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Abstract

In this extended abstract we characterize those cyclic codes for which its minimum distance
reaches the maximum of its BCH bounds. We also study a constructive point of view by means
of computations of divisors of a polynomial of the form xn − 1. We apply our results to the
study of those BCH codes C, with designed distance δ that have true minimum distance
d(C) = δ. Finally, we present some examples of new binary BCH codes with true minimum
distance. To do this, we make use of two related tools: the discrete Fourier transform and the
notion of apparent distance of a code, originally defined for multivariate abelian codes.
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1 Introduction

To compute the minimum distance of cyclic codes, or a lower bound for them, is one of the most
studied problems in abelian codes (see, for example, [3, 5, 6]). The oldest lower bound for the
minimum distance of a cyclic code is the BCH bound [4, p. 151]. The study of this bound and its
generalizations is a classical topic, which includes the study of the very well-known family of BCH
codes. Whitin them, an interesting problem is to determine, for a given code, when the maximum
of its BCH bounds equals its minimum distance (see [2, 5]). This is our interest.

In this extended abstract we state conditions on a cyclic code for its minimum distance equals
the maximum of its BCH bounds. To do this, we make use of two related tools; to witt, the
discrete Fourier transform and the notion of apparent distance of a code, originally defined for
multivariate abelian codes in [1]. These tools and all notation are given in Section 2. In Section
3, we characterize those cyclic codes for which its minimum distance reaches the maximum of its
BCH bounds. Then we study a constructive point of view by means of computations of divisors
of a polynomial of the form xn − 1. In Section 4, we apply our results to the study of those BCH
codes C, with designed distance δ, that have true minimum distance d(C) = δ (see [5, Section
9.2]). Finally, some examples of new binary BCH codes with true minimum distance are presented.

2 Notation and preliminaries

We will use standard terminology from coding theory (see, for example [5, Chapter 7] or [2, Section
2]). We denote by q a power of a prime number p and by F = Fq the field of q-elements. Let n be
a positive integer which is coprime to q and let L/F an extension field containing a n-th primitive
root of unity, say α, that we fix throughout this note.
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We denote by F[x] the ring of polynomials with coefficients in F. For any polynomial g = g(x) ∈
F[x] we denote by deg(g) its degree and by supp(g) its support. Instead of working with group
rings, we consider the polynomial xn − 1 ∈ F[x] and form the quotient ring F[x]/(xn − 1), which
we denote by F(n). As usual, we identify the elements g ∈ F(n) with polynomials; so that we may
take g ∈ F(n) and then write g ∈ F[x] (where deg(g) < n). In case we first consider a polynomial
f ∈ F[x], possibly with deg(f) ≥ n, then we denote by f its image under the canonical projection
onto F(n).

A cyclic code C of length n in the alphabet F will be identified with its corresponding ideal in
F(n) (up to permutation equivalence). It is well known that, when gcd(n, q) = 1, the quotient ring
F(n) is semisimple and then every cyclic code has a unique monic generator polynomial [5, Theorem
7.1] and a unique generator idempotent [5, Theorem 8.1]. We always assume that gcd(n, q) = 1.

It is well known that every cyclic code C of F(n) is totally determined by its root set (or
the zeros of the code), which is defined as Z(C) =

{
αi | c(αi) = 0 for all c ∈ C

}
; that is, for

any polynomial f ∈ F(n), we have that f ∈ C if and only if f(β) = 0 for all β ∈ Z(C). We
denote the defining set of C as D(C) =

{
i ∈ Zn | αi ∈ Z(C)

}
[5, p. 199]. It is well-known that

defining sets are partitioned in q-cyclotomic cosets modulo n [5, p.104]; that is, denoting by Zn,
the integers modulo n, and given any element a ∈ Zn, the q-cyclotomic coset of a, modulo n is
the set Cq(a) = {a, qa, . . . , qna−1a}, where na is the smallest positive integer such that qnaa ≡ a
mod n. We recall that the notions of set of zeros and defining set are also applied to polynomials
in F(n).

