq−1 − 1. As no leading term under δ1 of this basis for I(Γ) contains
any common factor with another leading term, these four polynomials constitute a Gröbner
basis for I(Γ). The proof for δ2 is similar.

Denote by ∆1 the footprint of I(Γ) under δ1 and by ∆2 the footprint of I(Γ) under δ2.

Theorem 5. The ideal I(Γ) is the ideal of E, the edge set of Γ.

Proof. The elements of I(Γ) vanish at all the points of E. Therefore I(Γ) ⊂ I(E). This
implies that dimFq[X,Y,A,B]/I(Γ) ≥ dimFq[X,Y,A,B]/I(E) = #E = q(q − 1)2. Since
#∆1 = q(q − 1)2, then dimFq[X,Y,A,B]/I(Γ) = q(q − 1)2, which implies I(Γ) = I(E)

We need a vertexwise edge labeling of the edges of Γ. The labelings we will use are:

φ(x,y)(i) := (x, y, αi, y − xαi), (x, y) ∈ V1, and φ(a,b)(i) := (αi, aαi + b, a, b), (a, b) ∈ V2.

For any J ⊂ Zq−1, we describe the codes (Γ, C(I(P),M(J)) : Fq−1q ) and (Γ,Fq−1q :
C(I(P),M(J))) as affine variety codes.

Definition 6. Let J ⊂ Zq−1 and R = Fq[X,Y,A,B]/I(Γ), we define

L1(J) := 〈{Xi1Y i2Aj1 | j1 ∈ J}〉Fq
⊂ R, and L2(J) := 〈{Aj1Bj2Xi1 | i1 ∈ J}〉Fq

⊂ R.

Note that the elements of L1(J) and L2(J) belong to the quotient ring R. In particular
the monomials in the above definition may not be linearly independent, because we are
working modulo I(Γ). We use the representations of L1(JX) and L2(JA) under ∆1 and ∆2 to
describe the graph code (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) as an affine variety code. By
Eq. (1) we have the equality (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) = (Γ, C(I(P),M(JX)) :
Fq−1q ) ∩ (Γ,Fq−1q : C(I(P),M(JA))).

Theorem 6. We have

C(I(Γ), L1(JX)) = (Γ, C(I(P),M(JX)) : Fq−1q )

and C(I(Γ), L2(JA)) = (Γ,Fq−1q : C(I(P),M(JA))).

Moreover, (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) = C(I(Γ), L1(JX) ∩ L2(JA)).

Proof. Let f(X,Y,A,B) ∈ L1(JX) and c = (f(x, y, a, b))(x,y,a,b)∈E . For (x, y) ∈ V1, the
univariate polynomial p(A) := f(x, y,A, y − Ax) is in the vector space 〈{Aj | j ∈ JX}〉Fq

since the coefficients where y − Ax is raised to a nonzero power are zero . Therefore the
codeword (p(α1), p(α2), . . . , p(αq−1)) is a codeword in C(I(P),M(JX)). On the other hand
(c)E((x,y)) = (f(x, y, α1, y − α1x), . . . , f(x, y, αq−1, y − αq−1x)). We see that the value of
the polynomial p(A) at A = αi is equal to the i-th coordinate of (c)E((x,y)). Therefore
c ∈ (Γ, C(I(P),M(JX)) : Fq−1q ) implying C(I(Γ), L1(JX)) ⊂ (Γ, C(I(P),M(JX)) : Fq−1q ).

By the reasoning in the proof of Theorem 2, we obtain dim(Γ, C(I(P),M(JX)) : Fq−1q ) =
q(q − 1)|JX |. Since the elements of L1(JX) ∩ ∆1 are linearly independent, the inequal-
ity dimL1(JX) ≥ q(q − 1)|JX | = |L1(JX) ∩ ∆1| follows easily. Equation (2), implies
C(I(Γ), L1(JX)) = (Γ, C(I(P),M(JX)) : Fq−1q ). Similarly C(I(Γ), L2(JA)) = (Γ,Fq−1q :
C(I(P),M(JA))) holds. The final statement follows from the above and Lemma 1.



The dimension of (Γ, C(I(P),M(JX)) : C(I(P),M(JA))) equals the dimension of the
Fq-linear subspace 〈L1(JX)〉Fq

∩ 〈L2(JA)〉Fq
of R . Although L1(JX) ∩ ∆1 is a basis for

〈L1(JX)〉Fq
) and L2(JA)∩∆2 is a basis for 〈L2(JA)〉Fq

, their intersection is hard to compute.
Since the Gröbner basis for I(Γ) under δ1 is nice, the remainder of f ∈ 〈∆2〉 over the basis
∆1 is also nice, wihch implies the change of basis matrix from ∆2 to ∆1 is quite nice.

Theorem 7. Let Uq = (
(
j
i

)
)0≤i,j<q be the upper triangular Pascal matrix of binomial co-

efficients in Fp. Then the change of basis matrix from ∆1 to in ∆2 is a permutation of a
block diagonal q(q − 1)2 × q(q − 1)2 matrix with (q − 1)2 blocks of the matrix Uq.

Proof. Fix 0 ≤ i1, j1 < q − 1. A monomial of the form Xi1−lAj1−lY l, where the powers
i1− l and j1− l are taken mod q− 1 is mapped to Σlm=0

(
l
m

)
BmAj1−mXi1−m. Therefore a

polynomial in 〈Xi1−lAj1−lY l〉Fq is mapped to a polynomial in 〈Xi1−lAj1−lBl〉Fq according
to the Pascal matrix Uq.

With this simpler basis, we can easily compute the dimension of the Fq-linear space
L1({0}),∩L2(JA). We present some optimal codes we have found in this manner.

Optimal Codes

We have found some optimal binary and ternary codes as Tanner codes of the graph Γ
with the BCH component codes described in the following table.

q JA (Γ, C(I(P),M(JA))) Status

8
{1, 2, 4} [56, 6, 28]2 Optimal

{0, 1, 2, 4} [56, 10, 24]2 Optimal

16

{5, 10} [240, 2, 160]2 Optimal

{1, 2, 4, 8} [240, 8, 120]2 Optimal

{0, 1, 2, 4, 8} [240, 13, 112]2 Best Known

9
{1, 3} [72, 2, 54]3 Optimal

{0, 1, 3} [72, 5, 45]3 Best Known
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