For any code C, we denote its minimum distance by d(C). The BCH bound states that for any
cyclic code that has a string of δ − 1 consecutive powers of α as zeros, the minimum distance of
the code is at least δ [5, Theorem 7.8]. Clearly, for any cyclic code C there exists the maximum of
its BCH bounds, that we denote by ∆(C). Some times it is called the BCH (lower) bound of the
code (see [1, p. 22] and [2, p. 984]).

A cyclic code C of F(n), with polynomial generator g(x), is a BCH code of designed distance
δ if g(x) is the polynomial with the lowest degree over F having

{
αb+j | j = 0, . . . , δ − 2

}
⊆

Z(C) (see [5, p. 202]) or, equivalently if for any cyclotomic coset Q ⊆ D(C) we have that Q ∩
{b+ j | j = 0, . . . , δ − 2} 6= ∅. The Bose distance is defined for a BCH code C of designed distance
δ, as the largest δ′ such that C is a BCH code of designed distance δ′. Note that for a BCH code
C it may happens that its Bose distance being less that ∆(C), as the following example shows.

Example 1. Set q = 2, n = 31 and α a 31-th primitive root of unity. Let C be the BCH
code generated by lcm{M (15),M (16),M (17)}, where M (t), denotes the minimal polynomial of αt

in F[x]. Consider the 2-cyclotomic cosets C1 = {1, 2, 4, 8, 16}, C3 = {3, 6, 12, 17, 24} and C15 =
{15, 23, 27, 29, 30}. Then one may check that the defining set of the code C is D(C) = C1∪C3∪C15,
and that the Bose distance is δ = 4. However ∆(C) = 5, because {1, 2, 3, 4} ⊂ D(C). But
{1, 2, 3, 4} ⊂ C1 ∪ C3, so that C cannot be a BCH code of designed distance δ = 5. Hence the
Bose distance is less than the maximum of all possible BCH bounds (or simply, the BCH bound,
∆(C)).

Let L/F an extension field that contains a n-th primitive root of unity, α. The (discrete) Fourier
transform of a polynomial f ∈ F(n) (also called Mattson-Solomon polynomial), that we denote by
ϕf is defined as ϕf (x) =

∑n−1
j=0 f(αj)Xj . Clearly, ϕf ∈ L(n); moreover, the Fourier transform may

be viewed as an isomorphism of algebras ϕ : L(n) −→ (Ln, ?), where the multiplication “?” in Ln
is defined coordinatewise (see [1, Section 2.2] or [5, § 8.6]). The inverse of the Fourier transform is
given by ϕ−1

g = 1
n

∑n−1
i=0 g(α−i)Xi (see for details any of [1, 2, 5]).

Let us recall some definitions in [1, Chapter 3] related to the computation of the BCH bound.
The context of these definitions is the study of multivariate polynomials, so, for the sake of sim-
plicity, we present a very simplyfied version only concerning univariate polynomials.

Definition 2. Let L/F an extension field that contains a n-th primitive root of unity, α. For any
element g ∈ L(n) we define the apparent distance of g, that we denote d∗(g), as follows.

1. If g = 0 then d∗(0) = 0.

2. If g 6= 0 then
d∗(g) = max

{
n− deg

(
xhg

)
| 0 ≤ h ≤ n− 1

}
.

Now, the apparent distance of a cyclic code C in F(n) with generator idempotent e ∈ C is
d∗(C) = d∗ (ϕe) and moreover



∆(C) = d∗(C) = d∗ (ϕe) ≤ d(C) (1)

(see [1, p. 22]). As an immediate consequence we have.

Corollary 3. Notation as above. Let C be a cyclic code in F(n) with generator idempotent e ∈ C.
If d∗(ϕe) = ω(e) then d(C) = ∆(C).

3 The minimum distance and the BCH bound

We keep all notation of the preceding section. For an arbitrary element g ∈ L(n), which we may
view as a polynomial with deg(g) ≤ n− 1 and for any h ∈ {0, . . . , n− 1} we write

mg = gcd(xhg, xn − 1) (2)

where mg does not depend on h, because xh and xn− 1 are relatively prime polynomials. We also
write, for any h ∈ {0, . . . , n− 1}

xhg = (xn − 1)fg,h + xhg (3)

where fg,h is a suitable quotient from the division algorithm. Note that if g 6= 0 then xhg 6= 0
because deg(g) < n. By using results in [1] and [3] (see also [5, Theorem 8.6.31]) we may get the
following result.

Lemma 4. Let n, q, F and L be as above. Consider g ∈ L(n) and let mg be as above. Then

1. d∗(g) ≤ n− deg(mg).

2. If g | xn − 1 then d∗(g) = n− deg(g).

As a direct consequence we have the following result (see [1, Theorem 4.1] and [3, Theorem 2]).

Corollary 5. Let C be a cyclic code in F(n) and c ∈ C. Then

1. d∗ (ϕc) ≤ ω(c).

2. n− deg (mϕc
) = ω(c).

Then, by lemma above, the apparent distance of any f ∈ L(n) is less than or equal to the
number of nonzeros of mf . The following result shows us when the equality is reached.

Proposition 6. Let n, q, F and L be as above. Consider f ∈ L(n) and let mf be as in (2).
Then d∗(f) = n − deg(mf ) if and only if there exists h ∈ {0, . . . , n − 1} such that xhf | xn − 1
(equivalently, xhf and mf are associated polynomials in L[x]).

Now, our main result.

Theorem 7. Let n be a positive integer, p a prime number and q a power of p. Assume that
gcd(n, q) = 1. Consider the field F and an extension field L/F containing a n-th primitive root of
unity α. Let C be a cyclic code in F(n). Then d(C) = ∆(C) if and only if there exists a polynomial
f ∈ L(n), such that

1. d∗(f) = d∗(C).

2. d∗(f) = n− deg(mf )

3. ϕ−1
f ∈ C.

Moreover, in this case, there exists h ∈ {0, . . . , n− 1} such that xhf | xn − 1.

Under a constructive point of view, the theorem above together with Proposition 6 shows us
that we only have to focus on the divisors of xn − 1. Let us state this fact in the following results
that we will use in the next section.

Corollary 8. Hypotheses as in Theorem 7. Let C be a cyclic code in F(n). Then d(C) = ∆(C)
if and only if there exists k ∈ {0, . . . , n − 1} and a divisor g | xn − 1, in L[x], such that setting
f = xkg, the following conditions hold.



1. d∗(f) = d∗(C) (recall that d∗(f) = d∗(g)).

2. ϕ−1
f ∈ C.

Example 9. Set q = 2, n = 45 and g = x40 +x39 +x38 +x36 +x35 +x32 +x30 +x25 +x24 +x23 +
x21 + x20 + x17 + x15 + x10 + x9 + x8 + x6 + x5 + x2 + 1. Let α be a 45-th primitve root of unity.
To find the parameter k in the corollary above, we have to compute g(1) and g(α3), because the
defining set of the polynomial (x45 − 1)/g is C2(0) ∪ C2(3). Since g(1) = 1 and g(α3) = α30 then
k = 15 works. That is, setting f = x15g we have that ϕ−1

f ∈ F(45). Set C = (ϕ−1
f ) and we have

that 5 = d(C) = ∆(C) and dim(C) = 21. In fact, C is a BCH code with δ = 5.

It is well-known that, under our notation, a ∈ L verifies that a ∈ F if and only if aq = a.

Corollary 10. Hypotheses as in Theorem 7. Let C be a cyclic code in F(n). Then d(C) = ∆(C)
if and only if there exists k ∈ {0, . . . , n−1} and a divisor g | xn−1, in L[x], such that the following
conditions hold.

1. d∗(g) = d∗(C), and setting f = xkg,

2. supp(f) ⊆ Zn \D(C),

3. (f(αj))q = f(αj), for any j ∈ {0, . . . , n− 1},

Now we give a sufficient condition to get BCH codes yielding its true minimum distance.

Corollary 11. Let C be a cyclic code in F(n) with generator idempotent e ∈ C. If there exists
h ∈ {0, . . . , n− 1} such that xhϕe | xn − 1 then d(C) = ∆(C).

4 Applications: true minimum distance in BCH codes

We keep all notation. The following result allows us to construct BCH codes B(δ), for which
d(B(δ)) = ∆(B(δ)) = δ. We recall that, for a given polynomial g ∈ F(n), it is denoted by (g) the
ideal in F(n) generated by g.

Proposition 12. Let g ∈ L[x] be a divisor of xn − 1. If ϕ−1

xkg
belongs to F[x], for some k ∈

{0, . . . , n− 1}, then the cyclic code C =
(
ϕ−1

xkg

)
verifies that ∆(C) = d(C).

Theorem 13. Let g ∈ L[x] be a divisor of xn − 1. If there exists k ∈ {0, . . . , n − 1}, such that
xkg(αj) ∈ F, for all j = 0, . . . , n−1 then there exists a BCH code of designed distance δ, C = B(δ)
(containing ϕ−1

xkg
) such that δ = ∆(C) = d(C) = n− deg(g).

For any couple of positive integers a, b, we denote by Oa(b) the multiplicative order of b, modulo
a. We also denote by φ(a) the Euler’s totient function.

Theorem 14. Let n be a positive integer, p a prime number and q a power of p. Assume that
gcd(n, q) = 1. Consider the field F and an extension field L/F containing a n-th primitive root of
unity α. Let h be an irreducible factor of xn−1 with defining set D(h). We set g = (xn−1)/h and
pick any j ∈ D(h). If g(αj) = αk then there exists a BCH code of designed distance δ, C = B(δ)
such that δ = ∆(C) = d(C) = deg(h).

Corollary 15. Let n = qm − 1, for some m ∈ N. For each divisor l of n, there exist φ(l)
Ol(q)

BCH
codes of designed distance δ = Ol(q) over F having true minimum distance δ.

Example 16. Set q = 2 and n = 15. Denote the irreducible factors by h1 = Φ1, h2 = Φ3,
h3 = x4 + x+ 1, h4 = x4 + x3 + 1 and h5 = Φ5.

Setting gi = xn−1
hi

we apply Theorem 14 above to get the following table of BCH codes of length
15 having true minimum distance δ.

Factor Dimension δ = d
g1 15 1
g2 10 2
g3 8 4
g4 8 4
g5 6 4



Note that the codes associated to g2, . . . , g5 are not considered in the classical result [5, Theorem
9.2.5]. There are more nonconsidered codes. The polynomial g = Φ15Φ5 verifies the conditions of
Theorem 13 with k = 0, and hence it determines a BCH code, C6 having true minimum distance
δ, with parameters dim(C) = 5 and d(C) = 3 . Also Φ5Φ3h3 verifies the conditions of Theorem
13 with k = 0, and hence it determines a BCH code C7 having true minimum distance δ, with
parameters dim(C) = 7 and d(C) = 5.

Example 17. Set q = 2 and n = 21. Denote the irreducible factors by h1 = Φ1, h2 = Φ3,
h3 = x3 + x+ 1, h4 = x3 + x2 + 1, h5 = x6 + x4 + x2 + x+ 1 and h6 = x6 + x5 + x4 + x2 + 1

Setting gi = xn−1
hi

we apply Theorem 14 above to get the following table of binary BCH codes of
length 21 having true minimum distance δ. We complete with another one satisfying the conditions
of Theorem 13.

Factor Dimension δ = d
g1 21 1
g2 14 2
g3 12 3
g4 12 3
g5 8 6
g6 8 6
Φ21h3h1 10 6

We finish with an example of a binary BCH code with true minimum distance δ of length 33.
We have not found in the literature any binary BCH code having this length.

Example 18. Set q = 2, n = 33 and g = x30 +x27 +x24 +x21 +x18 +x15 +x12 +x9 +x6 +x3 + 1.
One may check that g verifies the conditions of Theorem 13 with k = 0, and hence it determines
a BCH code C having true minimum distance δ, with parameters dim(C) = 11 and d(C) = 3.
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